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Abstract

Natural disasters such as earthquakes have consecutive impacts on the smart grid because of aftershock activities.
To guarantee service requirements and smart grid stable operations, it is a challenge to design a fast and survivable
rerouting mechanism. There are few studies that consider concurrent rerouting aiming at multiple services in smart
grid communication network, however. Firstly, we formulate the node survivability, link survivability, and path
survivability model in terms of the distance from the epicenter to the node and the link of the network. Meanwhile,
we introduce the indicator of site difference level which is unique in the smart grid to further restrict the service
path. Secondly, to improve the algorithm efficiency and reduce rerouting time, the deep first search algorithm is
utilized to obtain the available rerouting set, and then the I-DQN based on the framework of reinforcement
learning is proposed to achieve concurrent rerouting for multiple services. The experimental results show that our
approach has a better convergence performance and higher survivability as well as the approximate latency in
comparison with other approaches.
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1 Introduction
Smart grid (SG) is a new bulk power system-integrated
automation technology and information technology (e.g.,
the advanced remote sensing technology, communica-
tion technology, information technology, and control
technology) with the physical network. It offers con-
sumers a reliable, economical, clean, and interactive
power supply and various additional services by lever-
aging powerful demand side management and real-time
pricing mechanism, which plays a significant role in the
construction of smart cities [1]. Furthermore, SG is a
typical cyber-physical system, which consists of two dis-
tinguishable and complex networks: the physical power
system and the communication network. The former is
in charge of the energy transmission, and the latter pro-
vides the necessary scheduling and control functions in
terms of the carried services with the purpose of smooth
operations in SG. Messages are obtained either by

sensing physical power system states or collecting from
the intelligent terminal devices (e.g., PMU, IEDs, distrib-
uted generation resources, and sensors) and then trans-
mitted and processed in the manner of wire or wireless
to achieve multi-level and multi-dimensional situational
awareness as well as the optimal control of the physical
grid. Therefore, SG is considered one of the most signifi-
cant applications of IoT [2].
With the accelerated interactions of source-grid-load

and the employment of various power applications, ser-
vices in smart grid communication network (SGCN) fea-
tured with low latency and high reliability are increasing
in a geometric progression [3]. Taking point-to-point relay
protection as an example, the unidirectional latency can-
not exceed 10ms, or else cascading failures are prone to
happen. Furthermore, 5G-enabling technologies of huge
capacity, low latency, ubiquity, less energy consumption,
and faster deployment provide reliable transmission for
services in SGCN. In addition, as the key technology of
5G, SDN (software-defined networking) is an emerging
network paradigm. The separation of the data plane and
the control plane, the global view of the network and the
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programmability make it possible for real-time path recov-
ery in SGCN [4]. Nowadays, the combination of 5G, SDN,
and SG to achieve faster service deployment has become a
serious concern for SGCN reliability [5–7].
Different from the general communication network,

SGCN is a private network characterized by high-speed,
integration, two-way communication. Moreover, the op-
tical fibers in SGCN are always laid along the power-
lines. Moreover, nodes referred to the communication
devices deployed in power plants and substations (e.g.,
routers, switches) and links (e.g., ADSS, OPGW) are
mostly exposed to a harsh environment, and thus they
have a high probability to be damaged resulting from
human and natural disaster factors, such as intentional
attacks, destruction, hurricane, frost, earthquake, and
tsunami. As SG heavily relies on the communication sys-
tem supporting, the disruptive delivery easily leads to
cascading failures in the physical power system to such
as power flow transfer, load loss, and blackouts.
It is noted that natural disasters are always evitable, re-

gional, and unpredictable, and they always cause de-
structive damage to people’s lives and infrastructures.
We think that the research about large-scale failures in
SGCN with low frequent occurrence is equally or even
more important than the minor failures. Taking an
earthquake as an example, its occurrence is accompan-
ied with the release of a large amount of destructive en-
ergy, and thus many electricity devices or secondary
devices in terms of the distance from the disaster center,
namely the epicenter, are damaged in different level.
More severely, it possibly causes the whole network to
paralyze. For instance, the Sichuan Province Changning
county of China earthquake in June 2019 resulted in the
shutdown of four 35-kV substations, four 35-kV power-
lines, and seven 10-kV lines. About 38,000 consumers
suffered from power outages [8]. Furthermore, the earth-
quake has a durative impact from a few seconds or mi-
nutes to several decades due to aftershocks [9].
Generally, the nodes along with links in the communi-

cation networks which are closer to the epicenter have a
higher possibility to be damaged again in the subsequent
aftershock activity, and vice versa [10]. In order to
minimize the impact of natural disasters on the perform-
ance of communication networks and to ensure con-
secutive and real-time transmission for various types of
services in the smart grid, it is necessary to provide ef-
fective rerouting solutions to enhance network resili-
ence, especially in large-scale failure scenarios. To
guarantee the smooth operation of SG in the event of af-
tershocks, we focus on establishing a faster and reliable
rerouting mechanism for multiple interrupted services
simultaneously in this research.
However, the existing network management system

based on devices in SG confronts the issues of decentralized

control, human intervention, poor interoperability, lack of
flexibility and scalability. Hence, it is inefficient in the im-
plementation of intelligent operations and service diversifi-
cation as well as the requirement of discrepancies QoS [11].
In multiple protocol label switching (MPLS), changing la-
bels can be employed to control data flow direction and im-
prove the controllability of MPLS. Nevertheless, routers
need to be reconfigured for per new application, which in-
creases the restoration time for services and restricts its ap-
plication in SGCN. The IP-based rerouting strategy has a
slow convergence speed in the event of large-scale failures.
It is difficult to satisfy the rigorous latency requirement for
services in SGCN. Due to the benefits of decoupling of soft-
ware and hardware, flexible and efficient network manage-
ment and control, SDN paradigms provide a new solution
to improve the existing network architecture [12, 13].
Nevertheless, the traditional rerouting schemes usually

formulate the requirements as a single objective
optimization with respect to specific services, such as
end-to-end latency, cost, vulnerability, network risk bal-
ance, or the weighting values for the mentioned metrics
to restore services one by one [14–16]. There are few
studies for simultaneous rerouting for multiple services.
Besides, the conventional routing approaches may not
adapt to the network dynamic changes; therefore, they
could hardly provide a desirable performance in the
multi-service rerouting scheme for large-scale failures.
To obtain the appropriate solution, it is of vital import-

ance to formulate a solvable mathematical model in ac-
cord with practical requirements. However, it is hard to
formulate an accurate routing model especially for the oc-
currence of natural disasters scenario, which refers to
many interrupted links (nodes), services, and differentiated
QoS demands and specific constraints of smart grid com-
munication network. Moreover, it is difficult to obtain the
optimal solution because of the complex system model or
too many constraints during routing computation. As a
consequence, it leads to the inconsistency between the op-
timal solution and the real solution if we ignore some con-
straints or make some ideal assumptions [17, 18].
As a model-free solution in reinforcement learning

