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Abstract
In this paper, we develop task offloading and resource allocation scheme for
unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system with
channel estimation errors over Rician fading channels. The objective is to maximize the
system utility with constrained network stability, transmit power, and data arrival rate.
We consider a general multi-user UAV-assisted MEC system based on frequency
division multiple access (FDMA), and we assume that the computation tasks are split
into separate tasks and offloaded to the server for computing. We study stochastic
computational resource management based on the Lyapunov optimization algorithm.
The optimal transmit power and bandwidth allocation for computation offloading are
obtained alternately, and the optimal computation task admission at each time slot
and the optimal value of the auxiliary variable are derived. Simulation results verify the
effectiveness of the proposed scheme in the paper and evaluate the influence of
various parameters to the system performance.

Keywords: Unmanned aerial vehicle, Mobile edge computing, Channel estimation
error, Computation task offloading, Resource allocation

1 Introduction
With the emergence of various typical applications, e.g., virtual/augmented reality, vehicle
networks, online games, and smart transportation, the user equipments (UEs) generate
massive computation-intensive and delay-sensitive data tasks that need to be processed
within a short time [1, 2]. The emerging applications, finite battery lives, and limited
computation capacities pose more great challenges and more strict requirements on the
quality of computation experience. In the future wireless communications, millions of
portable devices will be installed around the base station [3–5]. Therefore, novel tech-
niques have to be proposed to meet explosive computing needs and the growing demand
for computing quality.
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Mobile edge computing (MEC) and unmanned aerial vehicle (UAV) are two key pro-
moters of 5G; both academia and industry have given sufficient attention in them
currently. MEC has become as an effective solution to help UE deal with these
computation-intensive tasks. Meanwhile, unmanned aerial vehicle-assisted MEC has
attracted lots of research attention due to UAV’s mobility, flexibility, and maneuverabil-
ity. Among the possible applications, the UAV-assisted MEC is especially important in
disaster rescue and emergency response, which are in the absence of available terrestrial
infrastructures [6–8].
Different from traditional cloud computing systems with long latency for data exchange,

MEC enables an innovative architecture which aims to tackle conventional drawbacks by
providing computation capabilities. A large number of computationally intensive tasks
generated by mobile devices are offloaded to the MEC server, which can greatly increase
the speed of data execution, and reduce execution costs and consumption. In recent years,
there are some research papers about MEC systems. The authors derived local optimal
scheme in [9] for a single user MEC system and aimed at minimizing local execution
energy consumption. This framework was further developed in [10] and comprised a
set of policies for controlling CPU cycles. The authors designed distributed computation
offloading for solving both energy-and-latency minimization problems and investigated
the execution cost minimization problem in effective MEC system [11, 12]. Consider-
ing the latency constraints of UE and the tradeoff between different resources, energy
consumption minimization optimization was provided in computing systems [13–16]. In
[16], the authors investigated heterogeneous network with multicore MEC server. The
authors in [17] solved resource allocation stochastic optimization problem within data
offloading. The energy consumption and delay constraint with respect to average queue
length were investigated in [18]. Wang et al. [19] considered the total revenue of the net-
work within content caching and formed an optimization problem. The authors designed
a novel network of a multi-user scenario for optimizing user equipment data offloading
and utilized the failure probability notion for the latency minimization problem [20, 21].
Optimal offloading schemes are obviously important toMEC, but some assumptions pro-
posed by the current research have some limitations which assumed that the channel state
information (CSI) is perfect and without considering randomness of data arrival.
The studies about UAV-enabled wireless communications have receivedmore andmore

attention from scholars. Compared with conventional terrestrial communications, it is
a potential technology for communication systems and novel network infrastructure in
5G systems due to its underlying applications in communication scenarios. UAV-assisted
communication systems have some significant performance and advantages, such as cost
savings, fast mobility, and higher line-of-sight (LoS) link probability between the UAV
and the user. As a result, UAVs can be used as temporary relay nodes and temporary
data hotspot area to establish fast and timely communication links, and can be quickly
distributed to mobile users on the edge in a round flight attitude, carrying data offloaded
fromUEs to improve energy efficiency (EE).When terrestrial infrastructures are damaged
or communication traffics are congested, UAVs equippedwith computation capability can
be quickly deployed as aerial computation servers to meet the temporary and unexpected
demands.
The authors in [22] jointly optimized the UAV’s trajectory and transmit power for

