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Abstract

In this paper, we seek answer to the question: can a wireless sensing system with energy harvesting power supplies
perform as well as the one with conventional power supplies? Conventional sensing systems with deterministic
energy sources usually employ uniform sampling. However, due to the stochastic nature of the energy harvested
from the ambient environment, uniform sampling is usually infeasible for energy harvesting sensing systems. We thus
propose a simple best-effort sensing scheme, which defines a set of equally spaced candidate sensing instants. At a
given candidate sensing instant, the sensor will perform sensing if there is sufficient energy available, and it will
remain silent otherwise. It is analytically shown that the percentage of silent candidate sensing instants goes to zero
as time increases, if and only if the average energy harvesting rate is no less than the average energy consumption
rate. Therefore, the difference between the best-effort sensing policy and the uniform sensing policy diminishes as
time evolves. The theoretical results are then used to guide the design of a practical sensing system that monitors a
time-varying event. Both analysis and simulations show that the energy harvesting system with the best-effort sensing
scheme can asymptotically achieve the same mean squared error (MSE) performance as the one with uniform sensing
and deterministic energy sources. Therefore, we provide a positive answer to the question by establishing the
asymptotic equivalence between stochastic and deterministic energy sources, from both theoretical and practical
aspects.
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1 Introduction
Wireless sensing systems, such as structure health moni-
toring, biomedical sensing, and environment monitoring,
are usually expected to operate uninterruptedly and
autonomously over years or decades under extremely
stringent energy constraints. Such design objectives
necessitate the development of systems powered by
energy harvesting devices, such as piezoelectric, ther-
mal, or photovoltaic devices, which can collect energy
from the ambient environment. Due to the randomness
of the energy harvesting process, the amount of har-
vested energy can be modeled as a stochastic process. The
stochastic nature of the energy sources is fundamentally
different from the deterministic energy sources employed
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by conventional systems, and it imposes formidable chal-
lenges on the development of energy harvesting sensing
systems.
There have been growing interests in the develop-

ment of energy harvesting communications and sensing
systems. Many of the works are developed to optimize
communication-related metrics, such as transmission
delay or throughput. In [1], the transmission delay of a
point-to-point system isminimized by considering causal-
ity constraints on both information and energy, i.e., infor-
mation cannot be delivered before its arrival and energy
cannot be consumed before it is harvested. The formula-
tion in [1] is extended to broadcast channels in [2,3] and
to a multiple access channel in [4]. All of the above works
use an off-line deterministic scheduling method, which
identifies the optimum transmission scheduling based on
full knowledge of current and future energy arrivals. The
off-line scheduling methods treat future energy arrival
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as a deterministic process even though the actual energy
harvesting process is stochastic.
Online scheduling methods address this problem by

using only the statistics of energy arrivals. The off-line
and online scheduling for systems with fading channels
are discussed in [5], where the online scheduling problem
is formulated as a stochastic dynamic programming prob-
lem with high complexity. Low complexity sub-optimum
online algorithms are presented in [5] for fading channel
and in [6] for interference channel. In both works, the per-
formance of all online scheduling policies is strictly worse
than that of the off-line scheduling.
Another branch of work focuses on sensing and sig-

nal processing-related performance metrics, such as esti-
mation mean squared error (MSE), probability of false
alarm and/or missed detection, and detection delay. In
[7], the estimation MSE of a sparse signal is minimized
by using compressive sensing and a random transmission
scheme, where each energy harvesting sensor node trans-
mits with a certain probability under the energy causality
constraint. The sensing energy is assumed to be neg-
ligible in [7]. Optimum energy allocation schemes are
discussed in [8] for the ‘quickest detection’ of the chang-
ing point of an event monitored by energy harvesting
sensor networks. The results in [8] do not consider distor-
tions such as sensing noise. Generally speaking, the energy
management policies for the optimization of performance
metrics related to sensing and inference have been less
investigated.
All of the above works show that the performance

of energy harvesting systems is in general inferior to
systems with conventional deterministic energy sources,
even if optimal sensing policies are developed based on
the stochastic properties of the energy sources. The per-
formance loss of the energy harvesting systems is mainly
due to the stochastic nature of the energy source, such that
energy is not always available when needed for sensing or
transmission.
Naturally, we would ask the question: can an energy

harvesting sensing system with stochastic energy sources
perform as well as a conventional sensing system pow-
ered by deterministic energy sources? We seek the answer
to this question from two aspects: from the theoretical
aspect in terms of the stochastic properties of the avail-
able energy at a given time, and from the practical aspect
in terms of the MSE performance of a sensing system. For
a conventional sensing system with deterministic energy
sources, uniform sampling is usually employed by the sen-
sors and it is optimum over the duration in which the
signal is wide sense stationary (WSS) [9,10]. However,
due to the randomness in the energy arrival process, uni-
form sampling might be infeasible in energy harvesting
systems given that there might not be sufficient energy
to perform sensing operations at certain time periods.