(RL), the DQN-based algorithms overcome the short-
comings of the traditional model and have been widely
used in traffic control, resource management, and rout-
ing recovery [19–21]. Therefore, it motivates us to ex-
plore novel solutions under the framework of RL to
solve the simultaneous rerouting for the entire services
in large-scale failures.
In order to avoid service disrupted again due to after-

shocks in SGCN, establishing a flexible and high surviv-
ability rerouting mechanism in the framework of deep
reinforcement learning (DRL) for interrupted services is
our main objective. To the best of our knowledge, this is
the first research that solves the rerouting mechanism
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under the framework of DRL. The key contributions of
our work can be summarized as follows:

1. We first calculate the service recovery level in
terms of service requirements of the end-to-end la-
tency, importance, and the voltage level. After that,
we build models of node survivability, link surviv-
ability, and path survivability according to the dis-
tance between nodes (links) and the epicenter.
Besides, the end-to-end latency and site difference
levels are also considered to be in accordance with
the operation of SGCN.

2. We propose a recovery scheme for the entire
services in the SGCN under the framework of deep
reinforcement learning. To this end, we calculate
the routing path set for disrupted services and then
formulate the corresponding state, action, and the
reward function of DRL.

3. We provide an improved deep Q network (I-DQN)
based on priority resampling for faster convergence.
The experiment results show that it has better
convergence and better survivability compared with
other reinforcement learning and other routing
strategies.

The remainder of this paper is organized as follows.
Section 2 investigates various fault recovery approaches
with different network technology. Section 3 describes
the concurrent rerouting mechanism for multiple ser-
vices in SGCN. Section 4 analyzes the factors that af-
fected path reliability in case of aftershocks occurrence.
Section 5 provides a brief introduction of RL and the de-
tails of I-DQN. Section 6 presents the simulation results
and Section 7 concludes the paper.

2 Related work
2.1 Single-failure restoration
Preventive protection and dynamic restoration are two
kinds of restoration mechanisms in communication net-
works. In the former, the interrupted service is rerouted
to a disjoint alternate path that is established in advance
when the working path fails. Here, the working path and
the alternate path are the optimal and sub-optimal paths
in the network computed by some routing algorithms in
terms of the network resource utilization and network
topology. Similar protection methods are adopted in dif-
ferent networking technologies, for instance, automatic
protection switching (APS) and self-healing rings (SHR)
in SDH, intra-domain protection, inter-domain protec-
tion in ASON, linear protection, ring protection, and
subnet protection in PTN and ASON protection in
OTN. Various protection technologies can guarantee
fast restoration. However, it is incapable of coping with
double failures or multi-failure scenarios. Particularly, in

large-scale failures, both the working path and the alter-
nate path are likely to be destroyed simultaneously, and
thus the protection scheme is basically invalid.
In the optical network, various approaches based on

P-cycle are proposed to achieve joint protection regard-
ing on-cycle links and straddling links. In case of a single
link failure, an automatic switching between the working
path and the alternate path on the p-cycle can effectively
guarantees consecutive delivery of service requests. Fur-
thermore, such protection enables fast recovery espe-
cially in a ring-like network and in the scenario of
multiple failures. Zhang et al. [22] proposed the PSPP al-
gorithm through disjoint p-cycle configuration for each
link in the working path to enhance the network
survivability.

2.2 Multiple-failure restoration
However, SGCN is a complex time-variant system, and
the protection scheme-reserved network resources for
all possible failure situations results in inefficient re-
source utilization and limited recovery ability.
The restoration method refers to dynamically estab-

lishing rerouting for services according to real-time net-
work topology and network resources. There are roughly
two restoration approaches aiming at different network-
ing technologies: the dynamic rerouting and pre-
establishing rerouting. Different rerouting algorithms
based on node-based rerouting, link-based rerouting,
and end-to-end rerouting are widely studied. Compared
to the protection method, the restoration scheme is
more applicable to the large-scale failure scenario due to
its flexibility and high resource utilization.
Note that it takes milliseconds or tens of seconds to

converge again in the IP network in case of failures, and
it worsens network performance because of packet loss
or discarding during this period. Therefore, IETF devel-
oped an IP-based rerouting framework (IPFRR). This
greatly attracts many researchers to launch the research
in regard to the fast reroute. Elhourani et al. [23] pro-
posed an IP fast reroute method by means of construct-
ing a rooted arc-disjoint spanning tree in k-edge-
connected network in case of k-1 link failures. Similarly,
in the case of multi-link failures [24], a disjoint spanning
tree based on edge cut was employed to reduce packet
loss ratio, balance network load, and lower network re-
cover delay. In order to improve the algorithm efficiency
and performance as well as implement complete protec-
tion against link failures in the network [25], an ap-
proach of TOD (tunneling on demand) was addressed.
An interface-specific routing model (ISR) is capable of
handling link failures in most situations, and a tunneling
mechanism will be activated if it fails to be backhauled
by ISRs. At the same time, TOD is proved to enable pro-
tection against single-link failure and double-link failures
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effectively and achieve complete link protection with
minimal tunnel overhead when multiple link failures
occur.
Ji et al. [14] analyzed the influence of link failures in

SGCN combing communication service attributes with
graph theory. To achieve the minimal end-to-end latency
and uniform distribution of communication services, a
rerouting algorithm combined the k-shortest path algo-
rithm with genetic algorithm which was designed to re-
duce network operation risk. On this basis [15], the
interdependence relation between the cyber network and
physical network in CPPS (Cyber-physical power system)
was explored and the impact of link failures on the phys-
ical network and communication services was described.
According to this, the cross-space risk mapping from the
cyber network to the physical network was established,
and then, the genetic algorithm aiming to make sure net-
working risk balancing was adopted.