covert communications in terms of maximizing the average covert transmission rate.
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The authors in [23] investigated an energy-efficient UAV-aided cellular network and
maximized the EE by jointly optimizing resource allocation and trajectory. It is fore-
seeable that the UAV-supported infrastructure in the application of MEC systems is
worthy of study [24, 25]. UAV-supported MEC wireless-powered system with the com-
puting rate maximization problems under the constraints of energy-harvesting and the
UAV’s speed was proposed in [25]. The authors utilized UAV as energy transmitters to
power ground mobile users and considered both two computing offloading modes. In
[26], the authors studied the difference between the offloading of video data processed
to a MEC server and the local execution of task data onboard UAVs. As a hypothet-
ical use case for the platform, the authors demonstrated how to use UAVs for crowd
surveillance based on facial recognition. In order to improve the MEC-UAV computing
performance, Jeong et al. [27] designed a resource allocation scheme aimed at minimiz-
ing the total amount of mobile energy consumption, while meeting the service quality
requirements of the offloaded mobile application. To achieve fair performance among
users, the authors considered a multi-UAV system and put forward the joint power
allocation [28, 29]. The author in [30] took ultra-reliable UAV as the research object,
combined with relay communication to analyze the location optimization of the UAV
and optimized the task block length with the constraint of delay. Path planning is an
important part for UAV-aided MEC system [31, 32], and combining UAV with other
technologies is also a research hotspot. In [33], the authors presented the optimiza-
tion of the joint beamforming mechanism and UAV-assisted power allocation design
aimed at maximizing the rate to improve the performance of the relay system. Based on
the premise of increasing the service range of UAVs, the best deployment strategies of
them were proposed. Then, the types of targets that can be served by UAVs were clas-
sified and investigated to maximize the number of flexible service and types of ground
users [34–36].
In this paper, UAV-assisted MEC system with channel estimation errors over Rician

fading channels is developed.We consider task offloading and resource allocation, and an
online computational resource management using the Lyapunov optimization algorithm
for multi-user MEC-UAV systems based on frequency division multiple access (FDMA)
is proposed. We assume that the computing tasks that arrive at the mobile device are
split into separate tasks, so that each device can offload it to the server for computing.
We formulate the system utility maximization problem, subject to transmit power, data
arrival rate, and network stability constraint under channel estimation error over Rician
fading channels. Specifically, we can also derive the optimal amount of data reached by
the mobile user at each time slot and the optimal value of the auxiliary variable and deter-
mine the optimal transmit power and bandwidth allocation for offloaded computing.
Numerical results verify the correctness of the theoretical analysis and the effectiveness
of the scheme proposed in the paper and prove the influence of various parameters on
the system performance.
The rest of this paper is as follows. The methods and system model are introduced in

Sections 2 and 3, respectively. The system utility maximization problem is formulated
in Section 4. Computing data offloading and computational resource management based
on the Lyapunov optimization algorithm are proposed in Section 5. Section 6 shows the
simulation results, and we conclude this paper in Section 7.
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2 Methods/experimental
We consider UAV-assisted multi-user MEC system with channel estimation error over
Rician fading channels. The task offloading, power allocation, and bandwidth allocation
are developed. An online computational resource management using the Lyapunov opti-
mization algorithm based on FDMA for solving the system utility maximization problem
is studied, subject to transmit power, data arrival rate, and network stability constraint.
Specifically, we update the backlog of the data queue for UE as Qi(t) and the length of the
task data for the server as C(t). The time-average system throughput in the long term is
equal to

∑
i∈U di. With the assistance of the Lyapunov optimization technique, the com-

plicated stochastic problem is transformed into continuous static optimization problems.
The optimal data admission di(t)∗, the optimal value of the auxiliary variable δi(t)∗, and
the optimal transmit power allocation pi(t)∗ and optimal bandwidth allocation αi(t)∗ are
determined.

3 Systemmodel
As shown in Fig. 1, we consider that the channels between UAV and UEs are line-of-sight
channels and assume that the flight altitude of the UAV is fixed as a constant H(H > 0).
The system available bandwidth is WHz, and all UEs are equipped with single antenna.
We denote the sets of UEs as U = {1, 2, . . . , N}. Time is slotted and time slot length
is τ . A three-dimensional (3D) Cartesian coordinate system is adopted. The UEs are dis-
tributed randomly each with a location ri = (xi, yi, 0) ,∀i ∈ U . The UAV is located at
position rv = (x, y,H). Specifically, dv,i is the distance between the UAV and UE, given by:

dv,i =
√

‖rv − ri‖2 (1)

The UAV at a sufficiently high altitude is likely to establish LoS links with the ground
UEs and also experiences small-scale fading due to rich scattering. Therefore, the channel

between each UE and the UAV can be modeled as hi =
√

h0
d2v,i

hr [10], where h0/d2v,i is

Fig. 1 The UAV-assisted MEC system model
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the large-scale average channel power gain and h0 denotes the channel power gain at a
reference distance d0 = 1 m. hr is the small-scale fading coefficient.
Due to the existence of the LoS path, the small-scale fading can be modeled by the