We thus propose a simple best-effort sensing policy that
attempts to achieve uniform sampling with its best efforts
[11-13]. The best-effort policy defines a set of equally
spaced candidate sensing instants. At a given candidate
sensing instant, the sensor will perform sensing only if
there is sufficient energy to do so, and it will remain silent
otherwise.
By analyzing the stochastic properties of the energy

sources, we will show that the percentage of silent candi-
date sensing instants goes to zero as time goes to infinity,
if and only if the average energy collection rate is no less
than the average energy consumption rate. This means
that the difference between the best-effort sensing pol-
icy and the uniform sensing policy diminishes as time
evolves. The theoretical results indicate that the sensing
behavior of systems with stochastic energy sources has
the potential to approach that of systems with determin-
istic energy sources. Guided by the theoretical results,
we then develop optimum sensing and detection schemes
for a practical energy harvesting sensing system used to
monitor a time-varying event. It will be shown through
both theoretical analysis and simulations that the MSE
performance of the energy harvesting sensing system
asymptotically approaches that of a conventional sens-
ing system with uniform sensing as time goes to infinity.
Simulation results show that the performance of the two
systems converges with as few as 400 candidate sensing
instants. Therefore, we demonstrate from both theoret-
ical and practical aspects that there is an asymptotic
equivalence between stochastic and deterministic energy
sources.
The remainder of this paper is organized as fol-

lows. The problem formulation is given in Section 2.
Section 3 demonstrates the asymptotic equivalence
between stochastic and deterministic energy sources by
showing that the percentage of silent sensing instants goes
to zero as time goes to infinity. The theoretical results
are then applied in Section 4 to guide the development
of a practical energy harvesting sensing system that can
asymptotically achieve the same MSE performance as a
conventional sensing system. Numerical and simulation
results are given in Section 5, and Section 6 concludes the
paper.

2 Problem formulation
Consider a sensor used to monitor a time-varying event.
The sensor is powered by an energy harvesting device,
which harvests energy from the ambient environment.
Due to the random nature of the energy harvesting pro-
cess, the amount of harvested energy can be modeled as
a random process. The harvested energy is used by the
sensor for sensing operations.
The time-varying event being monitored is modeled as

aWSS random process s(t), where t is the time variable. It
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is assumed that s(t) is zero mean with a power-law auto-
covariance function

E[ s(t1)s(t2)]= ρ|t1−t2| (1)

where E is the mathematical expectation operator, and
0 ≤ ρ ≤ 1 is the power-law coefficient. The power-
law covariance is an alternative representation of the
Ornstein-Uhlenbeck covariance kernel [14].
The sensor attempts to reconstruct the continuous-

time time-varying random event by using noise-distorted
discrete-time observations of the random process. A sens-
ing policy is defined as a sequence of time instants {tn}n,
where tn is the time instant at which the sensor collects
a sample of the random process. The sample collected by
the sensor at time tn is

y(tn) = √
Ess(tn) + z(tn) (2)

where Es is the energy allocated for one sensing sample,
and z(tn) is the sensing and/or channel noise with a zero-
mean and the auto-covariance function E [z(t1)z(t2)] =
σ 2
z δ(t1 − t2). It should be noted that the noise component

is not necessarily Gaussian distributed.
The sensing system attempts to reconstruct the time-

varying random field, s(t), by using the sequence of the
discrete-time samples, {y(tn)}n. If the sensor is powered by
a conventional power supply, then uniform sampling with
tn = nTs is employed in [9,10] to achieve the optimum
sensing performance due to the homogeneous nature of
the random field. However, due to the inherent random-
ness of the energy harvesting process, uniform sampling
might be infeasible given that there might not be suffi-
cient energy to perform sensing operations at certain time
periods. The performance of uniform sampling with con-
ventional power supply can then serve as a lower bound
for systems with energy harvesting devices.

3 Asymptotic equivalence between stochastic
and deterministic energy sources

In this section, we first present a best-effort sensing policy
for systems with stochastic energy sources. We then study
the asymptotic behaviors of the best-effort sensing policy
as time goes to infinity. The analytical results demonstrate
the asymptotic equivalence between stochastic energy
sources and deterministic energy sources.
Due to the random nature of the energy harvesting pro-

cess, the harvested energy can be modeled as a random
process. We model the stochastic energy sources by using
the following two assumptions:

Assumption 1. If we divide the time axis into arbitrary
small intervals with length � > 0, then the energy col-
lected in each interval can be modeled as independently
and identically distributed (i.i.d.) random variables, E� =
P�, where P is the average energy harvesting rate.