2.3 Large-scale-failure restoration
In large-scale network failure scenarios, both the affected
scope of disasters and the number of damaged equipment
have a direct effect on network performance. The reserved
network resources are projected at a fivefold growth in
case of a triple-failure scenario or more in comparison
with a single failure. Furthermore, this demand grows rap-
idly with the increase of the number of failures in the net-
work. Thus, the pre-planned routing method is hard to
satisfy specific communication requirements of network
operations in case of large-scale failures [26]. To improve
network-restoring ability, the shared physical links in the
network are described as Shared Risk Link Groups (SRLG)
to form resource bundles. Kiese et al. [27] proposed a
multi-invulnerability protection scheme aiming to
minimize the number of shared SRLGs between the work-
ing path and the alternate path.
To verify the recovery feasibility in large-scale failure

scenarios [28], an epicenter as the center point and the
impact range as the radius of a circle were modeled and
then changes in terms of network capacity requirements
and fault notification time were analyzed. Authors pre-
sented that only a small amount of spare capacity (band-
width resources) is needed in the mesh network and
obtains a higher service recovery ratio. Neumayer et al.
[29] performed a network vulnerability assessment under
the influence of natural disasters. Authors modeled the
disaster impact as a line segment or a circular cut based
on bipartite graphs and then calculating a worst-case
line segment or circular cuts.
In order to reduce disruption time [10], a preventive

protection scheme in case of large-scale failures was pro-
posed. The authors established a dynamic, deterministic,
and probabilistic failure model for the nodes and links
according to the characteristics of seismic wave

propagation and the regional failures evolved with time
and then calculated each path failure probability based
on k shortest path algorithm. Each path is examined
whether it belongs to the safe zone or not in terms of
the preset threshold and then the available rerouting set
for services is acquired. The first route is selected as the
working path and one of the routes in the available
rerouting set can be regarded as the alternate path only
if satisfying survivability requirements and available net-
work resources.
However, it is inapplicable to SGCN due to a lack of

consideration for specific service requirements.

2.4 Resilience in SDN
To make a trade-off between the recovery time and for-
warding rule occupation resulting from frequent interac-
tions between SDN controller with switches in case of
the single-link failure [30], a flow aggregation strategy
with the objective of minimizing the number of reconfig-
uration rules was proposed and was formulated as an in-
teger linear programming problem. In the SDN-based
mesh network [17], a fault-tolerant routing scheme was
presented and converted into two sub-problems: the
routing tree construction and the SDN controller de-
ployment. The authors leveraged a pruning method to
improve the survivability of the routing tree. This
method is superior to the traditional methods with re-
spect to the number of protected nodes in the network
as well as reducing network vulnerability.

2.5 Machine learning application
Apart from various heuristic algorithms and intelligent
algorithms, various machine learning algorithms have
been applied to solve routing problems as well. Deep
learning (DL), reinforcement learning (RL), and deep
reinforcement learning (DRL) as the important branches
of ML are gaining considerable attention from academia
and industry [31]. RL is an AI (artificial intelligence)-
based algorithm by trial and error to obtain rewards
from the environment and learns the optimal strategy
according to the maximal cumulative expected rewards.
As a classical algorithm of RL, Q-learning enables to
handle the problem of discrete state and action space.
However, when the state-action space is enormous, it
may not be feasible. DRL can be considered an improved
version of RL that exploits the deep neural network
(DDN) to approximate the value function or the policy.
In order to reduce flooding routing overhead and the

impact of channel dynamic availability [32], a clustering
routing algorithm based on spectrum sensing for cogni-
tive radio networks was developed and solved in the
framework of RL. Du et al. [21] proposed a joint routing
and spectrum allocation mechanism for cognitive radio
multi-hop networks. To guarantee power efficiency, it
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aims to minimize transmission delay and exploits the
improved DQN to solve it. The results prove that it has
some advantages over packet loss ratio, throughput, etc.
Ding et al. [33] presented an adaptive routing strategy
based on the quality of service with the goal of minimiz-
ing the transmission delay and then leveraged the Q-
learning algorithm to acquire better convergence.
However, there are few studies combining machine

learning with routing survivability in large-scale failures
of SGCN. Inspired by [10], we propose a concurrent
rerouting approach for multiple services of SGCN in
case of large-scale failures, which is solved under the
framework of DRL.

3 Rerouting mechanism in large-scale failures
3.1 Communication architecture
SDN paradigm is characterized by centralized control
and management, programmability, independent proto-
col, granularity, etc. Since the smart grid heavily relies
on communication networking assistance, SDN-based
communication architecture can be used to monitor and
manage communication entities and improve network

efficiency and resiliency potentially. SDN-based SGCN
has been applied to load balancing, dynamic service
routing adjusting, fast fault detection, and so on [17]. In
this part, we still adopt the proposed architecture for
SGCN which has been presented in our previous re-
search shown in Fig. 1 [13].
A heterogeneous/hybrid communication network for

SG is built integrated with various demand and supply
at the data plane, and fine-grained forwarding rules are
installed in the switch flow table through the standard
interface to perform packet deliver. At control plane,
SDN controller is in charge of monitoring and managing
communication networks of SG as well as computing
paths for services and managing the defined forwarding
rules. For instance, it determines the paths that services
take through the network. At application plane, various
typical service systems are involved, including wide-area
measurement system (WAMS), distribution manage-
ment system (DMS), meter data management system
(MDMS), etc. Notifications about control services, pro-
tections services, and various measurements from back-
bone SDN switches are by intelligent terminals.

Fig. 1 Communication Architecture of Smart Grid based on SDN[13]
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SDN-based SGCN provides a centralized view of the
complicate network to applications. An integration and
interaction of three planes guarantee SDN controller
with the global view of the network and make it possible
to make wiser and flexible routing decisions in a distrib-
uted network. It can better meet the needs of rigorous
recovery latency and high reliability of services in SGCN
in case of large-scale failures.

3.2 Rerouting framework for SGCN
We design the recovery mechanism for SGCN based on
the following assumptions: (1) Node failure results in all
connected link failures. (2) If the source or destination
for any service is damaged, this service is unrecoverable.
Given the N-1 principle for the smart grid, there are two
pre-planned routes for critical services, one is the pri-
mary route and the other is the alternate route. Services
can be rerouted to the alternate route in case of primary
route failure. However, it is possible that both the pri-
mary route and the alternate route are damaged simul-
taneously, and thus a reliable rerouting strategy to
restore services is necessary for such situation. In gen-
eral, the recovery process can be divided into two
phases: candidate routing set calculation and routing de-
cision for service. In phase one, recovery levels for dis-
rupted services are determined, and then we obtain the
available paths for each service. In phase two, the ap-
proach of DQN-based is exploited to make routing deci-
sions for services. The rerouting process in large-scale
failure scenarios can be shown in Fig. 2.

