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Abstract

The unmanned aerial vehicle (UAV) can extend the network coverage and improve the
system throughput for 5th generation (5G) communication systems; hence, it receives
a lot of attention recently. This paper considers the problem of channel predictive
precoding for UAV-enabled cache-assisted B5G multi-input multi-output (MIMO)
systems. A novel channel precoder predictor is proposed, in which the prediction is
conducted on a non-linear vector space—Grassmannian manifold. The predictor at the
receiver utilizes the current and previous channel matrices to solve the precoder at the
next time and then feeds it back to the transmitter for precoding. More specifically, two
sub-matrices are extracted from the channel right singular matrices and modeled as
two points on the Grassmannian manifold. Then, the geodesic between the two points
is conducted. Unlike the conventional method in which the tangent vector at the
previous point is parallel transported along the geodesic, we predict the next point by
use of the geodesic equation directly. We analyze the computational complexity of the
proposed method and demonstrate the superiority of the proposed method by
comparing with the conventional one. Besides, we adopt a general Ricean channel
model in the UAV MIMO system, where both the Kronecker model and Jake’s model
are incorporated. The effects of various channel model parameters on the system
performance in terms of the chordal error of channel predictor and the optimum step
are thoroughly investigated.
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1 Introduction
In recent years, there has been a rapid progress in the wireless communication [1–3], and
many wireless transmission techniques have been proposed to meet the requirement of
ultra-reliable and low-latency [4–7]. The unmanned aerial vehicle (UAV), an aerial plat-
form developed with modern communication technologies, is an unmanned and reusable
aircraft powered by electricity or fuel. The UAV has wide applications and can be used in
intelligence investigation, disaster relief and rescue, precise target location and tracking,
etc. The UAV can increase the coverage area of 5th generation (5G) network and increase
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the capacity of 5G systems and user equipments (UEs) as well. Therefore, it has received
a lot of attention by the industry and academia.
UAV communications usually adopt the mmWave band, since the multi-input multi-

output (MIMO) technology is easy to use in this band [8, 9]. The MIMO system,
equipped withmultiple antennas at both the transmitter and receiver, makes use of spatial
resources adequately and has high data throughput and reliable communication qual-
ity. Channel tracking/prediction is always a research hot spot in MIMO systems. Chan-
nel state information (CSI) is indispensable for the data decoding at the receiver,
which is often obtained by channel estimation. Usually, it is completed with the aide
of the pilot signal sent by the transmitter frequently. However, by doing so, quite
a part of the channel resources are occupied by the pilot signal, especially for fast
fading channels. To reduce the length of the pilot signal on the whole, channel track-
ing or prediction was proposed by some literature [10]. These methods include the
Kalman filter-based method [10], extended Kalman filter-based method [11], sequen-
tial Monte Carlo filter-based method [12], and particle filter-based method [13].
Recently, there are some works on the channel tracking in UAVMIMO systems. In [14],
a channel tracking method for UAV MIMO communication systems was proposed and
investigated, in which the method explores the characteristics of time-varying UAV chan-
nels with the beam squint effect. In [15], to improve the quality of the UAV navigation,
the authors designed a channel tracking algorithm for its flight control system, where the
time-varying spatial channel is characterized by a 3D geometry-based channel model and
the algorithm incorporates the outputs of multiple sensors in order to reduce the training
overhead and energy consumption.
On the other front, channel predictive information can be feeded back to the trans-

mitter for preprocessing in order to improve the system performance in terms of the
capacity or the bit-error-rate (BER) [16]. For instance, in [16], the authors proposed a
subspace-based channel tracking scheme for precodedMIMOorthogonal frequency divi-
sion multiplexing (MIMO-OFDM) systems. The predictive CSI was used for precoding
at the transmitter to improve the system throughput. With the development of UAV
communications, it can be foreknown that there will be a large amount of data to be trans-
mitted interactively between UAVs and ground base stations/terminals. For instance, with
the development of forestry informatization, forestry resource management needs more
data support. The UAV is suitable for collecting forestry data and sending them back to
the ground control center. Besides, the UAV can be used for data offloading of possibly
overloaded cellular base stations in hot spots such as sports venues and cinemas. It can
also be used for periodic data distribution/collection in large-scale Internet of Things net-
works. Large amount of data transmission requires temporary storage space. The caching
technique pre-stores the data during the off-peak traffic and improves 5G system perfor-
mance in many aspects [17–19]. With the aid of cache, it is convenient for the UAV to
store data for its own use or forward data to other UAVs or ground terminals [20–22].
Clearly, the feedback information of channel prediction can also be used for UAVMIMO
systems to improve the quality of data transmission.
Most previous work above is conducted based on the linear vector space, i.e., Euclidean