Assumption 2.
∑∞

n=1 Pr(E� > nε) < ∞ for any ε > 0
and � > 0.

Assumption 1 indicates that the energy collected at
different time intervals are independent, with the aver-
age amount of harvested energy proportional to the time
duration, and Assumption 2 is used to ensure that the
model behaves normally. Such a model is general enough
to incorporate many other existing stochastic energy
models as special cases. Below are a few examples.

1. Poisson energy source [5]. The energy arrives in the
form of energy packets with unit energy in each
energy packet. The number of energy arrivals in a
unit time is a Poisson random variable with mean λ.
Thus, the average energy collected in an interval � is
E� = λ�, and the amount of energy collected in
different intervals is i.i.d.

2. Bernoulli energy source [8]. In each interval �, the
energy arrival can be modeled as an i.i.d. Bernoulli
random variable with parameter P(E = 1) = p�. The
average energy collected in an interval � is thus
E� = p�.

3. Gaussian energy source. The energy source is
modeled as E = |V (t)|2, where V (t) is a zero-mean
symmetric complex Gaussian random process with
covariance function E[V (t + τ)V ∗(t)]= σ 2

v δ(τ ).
The average energy collected in an interval � is
E� = σ 2

v �.

The Poisson and Bernoulli energy sources model the
energy arrivals with discrete random variables, and they
are widely used in the literature. The Gaussian energy
source uses continuous random variables to model the
energy arrival, and it can be used to model the energy col-
lected from random events that have similar properties as
white Gaussian noise. All three models fall in the general
stochastic energy model. Other than the two assumptions,
the analysis in the rest of this paper does not assume any
specific distributions of the energy sources.
The harvested energy is stored in an energy storage

device, such as rechargeable batteries or super capacitors.
The energy storage device can be modeled as an energy
queue, with the input being the random energy arrival
from the energy harvesting process, and the output is the
energy consumption. Denote the amount of energy avail-
able in the energy storage device at time t as Q(t) ≥ 0.
Since the harvested energy is usually very small compared
to the capacity of the energy storage device, it is assumed
that the energy queue has unlimited capacity. The energy
consumption must follow the energy causality constraint,
that is, at any time instant, the total amount of harvested
energy must be no less than the total amount of consumed
energy.
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The amount of energy available in the energy queue,
Q(t), is a random process due to the randomness in
both energy collections and energy consumptions. Dur-
ing some time instants, there might not be enough energy
in the energy queue for the sensing operations, that is,
Q(t) < Es. Therefore, the uniform sensing policy for sys-
tems with a deterministic power supply is not applicable
to energy harvesting systems. We propose a best-effort
sensing policy defined as follows.

Definition 1 (Best-effort sensing policy). Define a set
of candidate sensing instants as K = {kn|kn = nTs, n =
1, 2, · · · }. A sensor performs one sensing operation with
energy Es at time t if and only if: 1) t ∈ K, and 2)Q(t) ≥ Es.

In the best-effort sensing policy, the sensor attempts to
mimic the uniform sensing policy with its best efforts.
It tries to perform sensing operations at uniform sens-
ing intervals whenever allowed by the energy constraint.
However, it will keep silent at a candidate sensing instant
nTs if Q(nTs) < Es. Denote the information collected at
each candidate sensing instant as a sensing symbol, which
could be either a silent symbol when Q(nTs) < Es or
an active symbol when Q(nTs) ≥ Es. With such a sens-
ing mechanism and the stochastic energy source, there
might be K silent symbols in the first N ≥ K sensing
instants Ts, 2Ts, · · · ,NTs. The number of silent symbols is
a random variable. The existence of silent symbols might
degrade the sensing performance.
Next, we show the first main result of this paper, which

states that if certain conditions are satisfied, then there is a
diminishing number of silent symbols compared to active
symbols as time becomes large enough.

Theorem 1. Consider an energy harvesting sensing sys-
tem powered by energy sources satisfying Assumptions 1
and 2. The system employs the best-effort sensing policy
described in Definition 1. Define K = ∑N

k=1 1Q(kTs)<Es as
the total number of silent symbols in the first N symbol
periods, where the indicator function 1E = 1 if the event E
is true and 0 otherwise.
If P ≥ Es

Ts
, then

lim
N→∞

K
N

= 0, a.s. (3)

Specifically, if P > Es
Ts
, then for almost every energy har-

vesting sample path, there exists K̄ < ∞ such that K ≤
K̄ < ∞ as N → ∞.
Conversely, if P < Es

Ts
, then

lim
N→∞

K
N

≥ 1 − PTs
Es

, a.s. (4)