Rician fading as follows:

hr =
√

k
k + 1

hl +
√

1
k + 1

hs (2)

where hl denotes the deterministic LoS channel component and hs is a zero-mean unit-
variance circularly symmetric complex Gaussian (CSCG) random variable which denotes
the random scattered component. k denotes the Rician factor.
We assume that hl and k are perfectly known at UAV. hs is estimated at receiver with

minimum mean square error estimation and modeled as:

hs = ĥs + h̃s (3)

where ĥs denotes the estimation of hs, and h̃s denotes the estimation error. ĥs and h̃s are
CSCG random variables with zero means and variances 1− σ̃ 2, σ̃ 2, respectively. σ̃ 2 is the
estimation error variance, and the channel state information is perfect when σ̃ 2=0.
Let ĥr =

√
k

k+1hl+
√

1
k+1 ĥs [6], then h̃r =

√
1

k+1 h̃s. Thus, we can get the received signal:

y =
√
pi(t)h0
d2v,i

ĥrsi +
√
pi(t)h0
d2v,i

√
1

k + 1
h̃ssi + N0αi(t)W (4)

where pi(t) denotes the transmitting power of UE. N0 is the noise power spectral den-
sity. αi(t) is the proportion of bandwidth allocated to the ith user equipment and should
satisfy:

αi(t) > 0, i ∈ U
∑

i∈U αi(t) ≤ 1
(5)

The SNR can be given as:

SNRi(t) =
pi(t)h0
d2v,i

∣
∣
∣ĥr

∣
∣
∣
2

pi(t)h0σ̃ 2

d2v,i(k+1) + N0αi(t)W
(6)

With the Shannon theorem, the uplink capacity of ith UE in time slot t under imperfect
CSI is:

Ri(t) = αi(t)W log2

⎡

⎢
⎣1 +

pi(t)h0
d2v,i

∣
∣
∣ĥr

∣
∣
∣
2

pi(t)h0σ̃ 2

d2v,i(k+1) + N0αi(t)W

⎤

⎥
⎦ (7)

Next, we will give computation task queueing models. Let Ai(t) (bits) denote the arrival
data of UE at time slot t and with the maximum Amax

i . We assume that the task data
arriving at each UE is following the Poisson distribution and the average data arrival rate
is Amax, Ai(t)=τAmax . The UEmay only allow part of data denoted by di(t) (bits) to arrive
at time slot t and 0 ≤ di(t) ≤ Ai(t). Let Qi(t) be the backlog of the data queue at ith UE,
and it is updated as:

Qi(t + 1) = max
[
Qi(t) − Bu

i (t), 0
] + di(t) (8)

where Bu
i (t) denotes the amount of computing data tasks offloaded from the ith UE to

MEC server and Bu
i (t)=τRi(t).
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TheMEC server can execute one bit of computation task with Li CPU cycles.We denote
f si (t) as server’s CPU-cycle frequency with the maximum fmax

i . The amount of data tasks
actually offloaded from the UE to the MEC server is cmi (t) and cmi (t) = min{Qi(t),Bu

i (t)}.
The MEC server will store the data that has not been processed in the queue for sub-
sequent processing. The length of the task data on the server side can be updated:

C(t + 1) = max [C(t) − F(t), 0] +
∑

i∈U cmi (t) (9)

where F(t) = τ
f si (t)
Li denotes the amount of task queue that the server can execute at time

slot t.

4 Problem formulation
The objective problem is maximizing the system utility while satisfying transmit power,
data arrival rate, and network stability constraint under imperfect channel estimation over
Rician fading. Thus, the system utility can be defined as:

�(d) =
∑

i∈U log(1 + di) (10)

where

di = lim
T→∞

1
T

∑T−1

t=0
E [di(t)] (11)

defines the time average of stochastic process di(t). Particularly, �(d) is a concave loga-
rithmic function. The total data admission

∑
i∈U di is equal to the time-average system

throughput in the long term [5].
We formulate the utility maximization problem P as:

P : max
d(t),p(t),α(t)

�(d) (12a)

s.t. C1 : 0 ≤ di(t) ≤ Ai(t), ∀i ∈ U

C2 : 0 ≤ pi(t) ≤ pmax
i , ∀i ∈ U

C3 : αi(t) > 0,
∑

i∈U αi(t) ≤ 1

C4 : C and Qi < ∞, ∀i ∈ U

(12b)

where C1 is the constraint of data task arrival which ensures that the admitted data will
not exceed the total amount of data arrived. C2 is the transmit power constraint, and
C3 is the proportion of bandwidth constraint, respectively. Constraint C4 guarantees the
stability of all queues.
As the description above, we can identify that P is a stochastic optimization prob-

lem as the arrived computation tasks and the queue backlogs are highly stochastic and
unpredictable. Moreover, there are several variables including the optimal transmit power
allocation and optimal bandwidth allocation for computation offloading, and the optimal
computation task data admission at each time slot to be determined which are difficult
to solve using generic optimization algorithm. Therefore, with the help of the Lyapunov
optimization technique, this stochastic optimization problem can be resolved efficiently.
The Lyapunov optimization is able to transform the complicated stochastic problem into
continuous static optimization problems and eliminate time coupling of variables [35].
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5 Online joint optimization algorithm
We use the Lyapunov optimization theory to equivalently reformulate problem P as P1:

P1 : max
d(t),p(t),α(t),δ(t)

�(δ) (13a)

s.t. C1 − C4

C5 : δi ≤ di , ∀i ∈ U

C6 : 0 ≤ δi(t) ≤ Amax
i , ∀i ∈ U

(13b)

where δi is the auxiliary variable. We define a device-specific virtual queue Gi(t), and
we can reformulate C5 with the stability. It can be updated by:

Gi(t + 1) = max [Gi(t) − di(t), 0] + δi(t) (14)

Therefore, P1 can be rewritten as P2:

P2 : max
d(t),p(t),α(t),δ(t)

�(δ) (15a)

s.t. C1 − C4 and C6
C7 : Gi < ∞, ∀i ∈ U

(15b)

Next, we define a perturbed Lyapunov function of P2:

L(t) = 1
2

{

C(t)2 +
∑

i∈U

[
Qi(t)2 + Gi(t)2

]
}

(16)

We define � (t) as the conditional Lyapunov drift:

� (t)= E {L (t + 1) − L (t) |�(t) } (17)

where �(t) = [C(t),Qi(t),Gi(t),∀i ∈ U]. So we can get a drift-plus-penalty function as
follows:

�V (t) = � (t) − VE

[
∑

i∈U
log(1 + δi(t)) |�(t)

]

(18)

where V ≥ 0 is a varied control parameter to achieve the tradeoff between the system
utility and queue stability.

Lemma 1 For any queue backlogs and actions, �V (t) is upper bounded by:

�V (t) ≤ D − VE

[
∑

i∈U
log(1 + δi(t)) |�(t)

]

+
∑

i∈U
Qi(t)E

[
di(t) − Bu

i (t) |�(t)
]

+ C(t)E
[
∑

i∈U
cmi (t) − F(t) |�(t)

]

+
∑

i∈U
Gi(t)E [δi(t) − di(t) |�(t) ]

(19)

where

D =1
2

∑

i∈U

[
(Rmax

i T)
2 + 3(Amax

i )
2
]

+ 1
2

[
∑

i∈U
(Rmax

i T)
2 + (Fmax)2

] (20)
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Proof Please see Appendix 1.
According to Lemma 1, we have converted the optimization problem P2 to solve for the

minimum value of the right side (RHS) at each time slot. Therefore, the original stochastic
optimization problem P1 has been transformed into solving continuous instantaneous
static optimization problems. Decomposing (19) into several sub-problems:

�VRHS (t) = D − VE

[
∑

i∈U
log(1 + δi(t)) |�(t)

]

+
∑

i∈U
Qi(t)E [di(t) − τRi(t) |�(t) ]

+ C(t)E
[
∑

i∈U
τRi(t) − F(t) |�(t)

]

+
∑

i∈U
Gi(t)E [δi(t) − di(t) |�(t) ]

(21)

Based on the above analysis, we can get the online joint optimization algorithm for
di(t)∗, δi(t)∗, pi(t)∗, and αi(t)∗ of this paper, as summarized in Algorithm 1. In what
follows, we will give the details about the optimization algorithm.

Algorithm 1 The Online Joint Optimization Algorithm
1: At time slot t, acquire Qi(t), C(t), Gi(t) and Ai(t), set V.
2: Determine di(t)∗, δi(t)∗, pi(t)∗ and αi(t)∗ by proposed joint optimization algorithm.
3: repeat
4: Compute optimal data admission di(t)∗ by (23).
5: Compute optimal auxiliary parameter δi(t)∗ using (25).
6: For a fixed bandwidth proportion {αi(t)i ∈ U c(t)}, solve (29) to get the optimal

transmit power pi(t)∗.
7: For a fixed transmit power

{
pi(t)i ∈ U c(t)

}
, solve (30) to obtain the optimal

bandwidth allocation αi(t)∗.
8: until Convergence.