space, which can be viewed as a linear manifold. Recently, with the rise of informa-
tion geometry, a few channel tracking methods based on the non-linear manifold were
proposed and investigated [23–26]. For instance, in [23], the authors first modeled the
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column spaces spanned by the right singular matrix of the MIMO channel as a point
of Grassmannian manifold, and then proposed a method to track the movement of the
point as well as an adaptive codebook for precoding. In [26], for the time-varying MIMO
system, the authors proposed a predictive quantizer for the eigenvectors of the Gramian
matrix that is created from the channel matrix, in which the quantizer operates on the
compact Stiefel manifold. In this paper, we mainly predict a sub-matrix of the channel
right singular matrix, which is created by selecting a few columns of the channel right sin-
gular matrix. The sub-matrix has more rows than columns and can be modeled as a point
of Grassmannian manifold. When the channel is time varying, it is reasonable to assume
that this sub-matrix moves along the geodesic within a short period of time. Therefore, we
intend to use the theory and results of Grassmannian manifold in the channel prediction.
For the prediction methods based on Grassmannian manifold, a key parameter in the

design is the choice of the search step. However, most previous work did not investigate
the parameter thoroughly. Furthermore, considering the complexity of the practical UAV
MIMO channel, this article incorporates both the time correlation and spatial correlation
of the channel and studies the effects of various system parameters on the chordal error
performance. The contributions of this article are briefly listed as follows:

1 We propose a novel channel predictive precoding method which is based on the
geodesic equation on the Grassmannian manifold and analyze its computational
complexity as well as the conventional one. Compared with the conventional
method, although the complexity of the two methods is the same, the proposed
method has better prediction performance in terms of the channel chordal error.

2 We adopt a general Ricean channel model which incorporates the time and spatial
correlation by combining the Kronecker model and Jake’s model. The effects of
various system parameters on the system performance in terms of the chordal
error of channel predictor as well as the choice of optimal step are thoroughly
investigated.

3 In the Appendix, we prove a corollary which is inferred from the geodesic equation
and is helpful to verify the correctness of the geodesic equation from two points on
the Grassmannian manifold.

The rest of this paper is organized as follows. The closed-loop UAV-enabled MIMO
system model is described in Section 2. The process of channel precoding prediction and
the corresponding problem of interest are illustrated in Section 3. The effect of various
system parameters on the performance of the prediction algorithm is presented in Section
4, followed by conclusions in Section 5.
Notations: Boldface lowercase letters denote vectors, and boldface uppercase letters

denote matrices. The notation E(.) represents the statistical expectation; Cm×n and U
m×n

represent the space consisting ofm×n complexmatrices and the space consisting ofm×n
orthogonal complex matrices, respectively. For a vector x, x ∼ CN (μ,R) represents that
x follows a complex Gaussian distribution with mean μ and covariance matrix R; for a
matrix X, the notations X1/2, XH, and Tr(X) denote its square root, Hermitian transpose,
and trace, respectively; besides, Im is anm×m identity matrix, Im,n with n < m is created
by selecting the first n columns of Im, and Um is anm × m unitary matrix.
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2 The closed-loop UAV-enabledMIMO systemmodel
2.1 The UAVMIMO channel

As shown in Fig. 1, we consider a UAV-enabled MIMO system, where the base station
(BS) and the UAV are equipped with NT and NR antennas, respectively [27, 28]. Both the
BS and UAV are equipped with cache storage units. With the aid of cache, the UAV can
store data conveniently for its own use or forward them to other UAVs/ground terminals
at the next time. Figure 1a is the original system diagram, from which we see that there
exists the line of sight (LOS) path between BS and UAV; due to the reflections of high
buildings, trees, or others, there also exist non-LOS (NLOS) paths. Hence, the channel
between BS and UAV is modeled as a Ricean fading channel.