Proof. Define Ec = PTs as the average energy harvested
in the duration of Ts. Divide the time axis into frames,
each of duration LTs. The m-th frame thus has L candi-
date sensing instants, and km ≤ L of them are assumed
to be silent. Assume the total amount of energy collected
in them-th frame is Em, which is random. The amount of
energy consumed in the l-th frame can be calculated as
(L−km)Es. DenoteDm = Em−(L−km)Es as the difference
between the energy harvested and consumed in the m-th
frame. It should be noted that Dm could be either positive
or negative. The total amount of energy available in the
energy queue at the end of the m-th frame is Q(mLTs) =∑M

m=1 Dm. It should be noted that
∑M

m=1 Dm ≥ 0 due to
the energy causality constraint.
With the best-effort sensing policy, the number of silent

symbols in theM-th frame must satisfy

kM ≤ max
{
0, L − 1

Es

M−1∑
m=1

Dm

}
, (5)

because the energy available at the end of the (M − 1)-th
frame can be used for the sensing of up to 1

Es
∑M−1

m=1 Dm
symbols in theM-th frame.
1) Case 1: P < Es

Ts
. With the energy causality constraint,

we have
∑M

m=1 Dm ≥ 0, or

M∑
m=1

Em − MLEs + Es
M∑

m=1
km ≥ 0 (6)

Divide both sides of (6) byMLEs, and letM → ∞,

lim
M→∞

∑M
m=1 km
ML

≥ 1 − 1
Es

lim
M→∞

∑M
m=1 Em
ML

(7)

Based on the strong law of large numbers,

lim
M→∞

∑M
m=1 Em
ML

= Ec, a.s. (8)

In addition, let N = LM, then K = ∑M
m=1 km. Thus, (4)

can be obtained from (7) and (8).
2) Case 2: P = Es

Ts
. Index the frames with at least one

silent symbol asM1,M2, · · · ,Mi, · · · , i.e.,

0 < kMi
≤ L −

∑Mi−1
m=1 Dm
Es

. (9)

IfMi is upper bounded, that is, there exists M̄ such that
km = 0 for all m > M̄, then K is finite and (3) is true. On
the other hand, ifMi is unbounded, then limi→∞ Mi = ∞.
We have

Mi∑
m=1

Dm =
Mi−1∑
m=1

Dm + EMi
− LEs + kMi

Es ≤ EMi
, (10)
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where the last inequality is based on (9). Dividing both
sides of (10) by LMi and letting i → ∞ (so asMi), we have

lim
Mi→∞

∑Mi
m=1 Em
LMi

−Es+ lim
Mi→∞

∑Mi
m=1 km
LMi

≤ lim
Mi→∞

EMi

LMi
(11)

Based on the assumption that
∑∞

n=1 P[E > nε]< ∞ for
any ε > 0, and Borel-Cantelli lemma [15], we have

lim
Mi→∞

EMi

LMi
= 0, a.s.

Combining (11) with (8) yields

lim
N→∞

K
N

≤ 0, a.s. (12)

Since K
N ≥ 0, (3) is true.

3) Case 3: P > Es
Ts
. Proof by contradiction. Assume

limi→∞ Mi = ∞. When Ec > Es, from (8) and (11), we
have

lim
N→∞

K
N

≤ −(Ec − Es) < 0, a.s. (13)

This contradicts with the fact that K
N ≥ 0; thus, the

assumption limi→∞ Mi = ∞ cannot be true when Ec >

Es. This means that Mi is finite; thus, K is finite as N →
∞.

The results in Theorem 1 state that there is an asymp-
totic equivalence between stochastic energy source and
deterministic energy source as time goes to infinity, if
and only if the average harvested energy in one sample
period is no less than the energy required for one sensing
operation. This means that the performance of the best-
effort sensing policy with stochastic energy sources has
the potential to match that of the uniform sensing policy
with deterministic energy sources as time becomes large
enough and P ≥ Es

Ts
. The results hold for a quite general

category of energy harvesting processes. It is straightfor-
ward to verify that commonly adopted energy harvesting
models, such as Poisson energy, Bernoulli energy source,
and Gaussian energy source, all fall into this category.
If P is strictly larger than Es

Ts
, then the result is stronger

because the number of silent symbols is finite even if
the total number of symbols goes to infinity. This means
that for almost every energy harvesting sample path, there
exists N̄ < ∞ such that Q(nTs) ≥ Es, ∀n > N̄ , or there
exists a time threshold after which the best-effort sens-
ing policy will be exactly the same as the uniform sensing
policy.