3.3 Calculation of service recovery level
Besides the traditional voice, data, and video services,
there are some other important services such as relay
protection and stability control which are crucial to
stable operations of the SG. However, the occurrences of
disasters often cause many services to be interrupted or
even worse paralyze the whole system. Upon detecting
the interruptive service notification, the SDN controller
needs to adopt a fast rerouting scheme and carry out the
optimal path calculation to restore the interrupted ser-
vices. To guarantee service performance, it is of vital im-
portance to determine service superiority in the case of
many interrupted services.
According to the State Grid Corporation’s 13th Five-

Year of Communication Network Plan [34], communica-
tion services are classified into the following five groups
in terms of service importance: (1) relay protection of
500 kV/220 kV; (2) stability control; (3) wide-area phasor
measurement, dispatching automation, telephone dis-
patching, and electric energy metering; (4) substation
video monitoring, television consultation, and protection
information management; and (5) office automation
(OA), administrative telephone, and cloud terminal

application. Generally, protection and control services
are more crucial to SG stable operation in comparison
with management information service and thus have a
higher recovery level. Moreover, different service cat-
egories have obvious QoS discrepancies. For example,
the end-to-end latency for dispatching automation ser-
vices that are responsible for scheduling, monitoring,
and analysis and calculation for the smart grid is as-
sumed to be no more than 100ms, while the latency re-
quirement for administrative telephone service is less
than 250 ms. Hence, QoS standards of services have an
effect on the service recovery level. In addition, as to the
point-to-point relay protection, relay protection of sub-
stations with higher voltage due to a vaster control area
has a greater effect on SG than those with lower voltage.
Hence, we calculate the service recovery level from the

following three dimensions: end-to-end latency τk′, ser-
vice importance αk', and voltage grade βk'. Considering
the typical characteristics of SG communication services
[35], the five categories of services are distinguished by
an integer in the range from 1 to 5. Similarly, the voltage
requirement is represented as an integer from 1 to 3.
That is, non-relay protection service is 1, and relay pro-
tection with 220 kV and relay protection with 500 kV are
denoted as 2 and 3, respectively. Therefore, service re-
covery level for any bk is computed below:

Rk ¼ ϑτ′′k þ ψα′′k þ υβ′′k ¼ ϑ
τ′k−τ

′
min

τ′max−τ
′
min

� �
þ ψ

1
α′k

� �
þ υ

β′k−1

β′max

 !
:

ð1Þ
where Rk represents service recovery level for bk, and

here, ϑ, ψ, and υ are coefficients. They could be assigned
a certain value in terms of specific requirements, and
ϑ + ψ + υ = 1.τk'', αk'', andβk'' are normalizations of the
above three indicators.

4 Methodology
We firstly model SGCN as an undirected graph G ¼ ðV;L
;BÞ . Here, the switch deployed in the substation or the
control center is abstracted into node vi; vi∈V , and V is
the node set. The communication link from vi to vj is de-
noted as an edge eij; eij∈L, and L is the edge set. B = {b1,
b2, … bk, …}is the affected service set, where bk is the kth
service in B . A service requirement is represented as a
quintuple (vf (k), vt(k),Tk, Bk, Rk), where vf (k), vt (k) ∈ V
are the source and the destination of bk. Tk, Bk, and Rk in-
dicate service requirements of latency, bandwidth, and
service recovery level, respectively. pk is the route for bk,
pk ∈ Ƶ, and Ƶ is the service rerouting set.
To avoid the sequential effects of aftershocks, we make

a comprehensive analysis with respect to survivability,
end-to-end latency, and site difference level, which is
relevant to routing reliability in SGCN.
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4.1 Survivability
It refers to an ability to provide continuous transmission
even if in case of network failures. Distinct from other
natural disasters, earthquakes often have persistence in
the time scale. Thus, finding high survivability paths is
more practical for communication services in SGCN, es-
pecially in the frequent-earthquake districts. In a large-
scale failure scenario due to an earthquake, it is vital to
find a high-survivable path as far as possible from the
epicenter for all disruptive services to provide consecu-
tive delivery and guarantee network performance. Since
an end-to-end routing path consists of a series of or-
dered nodes and edges, node survivability, link

survivability, and path survivability are defined in the fol-
lowing section.

4.2 Node survivability
To acquire node survivability, failure probability needs
to be computed. For simplicity, different seismic wave
propagation patterns are negligible in this research. In
occurrence of an earthquake, a large amount of destruc-
tive energy can be released and spreads in a circle at a
constant rate from the source. The epicenter is the loca-
tion of the earthquake source on the ground. Due to the
medium impact, the destructive effect is changed with
the Euclidean distance between nodes or links and the

Fig. 2 Rerouting recovery mechanism in large-scale failures. This figure shows the rerouting process for services in SGCN. If the alternate path is
available, the service can be switched to it; otherwise, the I-DQN algorithm combined with DFS is employed to find the optimal path
combination for services
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epicenter. Assume it conforms to the exponential distri-
bution [10]. Let r be the impact radius. If the node is out
of the impact radius, the failure probability is 0. λ is an
attenuation factor, which describes the variation of
earthquake attenuation. Other factors, e.g., network
component aging, categories, techniques, and man-made
destruction, are omitted in this research. Hence, the
node failure probability can be represented as follows.

Pv
i ¼ e−λl

v
i Cð Þ

0

�
lvi Cð Þ≤r
lvi Cð Þ > r

; ∀vi∈V; ð2Þ

where lvi ðCÞ is the distance between vi and the epicen-
ter C. Accordingly, the survivability of vi is represented
as the following formula.

Sv
i ¼ 1−Pv

i ð3Þ

Similarly, link survivability describes the uninterrupted
probability of a link in the event of failures. The link fail-
ure probability depends on the distance of the epicenter
to the nearest point of the link. The smaller the distance
is, the closer to the epicenter is, and the higher the link
failure probability has, and vice versa. Figure 3 shows a
simple example on how to compute the Euclidean dis-
tance for links in different locations and the epicenter

with different impact radius. The following formula de-
notes the link failure probability:

Pe
ij ¼ e−λ min leij Cð Þð Þ

0

�
leij Cð Þ≤r
leij Cð Þ > r ; ∀eij∈L; ð4Þ

Accordingly, the link survivability is computed as
follows:

Se
ij ¼ 1−Pe

ij ð5Þ
We assume that the node failures and link failures are

independent. Hence, path survivability is represented as
the product of node survivability and link survivability.

Figure 4 shows a simple example under path surviv-
ability decision-making procedure owing to large-scale
failures. Take the service from A to J as an example, all
available paths that meet service requirements in the
current network status have been highlighted in different
colors. It is assumed that the pre-planned path 1 and 2
are the working path and the alternate path, respectively.
Path 1 and 2 are unavailable due to simultaneous failures
of A-E, F-E, F-G. Since the node D and the link D-K in

Fig. 3 Distance calculation for different links and an epicenter. This figure shows how to calculate the distance between the epicenter and links
with different locations in the network
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path 3 are closer to the epicenter, and path 3 has higher
failure probability in comparison with path 4. Hence,
path 4 is more reliable for services to resist the influence
of aftershocks.