Fig. 1 MIMO system model with prediction feedback link
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For the UAV MIMO channel H(t) ∈ C
NR×NT , we not only consider its time variation,

but also the spatial correlation. In [29], a spatial-temporal correlated channel model was
proposed; however, only transmitter correlation was considered. Herein, we also incor-
porate the receiver correlation of the channel. Consequently, the UAV MIMO channel is
modeled as:

H (t) = HNLOS (t)√
KRice + 1

+
√

KRice
KRice + 1

HLOS (t) . (1)

In Eq. (1), the NLOS pathHNLOS (t) is further expressed as:

HNLOS (t) = θ
1/2
R Hω (t) θ

1/2
T , (2)

where θT and θR denote the transmitter and receiver correlation matrix of the channel,
respectively; KRice is the Ricean factor. Hω (t) �= (

hij (t)
) ∈ C

NR×NT and it is a ran-
dom matrix that has i.i.d complex Gaussian random variables with zero mean and unit
variance. The autocorrelation of each entry follows Jake’s model and it is given by:

E
[
hij (t1)

(
hij (t2)

)∗] =J0
(
2π fd (t2 − t1)

)
, (3)

in which the function J0(.) is the well-known Bessel function of the first kind, fd is the
Doppler shift, for the NLOS path, which is due to the motions of the UAV, scatters, etc.
Assuming that both BS and the UAV adopt the linear antenna array, the LOS path

HLOS (t) is expressed as [30]:

HLOS (t) = e−j2π f ′
dtxR(xT )H , (4)

xR=
[
1 e−j2π cos(α)dR/λ · · · e−j2π(NR−1) cos(α)dR/λ

]T
,

xT=
[
1 e−j2π cos(β)dT/λ · · · e−j2π(NT−1) cos(β)dT/λ

]T
,

where f ′
d is Doppler shift for the LOS path, which is due to the motion of the UAV; dR

and dT are the antenna spacing at BS and the UAV, respectively; λ is the wavelength; and
α and β are the angles of arrival and departure, respectively.
Note that the channel defined in Eq. (1) is assumed to be flat fading. If the paths

are resolvable, we can incorporate the OFDM technique and transform the frequency
selective channel into a flat fading one.
Remark: Concerning the angles of arrival and departure, the definitions are explained

as follows. Take the angle of arrival as an example. As in Fig. 2, a plane electromagnetic
wave arrives at the uniform linear antenna array. We adopt the definition of [30] and
define α as the direction of arrival (DOA), i.e., the angle between the incident direction of
the electromagnetic wave and the x-axis. Consequently, the time delay between the two
adjacent antennas is dRcos(α)/λ, which determines the form of the steering vector xR.
Whereas in [15], the authors define α′ as the DOA. Consequently, the time delay between
the two adjacent antennas is dRsin(α′)/λ. Clearly, the two definitions are equivalent since
sin(α′) = cos(α). Besides, it is worth noting that the latter requires the assumption that
the incident direction of the wave is only in the x-y plane but the former does not require
any assumptions. Therefore, we adopt the former definition.

2.2 The system operation

Before transmission, the user signal x (t) ∈ C
Ns×1, sent by the transmitter, is multiplied

by a precoding matrix W (t) ∈ U
NT×NS , where t is the time index and NS is the number
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Fig. 2 The uniform linear antenna array and the arrival electromagnetic wave

of data streams. After passing through fading channels, the signal at the receiver can be
formulated as:

y (t) = H (t)W (t) x (t) + n (t) , (5)

in which x (t) has independent data streams with its autocorrelation function being
E

[
x (t) xH (t)

] = INS , and n (t) ∼ CN
(
0, σ 2

n INR×NR

)
is the AWGN noise [31, 32], where

the effect of noise on the communication systems can be found in [33, 34]. Notation
H (t) ∈ C

NR×NT denotes the MIMO flat fading channel, where the fading scenarios can
be found in [35–37].
Assume that the channel estimation is ideal and the receiver has perfect channel state

information (CSI) [38–40], H(t). If the channel is quasi-static fading, which means that
two adjacent channel matrices can be viewed as identical, i.e., H (t + 1) ≈ H (t), the
optimal precoder at time (t + 1) is given by:

WOPT (t + 1) = Vd (t)Ud, (6)

where Ud ∈ U
NS×NS is an arbitrary unitary matrix and Vd (t) ∈ U

NT×NS is conducted by
selecting the first NS columns of V(t), which comes from singular value decomposition
(SVD) ofH(t), expressed as:

H (t)=U (t)	 (t)VH (t) . (7)

The precoder expressed by (6) can not only maximize the system asymptotic capacity
at high signal to noise ratio (SNR), but also minimize the mean square error of data
detection.
However, if the channel is fast fading, the precoder at current time t is no longer optimal

for the next time t + 1. In this case, as in Fig. 1b, we need a predictor, which produces
a predicted precoder Ṽd (t + 1) for time t + 1 by the use of Vd (t) and Vd (t − 1), where
the definition of Vd (t − 1) is similar to Vd (t). Consequently, the precoder at time t+ 1 is
given by:

W (t + 1) = Ṽd (t + 1) . (8)

Clearly, the smaller the distance between Ṽd (t + 1) and Vd (t + 1), the better the pre-
diction performance. We use the chordal distance to measure their distance, the details
of which will be given in the next section.
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In addition, in the process of channel prediction, there is a key parameter termed as the
step parameter. An aim of this article is to study the effect of various channel settings on
the optimal step parameter as well as the expected chordal distance (error).

3 Channel prediction precodingmethod
3.1 Preliminaries of the Grassmannian manifold

Grassmannian manifold, denoted as G (NT ,NS) with NS < NT , is important in math-
ematical differential geometry and has many engineering applications such as channel
tracking [41, 42], image identification [43], and emotion recognition [44] in recent years.
It is the set of all NS-dimensional linear subspaces of an n-dimensional space. The
corresponding definition is given by:

G (NT ,NS) = {
[X] ∈ C

NT×NS ,XHX = INS

}
, (9)

where [X] is an equivalent class that is a set defined by [X] �= {
XUNS :UNS is unitary

}
. For

the sake of convenience, we might as well write X ∈ G (NT ,NS), meaning that X is an
equivalent class whose columns span the same p-dimensional subspace [16, 45]. For two
pointsX1,X2 ∈ G (NT ,NS), the chordal distance is usually used to measure their distance
and it is defined as [14, 23]:

D (X1,X2) =
√
NS − ∥∥X1

HX2
∥∥
F
, (10)

where ‖·‖F denotes the Frobenius norm.
Besides, the concept of geodesic plays an important role in information geometry.

The term geodesic comes from geodesy, the science of measuring the Earth. Initially, a
geodesic was the shortest route between two points on the Earth’s surface. Now, it is gen-
eralized and defined as the shortest route between two points of a manifold. The geodesic
emanating from X1 to X2 is expressed as [41, 42]:

X (s) = Q1 exp (Bs) INT ,NS , 0 ≤ s ≤ 1. (11)

whereQ1 ∈ U
NT×NT = (

X1 X⊥
1
)
, and X⊥

1 ∈ U
NT×(NT−NS) is some orthogonal basis of the

orthogonal complement of X1. The matrix B ∈ C
NT×NT is skew Hermitian, and it has the

following form:

B=
(
0 −AH

A 0

)
, (12)

where A ∈ C(NT−NS)×NS is referred to as the velocity matrix. The matrix A can be further
written as:

A=U2
UH
1 , (13)

where 
 is diagonal with its elements ϕi, 1 ≤ i ≤ NS. The matrices U1 ∈ U
NS×NS and

U2 ∈ U(NT−NS)×NS come from the cosine-sine decomposition of a specially constructed
matrix [41, 42]:(

XH
1 X2(

X⊥
1
)HX2

)
=

(
U1 0
0 U2

)(
C
S

)
VH
1 , (14)

in which C is diagonal with its entries cosϕi on the diagonal; S is also diagonal with its
entries sinϕi, on the diagonal, 1 ≤ i ≤ NS; and V1 is the right singular matrix of the SVD
of XH

1 X2, which can also be inferred from Eq. (14).
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With Eqs. (12)–(14), the key matrix B will be created and the geodesic Eq. 11 can be
finally given afterwards. According to the original definition of X(s), we have the following
corollary:

X (1) = Q1 exp (B) INT ,NS=X2 (15)

We believe that the above is important since it can verify the correctness of the geodesic
equation; however, it was not proved in [41, 42] . Herein, we supply a proof which is shown
in the Appendix.