The converse portion of Theorem 1 states that P ≥ Es
Ts

is the necessary and sufficient condition for the asymp-
totic equivalence between the stochastic and determinis-
tic energy sources, because the percentage of silent sym-
bols is non-diminishing if the condition P ≥ Es

Ts
is not

satisfied.
Theorem 1 provides the theoretical foundation regard-

ing the asymptotic equivalence between stochastic and
deterministic energy sources, with the help of the newly
proposed best-effort sensing policy. In the next section,
we will show that the asymptotic equivalence can be
achieved in a practical sensing system, that is, the pro-
posed best-effort sensing policy with stochastic energy
sources can indeed asymptotically achieve the same MSE
performance as the uniform sensing policy with constant
energy supply.

4 Asymptotically optimum sensing with the
best-effort sensing policy

This section studies the optimum design and performance
analysis of sensing systems employing the newly proposed
best-effort sensing policy.

4.1 Best-effort sensing with stochastic energy sources
Based on the best-effort sensing policy, define the sensing
sample at time instant kn = nTs as

ηn =
{ √

Ess(nTs) + z(nTs), Q(nTs) ≥ Es,
z(nTs), Q(nTs) < Es.

(14)

Define η =[ η1, · · · , ηN ]T ∈ RN , and express (14) in a
matrix format as

η = √
Esx + z (15)

where x =[ x1, · · · , xn]T with xn = s(nTs) if Q(nTs) ≥ Es
and xn = 0 otherwise, and z =[ z(Ts), · · · , z(NTs)]T . With
the best-effort sensing policy, K out of the N elements in
η contain only noise components.
The system attempts to reconstruct the time-varying

random event s(t) by using the observations, η. Since
we are interested in the reconstruction fidelity of a
continuous-time random event, the worst case scenario
will be considered by estimating {s (nTs + 1

2Ts
)}n, the

sequence of points located in the middle between two
candidate sensing instants. Define the data vector to be
estimated as d = [

s
( 1
2Ts

)
, s

( 3
2Ts

)
, · · · , s (NTs − 1

2Ts
)]T .

It should be noted that s
(
nTs + 1

2Ts
)
will be estimated

even if xn = 0 and/or xn+1 = 0.
The linear minimum mean squared error (MMSE) esti-

mation of d based on η is

d̂ = WTη, (16)
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whereW is the MMSE matrix and it satisfies the orthogo-
nal principle

E

[
(WTy − d)yT

]
= 0. (17)

The MMSE matrix isWT = E(dηT )
[
E(ηηT )

]−1, which
can be expressed as

WT = √
EsRdx [EsRxx + Rzz]−1 , (18)

where Rdx = E(dxT ), Rxx = E(xxT ), and Rzz = σ 2
z IN

with IN being a size N × N identity matrix. If we assume
the indices of the sampling instants with Q(nTs) < Es
being i1, i2, · · · , iK , then the ik-th column of Rdx is an
all-zero column, for k = 1, · · · ,K . Similarly, the ik-th
row and the ik-th column of Rxx are all-zero vectors, for
k = 1, · · · ,K .
The covariance matrix of the error vector, ε = d − d̂,

can be written as

Rεε = Rdd − Rdx

[
Rxx + σ 2

z
Es

IN
]−1

Rxd. (19)

Systems with deterministic energy sources can be con-
sidered as a special case of the MMSE receiver described
in (15) and (16). With a deterministic energy source, there
will be no silent symbols; thus, the system equation can be
expressed as

y = √
Ess + z (20)

where y =[ y(Ts), · · · , y(NTs)]T and s =
[ s(Ts), · · · , s(NTs)]T are the received signal vector and
data vector, respectively. Denote the MMSE estimation
of d from y as d̃ = WT

y y, where WT
y is the linear MMSE

matrix. Similar to (19), the covariance matrix of the error
vector, e = d − d̃, can be written as

Ree = Rdd − Rds

[
Rss + σ 2

z
Es

IN
]−1

Rsd (21)

where Rds = E(dsT ) and Rss = E(ssH). The cross-
covariance matrix Rds is a Toeplitz matrix with the
first row being

[
r
( 1
2Ts

)
, r

( 3
2Ts

)
, · · · , r (

NTs − 1
2Ts

)]
,

and the first column
[
r
( 1
2Ts

)
, r

( 1
2Ts

)
, r

( 3
2Ts

)
, · · · ,

r
(
NTs − 3

2Ts
)]T . The covariance matrix Rss is a

symmetric Toeplitz matrix with the first row being
[ r(0), r(Ts), · · · , r(NTs − Ts)].
The error covariance matrices for systems with stochas-

tic and deterministic energy sources are given in (19)
and (21), respectively. The average MSE for systems with
stochastic and deterministic energy sources can then be
calculated, respectively, as

σ 2
ε,N = 1

N
trace (Rεε) , (22a)

σ 2
e,N = 1

N
trace (Ree) . (22b)

Intuitively, σ 2
ε,N ≥ σ 2

e,N since y contains more infor-
mation than η. The MSE of the system with uniform
sensing and deterministic energy source can serve as a
lower bound for systems with stochastic energy sources.
However, due to asymptotic equivalence between the
stochastic and deterministic energy sources as presented
in Theorem 1, we will show in the next subsection that
the proposed best-effort sensing policy can asymptotically
achieve the same performance as the uniform sensing
policy as N → ∞.