4.3 Recovery latency
Comparatively, the end-to-end latency rather than the
bandwidth factor should be considered for SG commu-
nication services. Taking the control service as an ex-
ample, the total processing time for control measures is
limited to no more than 300 ms in case of disturbances,
and the end-to-end latency is less than 50 ms according
to the international SG regulations [33]. As to the
rerouting process for services in case of large-scale fail-
ures, the recovery latency refers to the total time from
services disruption to being completely restored.
According to the SDN-based fault management mech-

anism, the recovery latency includes the following parts:
the notification time between the adjacent node and
SDN controller, the processing time of SDN controller,
and transmission time. Hence, the recovery latency is
represented as follows:

Tpk ¼ T0 kð Þ þ Tpk þ Tfc; ð7Þ

Where T0(k) is a constant that denotes propagation la-
tency for bk before the occurrence of failures. Tpk de-
scribes the propagation time delay for service bk in pk.
Tfc represents the fault processing time for SDN control-
ler, and it is formulated as the following equation:

Tfc ¼ 2lswitcont=cþ Ts; ð8Þ

Where lswitcont describes the link length between the
switch and the nearest SDN controller. c is the light
speed in fibers. The first item denotes notification

exchanged time between the SDN controller and
switches, and the second item is the algorithm execution
time.
Assume the SDN switch has sufficient processing abil-

ity; therefore, the queue time delay can be omitted. The
propagation latency for bk in route pk is given in the fol-
lowing formula:

η ¼
X

ei j∈Lx
k
i j: ð10Þ

where η is the number of forwarding devices of pk,
namely, the number of nodes of pk. Tq describes the
queue time delay in a switch. Tt depicts the message
transmission time. lij represents link length of eij, and xkij
is a binary variable such that

xkij ¼
1; if the link eij is in the route of pk
0; otherwise

�
ð11Þ

4.4 Site difference level
SG is a typical cyber-physical system (CPS) composed of
the communication network and the electric network.
Both of them have similar structures. Different from the
common communication devices, switches deployed in
different substations correspond to different levels.
Generally speaking, substation with a larger voltage

grade due to a vaster area has a higher level, and vice
versa. For the convenience of an illustration, an integer
which ranges from 1 to 4 describes different substation
level. For instance, the substation level with 500 kV is 3,
220 kV is 2, and the like. Additionally, services are usu-
ally delivered among the switches in substations with the

Fig. 4 Schematic of higher survival path. This figure is an example of finding the available path with higher survivability for services
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same or similar voltage level according to specifications
of information exchange and region division in SGCN
[36], and there is no cross-level transmission. However,
with the implementation of ultra-high voltage (UHV)
projects in China, to reduce transmission cost and elec-
tric energy loss, the service from one UHV substation to
the other always takes a detour with the aid of the
lower-voltage substations in the vicinity. As a result, this
possibly results in obvious substation level variations
without substations level restriction and subsequently
increases service transmission risk. Hence, we introduce
the metric of site difference level to further limit nodes
of the service path as follows:

Δij ¼j κi−κ j j ≤ζ;∀i; j∈pk ; κi; κ j ¼ 1; 2; 3; 4; j
¼ iþ 1; ð12Þ

ωpk ¼
X

ij∈pk
Δij: ð13Þ

where vi and vj are neighboring nodes in pk, and κi and
κj describe the substation level of vi and vj, respectively.
Δij represents the difference of κi and κj. ζ is a preset
threshold and ζ = 1 in this paper. ωPk is the sum of site
difference level for all nodes in pk.

5 Rerouting scheme based on DQN
To have a better understanding of the following sections,
a brief introduction about reinforcement learning and
deep Q network is illustrated in Section 5.1. However, it
is far from a comprehensive survey, and its objective is
just to provide the basic knowledge for readers.

5.1 Reinforcement learning and deep Q network
The process of RL is usually formulated as a Markov Deci-
sion Process (MDP), where time is divided into a series of
time steps t = 1, 2…. And there are four variables in RL
procedure: state space S, action space A, probability transi-
tion matrix for states P, and rewards R. The objective of
RL is to make the optimal action policy according to the
immediate reward from the feedback of interaction with
the environment through exploration and exploitation.
The state is a description of the environment that RL
agent perceives, and correspondingly, state space is the set
of states. The action space denotes the possible action set
that the agent can choose at each time step t.
The mapping from the state space to the action space is

defined as a strategy π. Specifically, at any time step t, the
agent observes the present state st = s∈S and takes an ac-
tion at = a∈A in terms of the strategy π. Then, the agent
gets feedback from the environment, that is, an immediate
reward. At the same time, there is a transition from st to a
new state st+1 = s'∈S in accordance with Pss' (a)∈P. The
agent repeats this process by trial and error and learns the
optimal strategy with the objective of maximizing the

accumulative rewards in the end. It is worth mentioning
that both state transition and feedback procedures from
the environment are not controlled by the agent in the
learning phase. The agent just has an effect on the envir-
onment by actions choice and perceives the environment
further according to the gained reward.
Deep reinforcement learning (DRL) can be recog-

nized as an enhanced version of RL, which has attracted
considerable concerns from academia and industry due
to AlphaGo of the DeepMind team [31]. DRL has obvi-
ous advantages in decision-making with respect to the
issues of high-dimension state in comparison with the
traditional RL, and it is applied to deal with compli-
cated control issues. The action value function-based
DRL and deep deterministic policy gradient (DPPG) are
two basic DRL methods [37]. The deep neural network
(DNN) is utilized to approximate the action value func-
tion in the former. However, DNN in DPPG is used to
near the policy on basis of the policy gradient to learn
the optimal strategy. The distinction is that the former
is appropriate to solve discrete problems and the latter
is widely used for continuous problems.
The objective of RL is to evaluate the action value

function and greedily select the state-action pair with
the maximal Q value to maintain Q table; TD-learning
and Q-learning are classical algorithms based on state
value function and action value function. DQN is the in-
tegration of Q-learning and deep neural network, and it
is a value iteration algorithm-based on the Q network.
Nevertheless, there are so many state-action pairs in

practice, the tabular algorithm (e.g., Q-learning) may
encounter with dimension curse in accompany with
more memory occupation and computation. Moreover,
sparse samples may lead to instability, slow or even no
convergence of the algorithm. Therefore, three counter-
measures are taken to improve DQN performance.
Firstly, to solve the problem of dimension explosion,
the deep convolutional neural network (CNN) is used
to estimate the action value-integrated DNN with Q-
learning. Secondly, to break the temporal correlations
among samples, the experience replay method is
exploited in DQN. Specifically, at each time step t, the
ith transition e (t) = (s (i), a (i), r (i), s' (i)) is stored into
the experience memory D ¼ fe1;…eMg. At the training
phase, the statistic gradient descent algorithm is
employed to update the neural network parameters on
the basis of a minibatch of state transitions from D. Fi-
nally, the target network is applied to predict the target
Q value and improve training stability. The target net-
work is considered an earlier snapshot of the Q net-
work. And thus, it has the identical neural structure to
the Q network.
In the training process, the optimal objective of the Q

network r þ γ maxa0Qðs0; a0; θ−i Þ derives from the target
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network, where s' is the next state, a' is the possible ac-
tion, and θ−i are target network parameters at iteration i.
The parameters θ−i are updated with θi per ℏ iterations
and θ−i remain unchanged in the rest procedures.
The Q network is updated with the goal of minimizing

the loss function Li(θi) at each iteration i [38]:

Li θið Þ ¼ Es;a∼ρ :ð Þ r þ γ maxa0Q s0; a0; θ−i
� �

−Q s; a; θið Þ� �2h i
;

ð14Þ
Where Q(s, a; θi) is the value produced via Q network,

and ρ (s, a) is the probability distribution of state-action
pair (s, a).
After that, taking the derivative of the loss function

with respect to θi, the corresponding gradient could be
cast as

∇θi Li θið Þ ¼ Es;a∼ρ :ð Þ½ðr þ γ maxa0Q s0; a0; θ−i
� �

−Q s; a; θið ÞÞ∇θiQ s; a; θið Þ�; ð15Þ

Q� s; að Þ ¼ E r þ γmax0aQ� s0; a0ð Þjs; a½ �; ð16Þ

The optimal strategy can be acquired in terms of the
Bellman equation:

π� sð Þ ¼ argmax Q
a∈A

� s; að Þ: ð17Þ

5.2 Problem formulation
In order to achieve fast rerouting for services in large-
scale failures, the rerouting recovery problem is modeled
as a model-free strategy learning process in this section.
Figure 5 shows the schematic DQN execution process
under SDN communication architecture. And here, the
SDN controller can be regarded as the agent, the data
plane consists of switches deployed in substations and
the control center. The upper control plane is composed
of TED (traffic engineering databases) and PCE (Path
Computation Elements). The TED module is responsible
for network topology and network connections. The
PCE module supports the manner of centralized routing
computation. Aiming to the multi-service rerouting
problem in the large-scale failure scenario, it is ex-
tremely important to precisely identify the three metrics:
the environment and state, the action, and the corre-
sponding reward. We define them as follows.

5.2.1 Environment and state
The agent is responsible for making intelligent decisions
and policy deployment in DRL. As can be seen from
Fig. 5, in the SDN-enabled SGCN, the SDN controller
with the global view of the network topology is able to
accomplish the collection of networking parameters and
service information, path computation and routing

deployment, traffic management, etc. And thus, it is
regarded as the agent of deep reinforcement learning.
The observed environment includes the current network
topology and the interrupted services due to the dam-
aged nodes or links.
In addition, in light of the requirement of low latency

for services in SGCN, it is imperative that each path
should satisfy the service latency requirement, or else
the consideration about the path survivability and site
difference level is meaningless for rerouting. Hence, to
reduce computation complexity and guarantee service
performance, our solution is to find all the possible
paths for services based on depth first search algorithm
(DFS) and search the available service rerouting set.
After that, the DNN is introduced to learn the optimal
path combination for all services under the framework
of DRL. Therefore, the state is defined as follows:

st ¼ B1 tð Þ; I1 tð Þ½ �; B2 tð Þ; I2 tð Þ½ �; ::: Bk tð Þ; Ik tð Þ½ �f g:
ð18Þ

Where Bk(t), Ik(t) represent bandwidth requirement
and the index of paths in available rerouting set, respect-
ively. To improve the learning efficiency and get a better
state representation, it is important to note that the
metric of the bandwidth requirement should be normal-
ized in advance in practice.
In fact, many nodes or links are damaged in large-

scale failures due to earthquake occurrence, and many
services are interrupted subsequently. Therefore, it leads
to a larger state space in DRL. However, the appropriate
rerouting set for services is enumerable, and the im-
proved deep Q networks (I-DQN) algorithm for rerout-
ing is designed based on action value function in this
paper.

5.2.2 Action
As to the concurrent rerouting for all interrupted services,
the action space is all the path combinations in terms of
specific objectives; therefore, it is a discrete problem. If the
action is designed to sequentially select paths from the
available set, the action space is A = {uk}, where u is the
number of paths for bk in the available rerouting set. Note
that the action space size is varied with the number of ser-
vices exponentially. Since there were a large number of
services interrupted in large-scale failures, the action space
is correspondingly very huge.
The path combinations are sorted in ascending order in

terms of latency. We assume l to be the index of path
combination randomly initially. Consequently, the action

space is divided into two parts by l: the upper part is l
0
p

¼ fapjap∈A; 0≤ap < l; τpa > τ�g and the lower part is l
0
b

¼ fabjab∈A; juk j≥ab > l; τba < τ�g , A ¼ l
0
p∪flg∪l

0
b , where
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τ∗ is the average end-to-end latency which can be obtained
from the historical data. τpa and τba are the average latency
of the path ap and ab, respectively. Particularly, if l = 0,
then ap = l, and if l =max(| uk| ), then ab = l. Such design is
based on the latency of current average path and the his-
torical average path. If the two indicators are equal, the
value remains unchanged. If the average communication
latency of the present state is larger than τ∗, the paths with
smaller end-to-end latency should be selected from the

upper part l
0
p . Otherwise, the path is selected from the

lower part l
0
b to avoid getting stuck on a local optimum.

at = {ap, ab, l} ∈A, A is the set of candidate actions at time

step t. Compared to the initial action space, the newly
generated action space is reduced enormously.

5.2.3 Rewards
DQN is known to train the neural network under the guid-
ance of the reward, and the agent obtains an immediate re-
ward from the environment in case of choosing at in the
state of st. As the goal of DQN is to maximize the accumu-
lated rewards, our objective is to simultaneously maximize
path survivability and minimize site difference levels in the
rerouting mechanism of SGCN. Therefore, we define the
reward function that the DRL agent obtained as follows:

Fig. 5 DQN-based optimization framework for SGCN. This figure shows the execution of DRL combined with SGCN
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where Spk , ωpk correspond to the path survivability
and site difference level for pk, respectively. Spk ranges
from 0 to 1 and the site difference level is a dimension-
less non-negative integer. ℓ is the coefficient for balan-
cing the two variables. Given the discrepancies of the
above two indicators, to ensure learning efficiency, we
normalize them to a united scope in advance.