3.2 Review of the conventional channel prediction method [41]

The matrix Vd (t) can be viewed as a point of Grassmannian manifold. It is reasonable
to assume that the matrix Vd (t) moves or changes along the geodesic within a short
period of time. The conventional prediction obtains the next point mainly by two steps:
(1) parallel transport the tangent matrix at Vd(t− 1) and (2) construct a new geodesic for
prediction.
First, given two points Vd(t) and Vd(t − 1), the tangent matrix at the point Vd(t − 1),

in the direction of the next point Vd(t), is given by [41]:

� (t − 1)=V⊥
d (t − 1)A (t − 1) , (16)

where V⊥
d (t − 1) ∈ U

NT×(NT−NS) is some orthogonal basis of orthogonal complement of
Vd(t − 1), A (t − 1) ∈ C(NT−NS)×NS is the velocity matrix, and other details are easy to
deduce by referring to the previous subsection.
Then, we transport the tangent matrix � (t − 1) ∈ C

NT×NS parallel along the geodesic
between Vd(t) and Vd(t − 1), and obtain a new tangent matrix [45]:

�̃ (t, s0) =
[
INT − UFUH

F + Vd (t − 1)VF sin (	Fs0)UH
F

+UF cos (	Fs0)UH
F

]
� (t − 1) , (17)

where 0 ≤ s0 ≤ 1 is the step parameter and UF	FVH
F is the compact SVD of the matrix

� (t − 1). It is clear that �̃ (t, 0) = � (t − 1) and �̃ (t, 1) is the tangent matrix at the point
Vd; we shall transport the tangent matrix� (t − 1) parallel fromVd(t−1) toVd(t), which
means s0 = 1.
Finally, the predictive point on the manifold at time t + 1, VConv

d (t, s), can be derived as
[23, 41, 45]:

VConv
d (t, s) = Vd (t)VE cos (	Es)VH

E + UE sin (	Es)VH
E , (18)

where UE	EVH
E is the compact SVD of the matrix �̃ (t, 1) and s is the step parame-

ter which can be further optimized. The optimal step sOPT can be found by solving the
following equation:

sOPT = argmin
s

E
[
D

(
VConv
d (t, s) ,Vd (t + 1)

)]
. (19)

Once the optimal step is found, we substitute it into (18) to obtain ṼConv
d (t + 1) �=

VConv
d (t, sOPT ).

3.3 The proposed channel prediction method

In this subsection, we propose a novel channel prediction method, in which the next
point is predicted by use of the geodesic from Vd(t − 1) to Vd(t) directly. First,
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according to the previous subsection A, the geodesic emanating fromVd(t−1) toVd(t) is
expressed as:

F (t − 1, s) = Q1 (t − 1) exp [B (t − 1) s] INT ,Ns (20)

where Q1 (t − 1) ∈ U
NT×NT = (

Vd (t − 1)V⊥
d (t − 1)

)
; V⊥

d (t − 1) and B(t − 1) have
similar definitions in the previous subsection A. Clearly, F (t − 1, 0) = Vd(t − 1) and
F (t − 1, 1) = Vd(t).
Second, the predictive point on the manifold at time t + 1 is given by:

F (t − 1, s + 1) = Q1 (t − 1) exp [(s + 1)B (t − 1)] INT ,Ns , 0 ≤ s ≤ 1. (21)

Similarly, the optimal step sOPT in the above formula can be found by solving Eq. (19).
Note that the function VConv

d (t, s) in Eq. (19) shall be replaced with F (t − 1, s + 1). Once
it is found, the precoding matrix or predictive precoder is solved by ṼProp

d (t + 1) �=
F (t − 1, sOPT + 1).
The complete prediction process is summarized by Algorithm 1.