4.2 Asymptotic achievability of the MSE lower bound
The asymptotic equivalence between the two sensing
schemes relies on the asymptotic equivalence between
sequences of matrices, which is defined as follows.

Definition 2 (Asymptotical equivalence [16]). Two
sequences of N × N matrices, {AN }N and {BN }N are
asymptotically equivalent if

1. AN and BN are bounded in strong norm:

‖AN‖, ‖BN‖ < C < ∞,N = 1, 2, · · · (23)

where ‖A‖ = maxk
√

λk is the strong norm of A, λk
is the eigenvalue of AHA, and AH is the Hermitian of
the matrix A.

2. AN − BN goes to zero in weak norm as N → ∞
lim

N→∞ |AN − BN | = 0, (24)

where |AN | =
√

1
N

∑N
m=1

∑N
n=1 |amn|2 is the weak

norm of AN with amn being the (m, n)-th element of
the matrix AN .

The asymptotic equivalence between two sequences of
matrices, {AN } and {BN }, is denoted as AN ∼ BN .

Lemma 1. Consider two sequences of matrices, {AN }N
and {BN }N . The squares of the elements on any row or
column of the two matrices are absolutely summable as
N → ∞. If the two matrices differ in K1 rows and K2
columns, and limN→∞ K1+K2

N = 0, then AN ∼ BN .

Proof. Denote the (m, n)-th elements of AN and BN as
amn and bmn, respectively. Since the squares of the ele-
ments on each row or column of the two matrices are
absolutely summable, the matrices are bounded in strong
norm. Assume the two matrices differ in rows r1, · · · , rK1
and columns c1, · · · , cK2 , then

|AN − BN |2 ≤ 1
N

⎡
⎣ K1∑
k=1

N∑
n=1

|arkn − brkn|2 +
M∑

m=1

K2∑
k=1

|amck − bmck |2
⎤
⎦
(25)
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Since the squares of the elements on any row or column
are absolutely summable, then there exists C > 0 such
that

∞∑
n=1

|arkn − brkn|2≤
∞∑
n=1

|arkn|2+
∞∑
n=1

|brkn|2 < 2C

∞∑
m=1

|amck − bmck |2≤
∞∑

m=1
|amck |2+

∞∑
m=1

|bmck |2 < 2C

Thus,

lim
N→∞ |AN − BN | <

√
4C lim

N→∞

√
K
N

(26)

Since limN→∞ K
N = 0, it is straightforward that

limN→∞ |AN − BN | = 0.

From (19) and (21), σ 2
ε and Rεε depend on Rdx and Rxx,

while σ 2
e and Ree depend on Rds and Rss. We have the

following lemma regarding the relationships between the
two groups of matrices as N → ∞.

Lemma 2. If P ≥ Es
Ts

in the best-effort sensing policy, then
Rdx ∼ Rds, and Rxx ∼ Rss.

Proof. All matrices are absolutely summable in each row
or column. Based on the best-effort sensing policy, x can
be obtained by replacing K elements in s with zeros. Since
P ≥ Es

Ts
, we have limN→∞ K

N = 0 a.s.
If we assume the indices of the sampling instants with

Q(nTs) < Es being i1, i2, · · · , iK , then Rdx can be obtained
by replacing the ik-th column of Rds with an all-zero
column, for k = 1, · · · ,K . From Lemma 1, Rdx ∼ Rds.
Similarly, Rxx can be obtained by replacing the ik-th row

and the ik-th column of Rss with all-zero vectors, for k =
1, · · · ,N . From Lemma 1, Rxx ∼ Rss.

Now we are ready to present the second main result
of this paper in the following theorem, which states the
asymptotic equivalence between systems with stochas-
tic and deterministic energy sources in terms of MSE
performance.