5.1 Optimal data admission

We find that the third and fifth terms of �VRHS (t) contain the task data arrival admission
di(t). The decoupled sub-problem of minimizing data admission can be written as:

min
d(t)

∑

i∈U
[Qi(t) − Gi(t)] di(t)

s.t. 0 ≤ di(t) ≤ Ai(t), ∀i ∈ U
(22)

Thus, the optimal data admission decision can be given by:

di(t)∗ =
{
0, if Qi(t) ≥ Gi(t);
Ai(t), otherwise.

(23)
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5.2 Optimal auxiliary parameter

Due to the fact that the second and fifth terms of �VRHS (t) involve the auxiliary
parameter δi(t), thus, the sub-problem of optimizing the auxiliary variable is given by:

min
δ(t)

∑

i∈U
Gi(t)δi(t) − V log(1 + δi(t))

s.t. 0 ≤ δi(t) ≤ Amax
i , ∀i ∈ U

(24)

We take the first order derivative with respect to δi(t), and we get ∂ f (δi(t))
∂δi(t) = Gi(t) −

V
(1+δi(t)) ln 2 . Then, taking the second order derivative with respect to δi(t), ∂2f (δi(t))

∂2δi(t)
=

V
(1+δi(t))2 ln 2

≥ 0. Since the objective function is convex, we make ∂ f (δi(t))
∂δi(t) = 0. Thus, the

optimal auxiliary parameter δi(t) is given as follows:

δi(t)∗ =
{
0, if V

ln 2 − Gi(t) ≤ 0
min

{
V

Gi(t) ln 2 − 1,Amax
i

}
, otherwise

(25)

5.3 Optimal transmit power allocation and optimal bandwidth allocation

The third and fourth terms of �VRHS (t) involve the transmit power pi(t) and the
bandwidth proportion αi(t); thus, the sub-problem is:

min
p(t),α(t)

∑

i∈U
[C(t) − Qi(t)] τRi(t)

s.t. 0 ≤ pi(t) ≤ pmax
i , ∀i ∈ U

αi(t) > 0,
∑

i∈U αi(t) ≤ 1, ∀i ∈ U

(26)

We define a new set for UE with:

U s(t) = {i |i ∈ U , Qi(t) ≤ C(t) } (27)

and then the rest of UEs is defined as U c(t) = U\U s(t). As the bandwidth allocation
cannot be zero, we assign a minimum value σ to αi(t). The sub-problem is transformed:

min
pi(t),αi(t)

∑

i∈Uc(t)
[C(t) − Qi(t)] τRi(t)

s.t. 0 ≤ pi(t) ≤ pmax
i , ∀i ∈ U c(t)

αi(t) ≥ σ , ∀i ∈ U c(t)
∑

i∈Uc(t)
αi(t) ≤ 1 − ∣

∣U s(t)
∣
∣ σ

(28)

5.3.1 Optimal transmit power allocation

For a fixed proportion of bandwidth {αi(t), i ∈ U c(t)}, the optimal transmit power alloca-
tion optimization problem can be obtained:

min
pi(t)

∑

i∈Uc(t)
[C(t) − Qi(t)] τRi(t)

s.t. 0 ≤ pi(t) ≤ pmax
i , ∀i ∈ U c(t)

(29)

Taking the first derivative of Ri(t) with respect to pi(t) we can get when Qi(t) ≤ C(t),
the term [C(t) − Qi(t)] τRi(t) increases with the increasing of pi(t). Thus, the optimal
transmit power is given by pi(t)∗ = 0. When Qi(t) ≥ C(t), the term [C(t) − Qi(t)] τRi(t)
is non-increasing with pi(t); therefore, pi(t)∗ = pmax

i is the optimal transmit power. Intu-
itively, this means that only when the number of tasks in the task queue area of the user
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terminal is greater than the number of executable tasks in the task buffer of the MEC
server, the computation tasks will be offloaded.

5.3.2 Optimal bandwidth allocation

For a fixed transmit power allocation
{
pi(t), i ∈ U c(t)

}
, the bandwidth allocation can be

obtained by solving the following problem:

min
αi(t)

∑

i∈Uc(t)
[C(t) − Qi(t)] τRi(t)

s.t. αi(t) ≥ σ , ∀i ∈ U c(t)
∑

i∈Uc(t)
αi(t) ≤ 1 − ∣

∣U s(t)
∣
∣ σ

(30)

We can find from (30) that the bandwidth allocation is more challenging as the αi(t)
is coupled among different UEs. The Lagrange multiplier method is a classical anal-
ysis method for solving the extremum of a function under constraint conditions. It
can transform the optimization problem containing constraints into an unconstrained
problem.
According to the above, we can get the Lagrange function as follows:

L (α(t), λ(t)) =
∑

i∈Uc(t)
[C(t) − Qi(t)] τRi(t)

+ λ(t)

⎡

⎣
∑

i∈Uc(t)
αi(t) − (

1 − ∣
∣U s(t)

