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Abstract

On-grid energy consumption of base stations (BSs) contributes up a significant fraction of the total carbon dioxide
(CO2) emissions of cellular networks, among which remote radio units (RRUs) absorb most of the energy
consumption. To eliminate the on-grid energy consumption and the corresponding CO2 emission, we propose a new
transmission framework, in which all RRUs and associated power amplifiers (PAs) are powered by hybrid energy
sources including on-grid energy source and off-grid renewable energy source. Based on the framework, we pursue a
systematic study on the joint transmission and harvested energy scheduling algorithm for the hybrid energy powered
cellular transmission system under coordinated multi-point (CoMP) transmission. Firstly, we formulate an optimal
offline transmission scheduling problem with a priori knowledge about channel state information (CSI), under
constraint of available amount of harvested energy and stored energy at each transmission time interval. Considering
a practical constraint of limited pre-knowledge about CSI, we further transform the offline problem into an
energy-aware energy efficient transmission problem. To solve the proposed problems, we undertake a convex
optimization method to the optimal offline transmission scheduling problem and design corresponding optimal
offline joint transmission and energy scheduling algorithm, which provides the upper bound on actual system
performance. Then, we extend the non-linear fractional programming to the transmission scheduling problem with
limited pre-knowledge about CSI and design corresponding joint transmission and energy scheduling algorithm,
named as online algorithm. Numerical results show that the performance of the proposed online algorithm is close to
that of the obtained upper bound and outperforms the existing algorithm. We also find that at each transmission time
interval during the finite transmission period, the transmit power of each RRU is proportional to the weighted
channel-gain-to-noise ratio (CNR) of each sub-channel.
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1 Introduction
The need for network operators to reduce their on-grid
energy consumptions as well as carbon dioxide (CO2)
emissions is currently steering research in communica-
tions toward more efficient and environmentally friendly
networks. According to [1], cellular network worldwide
consumes approximately 60 billion kWh per year, among
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which the energy consumption of base stations (BSs)
accounts for 80%. Fortunately, natural resources, such
as wind and solar, are envisaged to be green energy
resources, due to their pollution-free and renewable
natures [2]. According to statistics, powering one BS
which has an average power consumption of 1,400 Watts
with renewable energy can reduce coal consumption of 2.5
tons with a carbon footprint of 11 tons per year [3]. There-
fore, powering cellular network by renewable energy,
named as renewable energy harvesting (REH) enabled cel-
lular network in this paper, has been widely accepted as
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a promising avenue to reduce CO2 emission and on-grid
power consumption, e.g., the technique report [4] and the
technique specification [5] of 3rd Generation Partnership
Project (3GPP) clearly indicate that the use of renewable
energy resources is explicitly encouraged in mobile net-
work, and researching on it is suggested to have high
priority.
On the other hand, coordinated multi-point (CoMP)

transmission, which enables cooperation among multiple
nodes or remote radio units (RRUs) to transmit data to
the same served users with the identical time-frequency
resources by the multi-antenna techniques, is regarded
as a key enabling technology for elevating system per-
formance and quality of service (QoS) [6]. Due to the
promising advantage in terms of the higher spectral effi-
ciency of its air-interface, the CoMP transmission has
been accepted in the long term evolution-advanced (LTE-
A) specification [7].
We focus on joint transmission and harvested energy

scheduling for optimizing the utility efficiency of har-
vested energy in hybrid energy (including on-grid energy
and off-grid renewable energy) powered cellular trans-
mission system where the off-grid REH system, mainly
consisting of the energy harvester, the batterymodule, and
the controller, is embedded into BSs.
Energy efficiency improvement is a hot topic in the

research area of green wireless communication. For exam-
ple, [8-10] study the energy efficient link transmission and
resource allocation schemes in the orthogonal frequency
division multiplexing (OFDM) system. [11] studies the
energy efficient cooperative relay transmission exploit-
ing the fractional programming approach. As for energy
efficient transmission in CoMP system, [12] proposes
an energy efficient power allocation algorithm for the
downlink transmission, and [13] studies energy-efficient
precoding for CoMP transmission in heterogeneous
network.
Since the energy harvesting characteristics, i.e., the

energy arrival and the amount of energy being harvested,
is determined by the changing surrounding environment,
e.g., the energy harvested through wind turbines varies
with wind force and direction, and the energy harvested
through photovoltaic panels varies with solar radiation
and ambient temperature, the opportunistic energy har-
vesting results in a highly random energy availability.
Additionally, the battery module, which can be seen as
the energy buffer, provides the basis of harvested energy
scheduling in the dimension of time for further improving
the utilization efficiency of harvested energy. There-
fore, the basic optimization problem and the optimiza-
tion variables for energy efficient transmission in REH
enabled cellular network are different from that in on-
grid energy powered cellular network, cf., Sections 3, 4,
and 5.