5.3 Improved DQN based on prioritized resampling
The issues about which transitions to store and which
experience to replay have become serious concerns in
the approach of DQN and various improved versions
[19, 39]. Our research focuses on the latter. Temporal-
difference (TD) error is a basic conception in RL, which
refers to the difference between the target value function
and current value function. And here, the target value
function is the sum of the immediate reward and the
next state value function. In [40], Mnih proposed a
natural-DQN method without considering the disparity
of samplings, which randomly select samplings from the
replay memory to update neural network parameters. In
fact, samples with different magnitudes of TD error have
disparate backpropagation impacts [41]. In other words,
samples with higher absolute TD-errors correspond to
more important backpropagation impacts due to the lar-
ger loss. Hence, they should be replayed more often than
others, and vice versa. The SARSA and Q-learning algo-
rithms have calculated the absolute values of TD-error
∣δ∣.Thus, samplings are restored with the probability,
namely ∣δ∣, which is a normalized metric.

P jð Þ ¼ pjP
mpm

: ð20Þ

where pj = ∣ δj∣.This prioritization resampling mech-
anism ensures the higher magnitude TD-error samples
to be stored and the lower samples to be erased at the
same time, which further prevents the model degrad-
ation. Nevertheless, it results in limited samples and in-
sufficient training as well. To enhance utilization
efficiency and improve sample diversity [39], designed a
prioritized replay sampling mechanism. The sampling
probability is proportional to the sample storage priority.
The storage priority is determined by |δ| which is de-
rived from the last trained sample and avoids the pos-
sible bias in the update process. However, it leads to
extra time complexity owing to the storage structure
based on the binary heap with priority.

To make sure DQN efficiency and higher superiority
samples update in a higher probability during the train-
ing phase, the coefficients α and the bias β are intro-
duced in the calculation of sampling probability. The
sampling probability of the learning experience j is de-
fined as follows:

P jð Þ ¼ α� pσj
max
m

pσm
� �þ β: ð21Þ

To acquire pj, the method which is proportional to the
magnitude of TD-error is adopted, that is pj = ∣ δj ∣ + ϵ,
where ϵ is a very small positive constant. Its role is to
overcome the sampling weight approximate to 0 once
their error is 0. The exponent σ ∈ [0, 1] is exploited to
describe the utilization degree of superiority. Especially
σ = 0 corresponds to uniform sampling. Compared to
the previous random sampling, the resampling method
enables sample diversity further.
The rerouting algorithm (I-DQN) for the entire ser-

vices based on the framework of DQN can be divided
into two phases: the available rerouting set and various
path metrics for services such as path survivability and
site difference level are firstly calculated in phase one;
after that, DQN is adopted to achieve the optimal path
combination for services in phase two. The details of the
algorithm are provided as follows:

6 Results and discussion
6.1 Parameter settings and service deployment
In this section, we assess the performance and efficiency
of concurrent rerouting scheme for multiple services
based on DQN in case of large-scale failures in SGCN.
The experiment was conducted in tensorflow1.13.1,
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Python3.7. To verify the algorithm performance, the
proposed method is compared with two baseline solu-
tions: Q-Learning and Natural-DQN [40]. Meanwhile, to
validate the effectiveness of different rerouting schemes,
the proposed rerouting strategy is compared with the
shortest path (SP) and risk balancing routing algorithm
(RBRA) as well [13].
The network topology in [42] has been utilized to ver-

ify the effectiveness of the proposed approach as shown
in Fig. 6. It consists of 29 nodes and 47 links. Here, 5,
20, and 29 are 500-kV substations and 1, 7, 12, and 17
are 110-kV substations. The rest are 220-kV stations.
Fourteen is the control center. The average node degree
is 3.2, and the numbers on the links indicate the link
length. The maximum impact radium of an earthquake
is 500 km [21], the processing time is 0.01 ms [43]. The
light speed in fiber is 2 × 105 km/s. The learning speed is
0.01, and the greedy factor is 0.9. In contrast with the
general communication network, services in SGCN are
not randomly distributed, and they happen between the
substations, master stations, and the central stations. Ac-
cording to [34], the initial distribution of services in

SGCN is deployed as follows: 80% of the total services,
the 500-kV substation is considered the source are
chosen as the destination (source). The two terminals
for the remaining services are randomly selected from V.

6.2 Overall performance of routing and algorithm
For simplicity and without loss of generality, there is an as-
sumption that any node in the network can be considered
the epicenter, and then we compute the average result for
all the nodes. Since the process of node failures is the same
as link failures, this research takes link failures as an
example to validate the effectiveness of the proposed
scheme. The changing trends of average reward with diffe-
rent approaches as well as convergence performance in
different scenarios are demonstrated in Figs. 7 and 8. Here,
the number of link failures (LF) is 3, and the number of
affected services (AF) is set 15 and 25, respectively.
Figure 7 shows the average reward of the agent received

from the environment varied with the number of episodes
in the scenario of 3 link failures and 15 affected services. It
can be seen that the average reward increases with the in-
creasing number of episodes for all approaches, and Q-
learning has a slighter advantage than the other two
DQN-based approaches. This is because it is difficult to
adjust the neural network parameters because of small
state space and scare training data. Furthermore, there is
no obvious disparity between the prioritized replay resam-
pling and uniform sampling because of the sparse samples.
The overall performance of I-DQN approximates to the
Natural-DQN. The performance of all algorithms is al-
most the same in the end.
Figure 8 depicts the convergence performance for

three approaches in different experimental scenarios.
Figure 8a demonstrates that the average steps show a
gradual decline trend with the increase of episodes for
all algorithms with 3 link failures and 15 affected services.
The metric of the average step refers to the experienced
steps of the given episodes for the sampled transitions to
achieve algorithm convergence. It is observed that the
Q-learning decreases faster than other algorithms before
350 episodes and finally converges at 13 steps. After 350
episodes, the average steps of DQN-based algorithms have
a faster speed than that of Q-learning, and they conti-
nuously decrease and finally are stable at 11 steps. The
reason is that the neural network has not been trained
well in the beginning so that the DQN-based approaches
converge slowly. In the later episodes, more samples with
a high quality are exploited to be trained, and the
advantage of prioritized replay is becoming obvious.
Figure 8b further compares the average steps with 3

link failures and 25 affected services for all algorithms. It
is observed that the convergence speed of DQN-based
algorithms drops faster than that of Q-learning, more-
over, the approach of I-DQN expenses fewer average
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steps to find an optimal path combination than that of
Natural-DQN and retains steady after about 800
episodes. The reason is that sufficient samples have
to be stored with a prioritized resampling mechan-
ism and make sure the neural network to be well
trained.