∣
∣ σ

)
⎤

⎦

(31)

where λ(t) ≥ 0 is the Lagrange multiplier.
Based on the Karush-Kuhn-Tucker (KKT) conditions, we can get the following equation

set:
∑

i∈Uc(t)
[C(t) − Qi(t)] τ

dRi(t)
dαi(t)

+ λ(t) = 0 (32)

λ(t)

⎡

⎣
∑

i∈Uc(t)
αi(t) − (

1 − ∣
∣U s(t)

∣
∣ σ

)
⎤

⎦ = 0 (33)

λ(t) ≥ 0 (34)

∑

i∈Uc(t)
αi(t) − (

1 − ∣
∣U s(t)

∣
∣ σ

) ≤ 0 (35)

Based on the above, if pi(t)h0 = 0, we define αi(t) = σ and there is no bandwidth
allocation in this special case. If not, we can get that dRi(t)

dαi(t) is inversely proportional to
αi(t) and lim

αi(t)→+∞
dRi(t)
dαi(t) = 0, lim

αi(t)→0+
dRi(t)
dαi(t) = +∞. Therefore, we can derive λ∗(t) over

[λl(t), λu(t)] by the bisection search:

λl(t) = max
i∈Uc(t)

[C(t) − Qi(t)] τ
dRi(t)
dαi(t)

∣
∣
∣
∣
αi(t)=1−|U s(t)|σ

(36)

λu(t) = max
i∈Uc(t)

[C(t) − Qi(t)] τ
dRi(t)
dαi(t)

∣
∣
∣
∣
αi(t)=σ

(37)
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When λ(t)=λ̃(t), we define thatAi
(
λ̃(t)

)
is the root of [C(t) − Qi(t)] τ dRi(t)

dαi(t) +λ̃(t) = 0.
Therefore, we can further get the following equation set:

∑

i∈Uc(t)
Ai (λl(t)) > 1 − ∣

∣U s(t)
∣
∣ σ

∑

i∈Uc(t)
Ai (λu(t)) < 1 − ∣

∣U s(t)
∣
∣ σ

(38)

From the analysis above, the optimal bandwidth allocation is α∗
i (t) = Ai (λ∗(t)) and the

optimal Lagrangian multiplier λ∗(t) should satisfy:
∑

i∈Uc(t)
Ai

(
λ∗(t)

) = 1 − ∣
∣U s(t)

∣
∣ σ (39)

As a summary, the procedure of the optimal bandwidth allocation α∗
i (t) is summarized

in Algorithm 2. Moreover, we can analyze the computation complexity of proposed algo-
rithm, which is mainly from the optimization for bandwidth allocation. Given a solution
accuracy ε1 > 0, ε2 > 0, the complexity of bisection method for λ∗(t) isO(log(1/ε1)) and
the complexity for solving Ai(λ̃(t)) is O(log(1/ε2)). For each iteration, the resource allo-
cation complexity isO(N). Therefore, the total computation complexity for our proposed
optimization algorithm isO(N log(1/ε1) log(1/ε2)).

Algorithm 2 The Optimization Algorithm for α∗
i (t)

1: Initialize: n = 0, and the maximum of computation index nmax = 300, σ = 10−5,
ε = 10−6

2: Set αi(t) = σ , i ∈ U c(t), λ̃l = λl(t), λ̃u = λu(t)
3: while

∣
∣
∣
∑

i∈Uc(t) αi(t) − (1 − |U s(t)| σ)

∣
∣
∣ ≥ ε and n ≤ nmax do

4: λ̃ = 1
2

(
λ̃l + λ̃u

)

5: n = n + 1
6: Compute αi(t) = max

{
σ ,Ai

(
λ̃
)}

, i ∈ U c(t)
7: if

∑
i∈Uc(t) αi(t) > 1 − |U s(t)| σ then

8: λ̃l = λ̃

9: else
10: λ̃u = λ̃

11: end if
12: end while

5.4 Algorithm performance analysis

In this section, we will provide the gap between the optimal system utility achieved by
the proposed online algorithm and the optimal value of the original problem, and give the
bound of time-average queue length. We introduce the following theorem.

Theorem 1 Supposing there is a positive constant ξ , the proposed online algorithm has
the following properties for any control parameter V ≥ 0:
(a) The gap between the �∗ and �opt is less than D/V , i.e.,

�opt − �∗ ≤ D
V

(40)
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where �∗ is the optimal system utility achieved by the proposed online algorithm. �opt is
the optimum of system utility for problem P.
(b) The time-average queue length is upper bounded by:

lim
T→∞

1
T

∑T−1

t=0

∑N

i=1
Qi(t) ≤ D + V (�opt − �∗)

ξ
(41)

Proof Please see Appendix 2.