Flashing back to the literature, the study of REH enabled
network stems from wireless sensor network (WSN),
since sensor node is often deployed under a complicated
and adverse condition where a reliable on-grid power
connection is not available. The short-term throughput,
i.e., the amount of data transmitted during a finite time
period, maximization problem is formulated in [14,15].
The optimal packet scheduling problem in additional
white Gaussian noise (AWGN) broadcast channel is inves-
tigated in [16,17]. However, cellular network is more com-
plex than WSN in terms of techniques in physical, media
access control, and network layers. Besides, the energy
consumption and the QoS requirement of the BS in cel-
lular network are much higher than those of the sensor
node. Therefore, it is hard to directly port the research
results of REH enabled WSN to REH enabled cellular
network.
As for prior studies on REH enabled cellular network,

there are first some prior arts focusing on single BS trans-
mission without considering the transmission coopera-
tion among multiple BSs which is regarded as a promising
technique for 4G and beyond cellular networks. In [18],
an effective algorithm is proposed to maximize the uti-
lization of green energy in such network. To maximize
the utilization of green energy, an energy packet sched-
uler is proposed in [19] to optimize the packet scheduling.
The resource allocation problem of a single cell pow-
ered by hybrid energy sources is studied in [20]. The
authors analyze the relationship between energy input and
transmission outage probability which is defined as the
probability that the users’ throughput is less than a given
threshold. An energy efficient resource allocation algo-
rithm in an OFDM access downlink network is proposed
in [21].
More recently, researchers begin to draw attentions on

the study of REH enabled cooperation transmission. In
[22], the throughput maximization problem is investi-
gated for only renewable energy powered relay nodes,
and yet the time-varying characteristics of wireless chan-
nel are not considered. In [23], an optimal transmission
scheme for a two-hop relay network is proposed under
the assumption that the energy storage capacity of the bat-
tery module in REH system is infinite. In [24], a weighted
sum-rate maximization problem is formulated for CoMP
system powered by hybrid energy sources. Because it is
assumed that there is no battery module in the energy har-
vesting system, the harvested energy cannot be scheduled
in the dimension of time to further improve the energy
efficiency of CoMP transmission and the utilization effi-
ciency of the harvested energy. Therefore, there should be
the finite energy storage module especially for the off-grid
REH system.
Driven by the above considerations, the joint trans-

mission and harvested energy scheduling problem is
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studied for a hybrid energy powered cellular network
equipped with finite energy storages. Due to the ran-
dom characteristic of harvested energy arrival, in such
network, renewable energy is viewed as a supplement
to the total amount of energy required for transmis-
sion. It is desirable to know how to sufficiently utilize
renewable energy to reduce the on-grid energy consump-
tion and the corresponding CO2 emission. Therefore,
in this paper, we focus on optimizing the utilization of
harvested energy, jointly considering the practical con-
straint of the energy harvesting system, and a priori
knowledge and limited pre-knowledge about channel state
information (CSI), which result in the following main
contributions.
1) Considering space and cost limitations of a BS, we

propose in this paper a new REH enabled transmis-
sion framework, in which all RRUs and associated power
amplifiers (PAs) are powered by hybrid energy including
on-grid energy and off-grid renewable energy, to realize a
green and reliable transmission.
2) Based on the framework, we pursue a systematic

study on the joint transmission and harvested energy
scheduling algorithms for REH enabled transmission
under CoMP transmission. Firstly, we formulate an opti-
mal offline transmission scheduling problem with a pri-
ori knowledge about CSI, under constraint of available
amount of harvested energy and stored energy at each
transmission time interval. Then, considering practical
constraint of limited pre-knowledge about CSI, we trans-
form the optimal offline transmission scheduling prob-
lem into an energy-aware energy-efficient transmission
problem.
3) We undertake a convex optimization method to the

proposed optimal offline transmission scheduling prob-
lem and design corresponding optimal offline joint trans-
mission and energy scheduling algorithm, which provide
the upper bound on actual system performance. Then,
we extend the non-linear fractional programming to
the transmission scheduling problem with limited pre-
knowledge about CSI and design corresponding joint
transmission and energy scheduling algorithm, which
named as online algorithm, considering temporal variabil-
ities of channel and harvested energy. Numerical results
show that the performance of the proposed online algo-
rithm is close to that of the obtained upper bound. We
also find that at each transmission time interval during
the finite transmission time period, the transmit power of
each RRU is proportional to the weighted channel-gain-
to-noise ratio (CNR) of each sub-channel.
The rest of the paper is organized as follows. The

system model is described in Section 2. The transmis-
sion scheduling problems are formulated in Section 3.
The offline solution and the proposed offline trans-
mission scheduling algorithm are described in detail in

Section 4. Section 5 provides the online solution and
the proposed online transmission scheduling algorithm.
Section 6 presents the numerical results and analyses.
Finally, Section 7 draws up the conclusion.