Theorem 2. Consider two sensing systems, one with the
best-effort sensing policy and a stochastic energy source as
described in (15), and one with the uniform sensing policy
and a deterministic energy source as described in (20). If
P ≥ Es

Ts
, then

lim
N→∞ σ 2

ε,N = lim
N→∞ σ 2

e,N = σ 2
0 , (27)

where σε,N and σ 2
e,N are the MSE of the two systems

defined in (22a) and (22b), respectively. Specifically, with
the power-law time covariance in (1)

σ 2
0 =

[
σ 2
z
Es

+ 1 − ρTs

1 + ρTs

] 1
2
[

σ 2
z
Es

+ 1 + ρTs

1 − ρTs

]− 1
2

(28)

Proof. The Toeplitz matrix, Rds, is uniquely determined
by the sequence rds =[ r−(N−1), · · · , r0, · · · , rN−1]T , where
rn = ρ

Ts
2 ρ−(n+1)Ts when n < 0, and rn = ρ

Ts
2 ρnTs other-

wise. When N → ∞, the discrete time Fourier transform
(DTFT) of the sequence rds can be calculated as


ds(f ) = ρ
Ts
2

(1 − ρTs)(1 + ej2π f )
1 + ρ2Ts − 2ρTs cos(2π f )

. (29)

Based on [17] (Lemma 2) , Rds is asymptotically equiv-
alent to a circulant matrix, Cds = UH

NDdsUN , where
UN is the unitary discrete Fourier transform (DFT)
matrix with the (m, n)-th element being (UN )m,n =
1√
N exp

[
−j2π (m−1)(n−1)

N

]
, and Dds is a diagonal matrix

with its k-th diagonal element being (Dds)k,k =

ds

(
k−1
N

)
.

Similarly, the symmetric Toeplitz matrix, Rss,
is uniquely determined by the sequence φss =
[φ−(N−1), · · · ,φ0, · · · ,φN−1]T , where φn = ρ|n|Ts . When
N → ∞, the DTFT of the sequence φss can be calculated
as


ss(f ) = 1 − ρ2Ts

1 + ρ2Ts − 2ρT
s cos(2π f )

. (30)

The symmetric Toeplitz matrix Rss is asymptotically
equivalent to a circulant matrix, Css = UH

NDssUN , where
Dss is a diagonal matrix with its k-th diagonal element
being (Dss) = 
ss

(
k−1
N

)
.

When P ≥ Es
Ts
, we have limN→∞ K

N = 0 from
Theorem 1. Based on Lemma 2 and [16] (Theorem 2.1),
we have

Rdx ∼ Rds ∼ Css (31)
Rxx ∼ Rss ∼ Css (32)

Therefore, based on [16] (Theorem 2.1), we have Rεε ∼
Ree ∼ Cee, where Cee is a circulant matrix defined as

Cee = Css − Cds

[
Css + σ 2

z
Es

IN
]−1

CH
ds (33)

The circulant matrix Cee can be expressed as Cee =
UH
NDeeUN , where Dee is a diagonal matrix defined as

Dee = Dss − Dds

[
Dss + σ 2

z
Es

IN
]−1

DH
ds. (34)

Therefore, both error covariance matrices are asymp-
totically equivalent to the same circulant matrix. Based
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on Szego’s theorem [17], when N → ∞, we
have

lim
N→∞ σ 2

ε,N = lim
N→∞ σ 2

e,N =
∫ 1

2

− 1
2

⎡
⎣
ss(f ) − |
ds(f )|2


ss(f ) + σ 2
z
Es

⎤
⎦ df .

(35)

Substituting (30) and (29) into the above equation and
simplifying yields (28).

Theorem 2 states that systems with the proposed best-
effort sensing policy and stochastic energy sources can
asymptotically achieve the same MSE performance as
systems with the uniform sensing policy and determin-
istic energy sources, as long as the energy consumption
for each sensing operation is not more than the aver-
age harvested energy in each sampling period. Theorem 1
provides the theoretical foundation on the asymptotic
equivalence between stochastic and deterministic energy
sources, and Theorem 2 demonstrates that such equiva-
lence can be achieved in practical systems.

5 Numerical and simulation results
Numerical and simulation results are presented in
this section to demonstrate the asymptotic equivalence
between systems with stochastic and deterministic energy
sources.
Figure 1 shows the value of K

N as a function of N for sys-
tems with various stochastic energy sources, where K is
the number of silent sensing symbols and N is the total
number of candidate sensing symbols. All systems employ
the best-effort sensing policy proposed in this paper. The
convergence behaviors of K

N are demonstrated for P =
0.9 Es

Ts
, P = Es

Ts
, and P = 1.1 Es

Ts
, respectively. The simulation

Figure 1 K/N for various energy sources.

results are obtained by averaging over 100 independent
runs for each configuration. All three energy sources have
similar convergence behaviors as N increases. When P ≥
Es
Ts

and N > 100, the value of log K
N decreases almost

linearly with respect to logN , and the absolute slope
increases as PTs

Es increases. The simulation results conform
to Theorem 1, which states that limN→∞ K