Remark 1 The proposed algorithm optimizes and updates the transmit power alloca-
tion and bandwidth allocation alternately, which will converge to the optimal solution of
problem P.
Theorem 1 shows that there exists a [O(1/V ),O(V )] tradeoff between system utility and

queue backlog (or the delay). According to Little’s law, the delay is proportional to the time-
averaged queue length [35]. We can find that with the increase of V, the utility �∗ can
gradually get closer to the optimum �opt . In addition, the average queue length will grow
linearly as shown in (41).

6 Simulation results and discussions
In this section, simulation results are presented to evaluate the effectiveness of proposed
scheme and the effect of various parameters to system performance. We assume the
height of the UAV is H=50 m. Unless otherwise stated, the simulation parameters are
listed in Table 1. Mobile devices are located randomly at an equal distance of 150 m from
the MEC server, and the position of UAV is at rv =[ 0, 0, 50]. The simulation scenarios
of UAV-assisted MEC system are illustrated in Fig. 2. For the sake of simplicity, the unit
of system throughput and the average queue length shown is “bits.” The corresponding
simulation results are illustrated in Figs. 3, 4, 5, 6 and 7.
In Fig. 3, the results of the system throughput versus control parameter V under differ-

ent channel estimation error σ̃ 2 are shown. Based on the results, we find that the system
throughput increases rapidly with the control parameter V and then starts to stabilize
with the increasing of V. As the control parameter, V plays a tradeoff role in system
throughput and queue length (or delay) so that the resources can be utilized more effec-
tively. When V is less than a certain value, the system resources are allocated according
to the existing mechanism. With the continuous increasing of V, the existence of estima-
tion errors affects the change of transmit rate. But V controls the system throughput to

Table 1 Simulation parameters

Parameters Default values

Number of UEs N = 5

The system bandwidth W = 10 MHz

The channel power gain h0 = −50 dB

The noise power spectral density N0 = −174 dBm/Hz

The maximum transmit power of UE pmax
i = 0.5 W

The number of time slots T = 103

The length of each time slot τ = 0.04 s

The maximum CPU frequency of server fmax
i = 1010 cycles/s

The average data arrival rate Amax = 1.0 Mbit/s

The data processing density Li = 1760 cycles/bit
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Fig. 2 The simulation scenarios of UAV-assisted MEC system

remain stable for ensuring the effective queue arrival, and the data queue can be timely
processed.
Furthermore, based on different estimation error variances, it is shown that the system

throughput with smaller estimation error variance even σ̃ 2 = 0 is higher than that with
greater estimation error variance σ̃ 2 = 0.1. The main reason is that the transmission rate
is a decreasing function of the estimation error variance. Therefore, a large estimation
error variance results in a small transmission rate and then reduces the system throughput

Fig. 3 The system throughput versus control parameter V with different channel estimation errors
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Fig. 4 The time-averaged queue length versus control parameter V

and the system utility. This result also proves that the scheme is very effective for max-
imizing system utility under the premise of satisfying the long-term auxiliary parameter
constraints.
In Fig. 4, the time-averaged queue length versus varied control parameter V under

different estimation error variances is compared. The results illustrate that the time-
averaged queue length is an increasing function with respect to control parameter V.

Fig. 5 The effect of average data arrival rate Amax on system throughput
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Fig. 6 The time-averaged queue length versus the average data arrival rate Amax

Moreover, with an increasing of estimation error variance, the average queue length
increases and the average system utility and throughput decreases which proves the long-
term average queue stability and matches the results from Fig. 3. The time required
for data transmission increases with the length of the queue. In other words, the CPU
frequency of the server is much higher than the frequency required to provide data
computing services for mobile devices under these circumstances and many computing

Fig. 7 The time-averaged rate versus the bandwidthW with different schemes
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resources provided by the server are wasted; these resources can be reallocated by other
UEs.
Figure 5 gives the effect of average data arrival rate on system throughput under differ-

ent estimation errors. It can be obviously observed that the system throughput increases
as average data arrival rate Amax increases. When the estimation error variance is σ̃ 2 = 0,
the system throughput is much greater than that with σ̃ 2 = 0.1. This follows the fact
that the system throughput and utility is dominated by transmit rate which is decreas-
ing with respect to estimation error under the same data arrival rate for a large control
parameter V.
From Fig. 6, the average queue length versus the average data arrival rate under different

estimation error variances is found. As illustrated in Fig. 6, the increasing in the average
data arrival rate Amax will cause an increase in the average queue length on the user side,
as expected. This is because as the average data arrival rate continues to increase, the cor-
responding transmission power and rate will also increase. In order to maintain the finite
value of each user’s queue length while satisfying the queue length constraint, the system
cannot transmit enough data tasks under the transmit power constraints that specifies
UE transmit power and network stability, which results in a long backlog of data queues
on the user side.
In order to evaluate the superiority of proposed optimization algorithm, we considered

the existence of estimation error σ̃ 2 = 0.1 and compare the time-averaged achievable
rate under the proposed scheme, the equal power allocation scheme, and the equal band-
width allocation scheme in Fig. 7. It is shown that the performance of our proposed
scheme is superior to the other two allocation schemes. In addition, it also illustrates the
significance of dynamic resource allocation to obtain a higher transmission rate during
computation offloading in the case of task random arrival and the presence of estimation
errors.