Figure 9 depicts the average episodes as a function of
the number of link failures. Note that the average epi-
sodes decrease for affected services with the increasing
of link failures. Particularly, there is a sharp decline
when the number of link failures is more than four. It is
because more failures will take place around the

Fig. 6 Networking topology in some province of China [42]. This figure provides the experimental topology. The nodes denote substations with
different voltage levels and have different node importance. They are highlighted in different colors. Likewise, the links connect different
substations with different link importance

Fig. 7 Average rewards variation vs. no. of Episodes. This figure shows the average reward of the agent received from the environment varies
with the number of episodes for the three algorithms, I-DQN, Q-learning, and Natural-DQN, in the scenario of 3 link failures and 15
affected services
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epicenter in the scenario of large-scale failures. There-
fore, the probability of information island apparently
increases with the increase of link failures under the
condition of the average node degree in the network
is 3.2. As a result, there are comparatively fewer
available paths for services which leads to smaller
state space and action space, and thus the conver-
gence speed is becoming faster. Also, we can find that
the average episodes achieved the convergence state

increase with the increase of affected services leading
to huge state space.
Figure 10 depicts the variation of average service recov-

ery ratio versus the number of link failures. The recover-
able service means that neither source nor destination of
the service is isolated nodes and there are available paths
satisfying service QoS requirements as well. The average
recoverability can be represented as the ratio of the recov-
erable services and the total affected services. It is

Fig. 8 Average steps variation vs. no. of episodes in different scenarios. This figure depicts the convergence performance comparison for three
approaches, I-DQN, Q-learning, and Natural-DQN, in the situations of LF = 3, AS = 15, and LF = 3, AS = 25
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Fig. 9 Average episodes vs. no. of link failures. This figure shows the average episodes as a function of the number of link failures in the case of
AS = 15 and AS = 25

Fig. 10 Average recoverable ratio no. of link failures. This figure depicts the variation of average service recovery ratio versus the number of link
failures when the initial number of services is 500, 1000, 1500, and 2000
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observed that the curve of the average recoverability suf-
fers a sharp drop in the network. This is because the de-
mands for specific services as well as the increase of link
failures result in fewer available paths for services. Espe-
cially when the number of link failures is 6, the average re-
coverability is only 14.87%. Also, we notice that average
recoverability shows a gradual decline trend with the in-
creasing number of services. The reason is that more ser-
vice requests cause more links to be unavailable due to
insufficient bandwidth resources, and accordingly, fewer
available routes are suitable for services transfer.
Figure 11 describes the average path survivability

for different routing strategies versus different service
requests. We can find that the I-DQN acquires the
maximal path survivability for the three approaches.
This is due to that the approach of SP is in pursuit
of the shortest end-to-end latency path for services
while the routing strategy of RBRA is searching rout-
ings for services with the objectives of simultaneously
minimizing the balanced network risk and the average
communication latency. Neither of them considers
the path survivability factor. Whereas with our pro-
posed I-DQN scheme, the metrics of the path surviv-
ability and the site difference level are the received
reward of an agent from the environment, which en-
courages the agent to choose the routes with higher
survivability to meet the required reliability for

services. Given the obvious QoS discrepancies, the
more service rerouting requests are, the fewer avail-
able paths satisfying service requirements become.
And thus, some services tend to choose paths closer
to the epicenter to guarantee high path survivability.
Hence, the path survivability for all routing strategies
gradually drops. However, the proposed I-DQN ob-
tained higher path survivability compared to other
routing strategies.
The average recovery time is a critical metric to meas-

ure the performance of different rerouting strategies in
case of large-scale failures. As can be seen from Fig. 12,
I-DQN achieves the maximal average recovery latency in
comparison with other schemes. This is because that the
I-DQN scheme stimulated by the rewards tends to
choose the paths with higher survivability for services
that are far away from the epicenter. However, the max-
imal average recovery time is only 5.02 ms with 25 af-
fected services in the network, which does not exceed
the service threshold in SGCN. Meanwhile, it is observed
that the average recovery time increase by 10.87% and
5.18% with the increasing average path survivability by
87% and 47% in comparison with the approaches of SP
and RBRA. In addition, the average recovery latency in-
creases with the increasing service requests for all strat-
egies, and similarly, the reason has been illustrated in
Fig. 11.

Fig. 11 Average survivability vs. no. of affected services. This figure describes the comparison of average path survivability for different routing
strategies, SP, RBRA, I-DQN and LF = 3 vary with different service requests
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6.3 Time complexity analysis
The neural network in the experiment has two hidden
layers. The number of neurons of the input and the output
layer corresponds to the dimensions of state space n_feature
and the of the action space n_action. For any iteration, the
feed-forward the calculation needs three matrix opera-
tions, that is, the number of calculations is n_feature × n1,
n1 × n2, and n2 × n_action, then the time complexity is O (n_
feature×n1+ n1 × n2 + n2 × n_action) =O (T). It is assumed
that the I-DQN converges at M episodes, and then the
overall time complexity is O (T ×M).
In summary, due to the fluctuation of the communica-

tion environment, the conventional heuristic algorithms
need to be reinitialized when the network topology and
carried services change in the event of natural disasters.
Additionally, the time complexity and the space com-
plexity are increasing rapidly as with the larger scale of
the problem, and the real-time performance and the
flexibility reduced. However, the reinforcement learning
algorithm enables to optimize the service paths combin-
ation autonomously through a well-trained neural net-
work once the training process is finished, which can
improve the timeliness of the communication system
and reduce computing complexity. The above experi-
mental results show that the average service recovery
time is 5.02 ms, which can satisfy the end-to-end latency

requirement of services in SGCN. It further validates the
effectiveness of the proposed approach.

7 Conclusions and future work
In this paper, we design a fast and reliable concurrent
rerouting mechanism under the framework of DRL for
all affected services in SGCN in case of large-scale fail-
ures. The experimental results demonstrate that the pro-
posed solution I-DQN has a better convergence in a
large-scale failure scenario compared with Q-learning
and Natural-DQN with respect to algorithm efficiency.
Also, this solution achieved higher path survivability in
comparison with SP and RBRA in terms of different
routing strategies. This is significant to the routing plan-
ning and optimization of SGCN in the quake-prone re-
gions. Since multi-agent reinforcement learning has
more advantages over the multi-service concurrent
rerouting. Our future work will concentrate on further
improving rerouting efficiency with multi-agent RL in
large-scale failures.

Abbreviations
ADSS: All-dielectric self-supporting optic fiber cable; DL: Deep learning;
DMS: Distribution management system; DRL: Deep reinforcement learning; I-
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