N = 0 when
P ≥ Es

Ts
. On the other hand, when P = 0.9 Es

Ts
, K
N tends

to a constant value 0.1, as N → ∞. The constant value
is the same as the lower bound, 1 − PTs

Es , predicted by
Theorem 1. The results in Figure 1 demonstrate through
simulations that the percentage of silent sensing symbols
diminishes as time goes to infinity, as long as the average
energy harvesting rate is no less than the average energy
consumption rate. The actual distributions of the energy
sources have no impact on the convergence behavior.
Figure 2 compares the MSE performance of systems

with both stochastic and deterministic energy sources.
The best-effort sensing policy is employed by systems
with stochastic energy sources, and uniform sensing is
employed by systems with deterministic energy sources.
The stochastic energy sources are the Gaussian sources
with mean P = Es

Ts
. It is assumed that all systems have the

same average power P = Es
Ts

with the normalized signal-
to-noise ratio (SNR) γ0 = P

σ 2
z
being 0 dB. The power-law

coefficient is ρ = 0.9. The simulation results are obtained
throughMonte Carlo simulations, where the data are gen-
erated as a zero-mean Gaussian random process with the
covariance function satisfying the power-law relationship.
In the simulations, the data are sampled and then esti-
mated, and the estimation results are compared to the true
values to calculate the MSE. Each point on the simulation
MSE curves is obtained by averaging over 2,000 inde-
pendent runs for each configuration. It can be seen that

0 0.5 1 1.5 2 2.5 3
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Energy Harvesting (analytical)
Energy Harvesting (simulation)
Constant Energy (analytical)
Constant Energy (simulation)
Asymptotic MSE (analytical)

N=400

N=50N=10

Figure 2MSE as a function of the sampling frequency (ρ = 0.9).
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the simulation results match perfectly with their analyt-
ical counterparts. As expected, the MSE performance of
systems with deterministic energy sources is consistently
better than that of systems with stochastic energy sources.
However, the performance gap narrows as N increases.
When N = 400, the MSE performance of the two sys-
tems are almost identical, and they coincide with the
asymptotic MSE obtained with N → ∞. Therefore, when
N is sufficiently large, the best-effort sensing policy can
achieve a performance that is almost the same as the uni-
form sensing policy. Thus, the results in Figure 2 demon-
strate the asymptotic equivalence between stochastic and
deterministic energy sources in a practical system.
In addition, it can be seen from Figure 2 that the MSE is

convex when N is small (N = 10 or 50), and it becomes a
monotonically decreasing function when N is large (N =
400). Under a fixed power, a larger sampling rate means
less energy per sample, which might degrade the sys-
tem performance. On the other hand, a larger sampling
rate means a stronger correlation between two adjacent
samples, which contributes positively to the MSE perfor-
mance. Therefore, changing the sampling rate results in
different trade-offs between energy per sample and sam-
ple correlations. When N is large enough, increasing the
sampling rate beyond a certain threshold (e.g., Rs = 1
Hz when N = 400) has negligible impact on the MSE
performance.
Figure 3 shows the simulation and analyticalMSE of sys-

tems with stochastic energy sources as functions of the
SNR. The sampling rate is 1 Hz. The analytical results
with finite N are calculated from (22). The simulation
results are obtained through Monte Carlo simulations.
Each point on the curve is averaged over 2,000 inde-
pendent simulation runs. The simulation results match
the analytical results very well. As expected, the MSE

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SNR (dB)

M
S

E

N=10, simulation
N=10, analytical
N=50, simulation
N=50, analytical
N=400 simulation
Asymptotic analytical

ρ=0.8

ρ=0.9

Figure 3MSE as a function of the SNR for systems with
stochastic energy sources (Rs = 1 Hz).

decreases as ρ or N increases. In addition, the MSE with
N = 400 is almost the same as the asymptotic MSE
obtained with N → ∞.

6 Conclusions
The asymptotic equivalence between stochastic and
deterministic energy sources has been demonstrated
through both theoretical analysis and practical examples.
To account for the stochastic nature of energy harvested
from the ambient environment, a best-effort sensing pol-
icy has been proposed for energy harvesting sensing sys-
tems. It has been shown that the difference between the
best-effort sensing scheme and the ideal uniform sensing
scheme diminishes as time goes to infinity, if and only
if the average energy collection rate is no less than the
average energy consumption rate, regardless of the actual
distribution of the stochastic energy source. The asymp-
totic equivalence has been used for the development of
an optimum energy harvesting sensing system. It has been
shown through both theoretical analysis and simulation
results that systems with the best-effort sensing scheme
and stochastic energy sources can achieve almost the same
MSE performance as systems with uniform sensing and
deterministic energy sources when the number of samples
is greater than 400.
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