Algorithm 1: The proposed prediction method.
1: Construct a matrix E = INT − Vd (t − 1) [Vd (t − 1)]H .
2: Perform SVD on E and create V⊥

d (t − 1) by selecting the columns of the left singular
matrix that correspond to nonzero singular values. Note that it is easy to verify the
number of nonzero singular values is (NT − NS), so that V⊥

d (t − 1) has (NT − NS)

column vectors.
3: Perform SVD on the matrix [Vd (t − 1)]HVd (t):

[Vd (t − 1)]HVd (t)=U1 (t − 1)C (t − 1) [V1 (t − 1)]H ,

and obtain

U2 (t − 1) =
[
V⊥
d (t − 1)

]H
Vd (t)V1 (t − 1) [S (t − 1)]−1,

where S (t − 1)=
√
1 − [C (t − 1)]2.

4: Solve B (t − 1).

B (t − 1) =
(

0 −[A (t − 1)]H

A (t − 1) 0

)
,

where A (t − 1) = U2 (t − 1)
 (t − 1) [U1 (t − 1)]H , and 
 (t − 1) =
sin−1 (S (t − 1)).

5: Obtain F (t − 1, s + 1) according to (21); find the optimal step sOPT according to (19)
and ṼProp

d (t + 1) afterwards.

Note that in the calculation of the matrix function exp [B (t − 1) s] , we shall use the
following matrix series [46]:

exp [B (t − 1) s]=
∑
i
[B (t − 1) s]i/i! . (22)

3.4 Computational complexity

Usually, the number of floating point flops is used to measure of the complexity of an
algorithm. We define a flop as one floating point operation and it has computational
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complexity O(1). Note that the matrix product X1X2 requires O(mnk) flops, where
X1 ∈ C

m×n andX2 ∈ C
n×k ; for an n×nmatrix, both its inverse and eigen-decomposition

operations requireO(n3) flops; for anm× nmatrix withm ≥ n, the complexity of its sin-
gular value decomposition (SVD) isO(m2n) if the complete left singular matrix is needed;
otherwise, it is O(mn2) [47] .
To begin with, we analyze the computational complexity of the proposed method. Ini-

tially, the two pointsVd(t−1) andVd(t) are generated from the SVD ofH(t−1) andH(t),
respectively. Since the left singular matrices are not needed, this operation has complex-
ity of O

(
nmaxn2min

)
, where nmax = max (NT ,NR) , nmin = min (NT ,NR). Then, it is found

that step 1 requires O
(
N2
TNS

)
flops and step 2 requires O

(
N3
T
)
flops; step 3 requires

O
(
N2
SNT

)+O(N3
S )+O [(NT − NS)NTNS)] = O

(
N2
TNS

)
flops, sinceNS ≤ NT ; and step 4

requires O
(
NT − NS)N2

S
)
flops. For the calculation of exp [B (t − 1) s] in step 5, by using

the techniques in the Appendix, we have that:

exp [B (t−1) s]=
(
U1 (t − 1) cos (
s)UH

1 (t − 1) −U1 (t − 1) sin (
s)UH
2 (t − 1)

U2 (t − 1) sin (
s)UH
1 (t − 1) U2 (t − 1) cos (
s)UH

2 (t − 1)

)
.

With the above, given s, solving F(t − 1, s) has complexity of O
(
NTN2

S + N2
TNS

) =
O

(
N2
TNS

)
. Assuming that the minimal search interval that stands for the accuracy of

sOPT is ξ , 1/ξ times of calculating F(t − 1, s) are required to find sOPT . Hence, step 5
has complexity of O

(
N2
TNS/ξ

)
. In summary, the complexity of the proposed method

is O
(
nmaxn2min

) + O
(
N3
T
) + O

(
N2
TNS/ξ

) = O
[(
nmaxn2min

) + N2
T (NT + NS/ξ)

]
, where

nmax = max(NT ,NR), nmin = min(NT ,NR).
Then, we analyze the complexity of the conventional method briefly. Initially, we also

need the two points Vd(t − 1) and Vd(t). In step 1, to generate V⊥
d (t − 1), assume

that the same method as in the subsection C is used. Further, we note that for an
m × n matrix with m ≥ n, the compact SVD has complexity of O

(
mn2

)
because the

full right singular matrix is not needed. Paying attention to the above points, it is easy
to find that the complexity of the conventional method is the same as the proposed
method.