7 Conclusion
This paper developed task offloading and resource allocation scheme for UAV-enabled
mobile edge computing system and considered the channel estimation error over Rician
fading channels. The system utility maximization problem is formulated, subject to data
arrival rate, transmit power, and network stability constraint. The computation task data
can be divided into independent small tasks to facilitate the server’s computing. An
online computational resource management using the Lyapunov optimization algorithm
for multi-userMEC systems is considered. Based on the above, we obtain the optimal task
data admission strategy for mobile devices and the optimal expression of the auxiliary
variables based on the data arrival and determine the optimal transmit power and band-
width allocation alternately. Simulation results verify the correctness and the effectiveness
of the proposed scheme in the paper and validate the influence of various parameters to
the system performance.

Appendix 1
For any a, b, c ≥ 0, there holds

(max [a − b, 0] + c)2 ≤ a2 + b2 + c2 + 2a(c − b). Therefore, we take squares on both
sides of (8), (9), and (14):
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Qi(t + 1)2 − Qi(t)2 ≤ Bu
i (t)

2 + di(t)2

+2Qi(t)
[
di(t) − Bu

i (t)
] (42)

C(t + 1)2 − C(t)2 ≤ F(t)2 + (
∑

i∈U
cmi (t))

2

+2C(t)
[
∑

i∈U
cmi (t) − F(t)

] (43)

Gi(t + 1)2 − Gi(t)2 ≤ δi(t)2 + di(t)2

+2Gi(t) [δi(t) − di(t)]
(44)

Substituting (42)–(44) into (18), we can get the upper bound of D in Lemma 1:

D ≥ 1
2

∑

i∈U

{
E

[
Bu
i (t)

2] + E
[
δi(t)2

] + 2E
[
di(t)2

]}

+ 1
2

{

E

[

(
∑

i∈U
cmi (t))

2
]

+ E
[
F(t)2

]
} (45)

Then, we replace all the expectations with the maximum of each variables and yield:

D =1
2

∑

i∈U

[
(Rmax

i T)
2 + 3(Amax

i )
2
]

+ 1
2

[
∑

i∈U
(Rmax

i T)
2 + (Fmax)2

] (46)

where Rmax
i and Fmax are the maximum of capacity Ri(t) and the amount of task queue

F(t), respectively.

Appendix 2
From formula (19), we can get the minimum upper bound of �V (t):

�V (t) ≤ D − VE

[
∑

i∈U
log(1 + δi(t)) |�(t),π

]

+
∑

i∈U
Qi(t)E

[
di(t) − Bu

i (t) |�(t),π
]

+ C(t)E
[
∑

i∈U
cmi (t) − F(t) |�(t),π

]

+
∑

i∈U
Gi(t)E [δi(t) − di(t) |�(t),π ]

(47)

where π is any feasible control policy for problem P. For θ > 0, there exists at least one π∗

− �[ δ(t)
∣
∣π∗ ]≤ −�opt + θ

E[ di(t) − Bu
i (t)

∣
∣π∗ ]≤ θ

E[
∑

i∈U
cmi (t) − F(t)

∣
∣π∗ ]≤ θ

E[ δi(t) − di(t)
∣
∣π∗ ]≤ θ

(48)

Plugging (48) into (47) and then taking a limit as θ → 0 yields:

�V (t) ≤ D − V�opt (49)
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By taking expectation and using telescoping sums over {0, 1, . . . ,T − 1}, we get:

E[ L(T) − L(0)]−V
∑T−1

t=0
E[�(δ(t))] ≤ DT − VT�opt (50)

Dividing (50) by VT, taking T → ∞, and neglecting non-negative terms when
appropriate, we can obtain:

1
T

lim
T→∞

∑T−1

t=0
E[�(δ(t))] ≥ �opt − D

V
(51)

Due to �∗ ≥ 1
T lim
T→∞

∑T−1
t=0 E[�(δ(t))] [5], we can get �opt − �∗ ≤ D

V .

Similarly, the proof about lim
T→∞

1
T

∑T−1
t=0

∑N
i=1Qi(t) ≤ D+V (�opt−�∗)

ξ
can be found

in [35].
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