4 Results and discussion
In this section, computer simulation is deployed to investigate the performance of the
prediction algorithm. The UAV MIMO channel samples are generated according to the
channel model in Section 2. Specifically, a 4 × 4 UAV MIMO system with NS = 2 is
adopted. For the transmitter and receiver correlationmatrices, θT and θR, the well-known
exponential correlation model is adopted [48] , in which the (i, j)th entry of the correla-
tion matrix is ρ|i−j|, and the constant ρ is the spatial correlation coefficient. We further
denote the correlated coefficients at the transmitter and receiver as ρT and ρR, respec-
tively. The angles of arrival and departure α and β are set to 30◦ and 20◦, respectively; the
antenna spacing dT = dR = λ. Besides, the Doppler shifts for the LOS path and NLOS
path are set to be identical, i.e., f ′

d = fd.

4.1 Performance comparison between the proposedmethod and the conventional one

Figure 3 compares the chordal error performance of the conventional method with that
of the proposed one, where ρT = 0.2 and ρR = 0.3. Two cases are considered: fdT =
0.02 and KRice = 0 dB for case 1 and fdT = 0.05 and KRice = 10 dB for case 2, where
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Fig. 3 Performance comparison between the conventional method and the proposed one

fdT is the normalized Doppler shift, fd is the Doppler shift, and T is the sample interval.
Observe that given s > 0, the chordal error for the proposed method is always less than
that for the conventional method. For case 1 in Fig. 3a, the minimum chordal error for
the conventional method is about −15.42 dB at s = 0.9; the minimum chordal error
for the proposed one is −18.01 dB at s = 1.0 and it is less than −15.42 dB. Therefore,
the proposed method is superior to the conventional method. Similar phenomena can be
observed in Fig. 3b.
Figure 4 compares two methods with different values of normalized Doppler shift

fdT , in which ρT = 0.2 , ρR = 0.3, and KRice = 0 dB. Observe that for both meth-
ods, given the step parameter s, increasing fdT results in increasing chordal error.
Increasing fdT also has the optimal step parameter sOPT decrease. For instance, for
the proposed method, the optimal steps are about 1, 0.9, and 0.6, for fdT =0.01, 0.05,
and 0.1, respectively. Similar to Fig. 3, the proposed method has better performance
than the conventional method, no matter whether the normalized Doppler shift is large
or not.
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Fig. 4 Two methods’ performance comparison with different values of normalized Doppler shift fdT

4.2 The effects of a few key system parameters

Figure 5 shows the optimal step parameter sOPT with different normalized Doppler shifts.
The system settings are consistent with those in Fig. 4. Observe that for increasing
normalized Doppler shift, sOPT decreases from 1 to 0.6 gradually. The optimal step sOPT
is found by solving Eq. (19), where the searching step is set to 0.1, and hence, the curve
shows a stepwise downward trend.

Fig. 5 The optimal step sOPT with different values of normalized Doppler shift fdT
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Fig. 6 The effect of transmitter correlated coefficient ρT on the chordal error

Figures 6 and 7 present the effects of ρT and ρR on the chordal error, respectively. For
both figures, fdT = 0.05 and KRice = 0 dB. Further, we set ρR = 0.2 for Fig. 6 and ρT = 0.2
for Fig. 5, respectively. From Fig. 6, we observe that given the step parameter s, increasing
ρT will decrease the chordal error and also decrease the optimal s. For instance, given s
= 0.5, the chordal errors for ρT = 0, 0.2, 0.4, 0.6, and 0.8 are −9.2 dB, −9.8 dB, −11.0 dB,
−12.8 dB, and −15.8 dB, respectively; the optimal s decreases from 0.9 to 0.8 slightly
when increasing ρT from 0 to 0.8. In Fig. 7, increasing the correlation coefficient also
reduces the chordal error, but conversely, the optimal s increases from 0.8 to 0.9 slightly
with increasing ρR. Therefore, these results indicate that both ρT and ρR are negatively
related to the chordal error; ρT is slightly negatively related to the optimal step parameter,
whereas the opposite is true for ρR.
Figure 8 depicts the effect of the Ricean factor KRice on the chordal error, where

fdT = 0.05, ρT = 0.2, and ρR = 0.3. Observe that given s, larger KRice results in smaller
chordal error. This is possibly because that the increase of KRice reduces the randomness
of the UAV channel variation and tracking the LOS path is easier than the NLOS path. In
addition, the optimal step sOPT is about 0.9 and nearly unaffected by KRice.

5 Conclusions
This article studies the problem of channel predictive precoding in UAVMIMO systems.
A novel predictive precoding method that is based on the geodesic in the Grassman-
nia manifold is proposed. Instead of transporting the tangent vector parallel along the
geodesic, the proposed method predicts the next point by use of the geodesic equation
directly. We compare the proposed method with the conventional one by simulation and
analyze their computational complexity. Besides, the effects of various system parameters,
including time and spatial correlated coefficients and the Ricean factor, on the chordal
error of the predictor are also thoroughly investigated.
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Fig. 7 The effect of receiver correlated coefficient ρR on the chordal error

The results reveal the following. First, the normalized Doppler shift is positively related
to the chordal error, whereas the transmitter and receiver correlation coefficients and the
Ricean factor are negatively related to the chordal error. Second, the normalized Doppler
shift is negatively related to the optimal step parameter; the transmitter correlation coef-
ficient is slightly negatively related to the optimal step parameter, whereas the opposite is
true for the receiver correlation coefficient. Third, with the same computational complex-
ity, the proposed predictive algorithm is superior to the conventional method in terms of

Fig. 8 The effect of the Ricean factor KRice on the chordal error



Zhou et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:128 Page 15 of 18

the channel predictive error—the channel chordal error. The above research results will
provide a reference for possible system implementation in the future.
A further study is to investigate the effect of channel estimation errors on the predictor,

where the two channel estimates include the previous and current estimates which are not
assumed to be ideal. How to design a robust predictor is worthy of researching. Another
possible study is to incorporate the codebook quantizer into the predictor design.

Appendix

Proof of Eq. (15)

First, the matrix function exp(B) can be expanded as:

exp (B)=
∑
i
Bi/i!

= IN +
(

0 −U1
UH
2

U2
UH
1 0

)
/1! +

(
−U1
2UH

1 0
0 −U2
2UH

2

)
/2!

+
(

0 U1
3UH
2

−U2
3UH
1 0

)
/3! +

(
U1
4UH

1 0
0 U2
4UH

2

)
/4!

+
(

0 −U1
5UH
2

U2
5UH
1 0

)
/5! + · · · (A − 1)

Since

sin
=
∑+∞

i=1
(−1)i
2i+1/ (2i + 1) ! (A − 2)

and

cos
=
∑+∞

i=0
(−1)i
2i/ (2i) ! , (A − 3)

the formula (A − 1) can be simplified as:

exp (B) =
(

0 −U1 sin
UH
2

U2 sin
UH
1 0

)
+
(
U1 cos
UH

1 0
0 U2 cos
UH

2

)
. (A − 4)

Then, we have:

X (1) = Q1 exp (B) INT ,NS

=Q1

{(
U1 cos
UH

1 0
0 U2 cos
UH

2

)
+
(

0 −U1 sin
UH
2

U2 sin
UH
1 0

)}
INT ,NS

=
(
X1X⊥

1

){(U1 cos
UH
1 0

0 U2 cos
UH
2

)
+
(

0 −U1 sin
UH
2

U2 sin
UH
1 0

)}
INT ,NS

=
[(

X1U1cos
UH
1 X⊥

1 U2cos
UH
2

)
+

(
X⊥
1 U2sin
UH

1 −X1U1sin
UH
2

)]
INT ,NS

= X1U1 cos
UH
1 + X⊥

1 U2 sin
UH
1

(A − 5)
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Further manipulation of (A − 5) results in:

X (1) =
(
X1 X⊥

1

) (
U1 0
0 U2

)(
cos


sin


)
UH
1

=
(
X1 X⊥

1

) (
U1 0
0 U2

) (
C
S

)
UH
1

=
(
X1 X⊥

1

) (
U1 0
0 U2

) (
C
S

)
VH
1 V1UH

1

(A − 6)

With (14), we have:

X (1)=
(
X1 X⊥

1

) (
XH
1 X2(

X⊥
1
)HX2

)
V1UH

1

=
(
X1 X⊥

1

) (
XH
1(

X⊥
1
)H

)
X2V1UH

1 =X2V1UH
1

(A − 7)

According to the definition of Grassmannia manifold, X2V1UH
1 is equivalent to X2.

Therefore, Eq. (15) holds.
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