2 Systemmodel
As shown in Figure 1, an OFDM downlink transmis-
sion system under the green distributed BS infrastructure
with a base-band unit (BBU) and L RRUs is considered.
Here, all the processing units (including the base-band)
are pooled at BBU, and the stand-alone RRUs are installed
at remote sites with only radio frequency (RF) front-
end functionalities. Besides, all RRUs are connected with
BBU through optical fibers. The capacity of REH system
is related to the size of photovoltaic panel. Considering
space and cost limitations of the BS, BBU is powered by
on-grid energy for signal processing and resources allo-
cation. Each RRU is powered by hybrid energy sources
including on-grid energy source and one REH system,
which consists of one energy harvester and one battery
with finite-capacity EC .
It is assumed that there are N frequency sub-channels,

and each of them is exclusively allocated to one user
equipment (UE). Both the RRU and the UE are equipped
with one single antenna, respectively. Besides, clus-
tered CoMP transmission system is studied in this
paper, by focusing on one particular cluster in which
L RRUs jointly transmit data to each UE, as shown in
Figure 2.
The smallest time unit of resource scheduling is viewed

as a time interval [24,25]. Consider a block fading chan-
nel model where the channel state remains static within
a time interval but becomes independent across different
time intervals. At each time interval, the energy arrived
at each RRU is collected by energy harvester and stored
in the battery before it is used for signal transmission, cf.
Figure 3.
The transmission scheduling over a finite transmission

period is considered. It is assumed that there are M + 1
time intervals during the transmission period [ 0,T) and
each with the same length, denoted by si = T

M+1 ,∀i ∈
{1, 2, . . . ,M + 1}, i.e., s1 = · · · = si = · · · = sM+1 and
M+1∑
i=1

si = T . El,0 denotes the initial energy available

in the battery of RRU l at time instant t0. At time
instants {t1, t2, . . . , tM}, energy arrives at RRU l in amounts{
El,1,El,2, . . . ,El,M

}
, as shown in Figure 4, and can be

described as

El,i =
{
Eli , if Eli units of energy arrive at time instant ti
0 , if no energy arrives at time instant ti

(1)
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Figure 1 A downlink transmission system under the green distributed BS infrastructure with three RRUs.

where i ∈ {1, 2, . . . ,M}. Eli denotes the arrived energy
of RRU l at time instant ti and can be predicted by
using renewable power prediction model, e.g., Takagi-
Sugeno-Kang (TSK) model [26] and fuzzy inference
method [27].

3 Formulation of transmission scheduling
problems

In this section, we formulate the transmission schedul-
ing problems for REH enabled network under CoMP
transmission. We first formulate an offline transmis-

sion scheduling problem with the assumption that prior
knowledge about CSI is available. With consideration of
practical constraint of limited pre-knowledge about CSI,
we further formulate an online transmission scheduling
problem by making an extension of the offline transmis-
sion scheduling problem.

3.1 Formulation of offline transmission scheduling
problem

Each UE receives bits from L RRUs which cooperate
with each other. Thus, with perfect signal phase syn-

Figure 2 A L-RRU clustered CoMP transmission scenario with N sub-channels. SC denotes the sub-channel.
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Figure 3 RRU is powered by hybrid energy source including on-grid energy source and REH system.

chronization, the achievable rate on sub-channel n,∀n ∈
{1, 2, . . . ,N} at the ith time interval is given by

Rn,i( pn,l,i) = log2

⎛⎝1 +
( L∑

l=1
γn,l,i

√pn,l,i

)2⎞⎠ . (2)

In (2), γ 2
n,l,i = Gn,l,i|hn,l,i|2/σ 2 denotes the CNR of RRU

l on sub-channel n at the ith time interval. Gn,l,i is the
large-scale path-loss from RRU l on sub-channel n at the
ith time interval and defined by Gn,l,i ∝

(
dn,l,i/dREF

)−α

where dn,l,i and dREF are the distances between the UE
allocated to sub-channel n and the RRU l at the ith time
interval and the reference distance, respectively. α is the
path-loss exponent valued between 2 and 6. |hn,l,i| stands
for the gain of the Rayleigh fading channel at the ith time
interval, modeled by i.i.d. complex Gaussian with unit
variance, i.e., hn,l,i ∼ NC(0, 1). σ 2 is the power of AWGN.
Without loss of generality, it is assumed that the noise
power is the same for all the sub-channels. pn,l,i is the
transmit power of RRU l on sub-channel n at the ith time
interval.

To maximize the number of bits transmitted during
the considered transmission period [ 0,T), the following
optimization problem is formulated.

max
pn,l,i

N∑
n=1

M+1∑
i=1

Rn,i(pn,l,i)si

s.t. C1 :
m∑
i=1

Econl,i ≥
( m∑

i=0
El,i − EC

)+
,

C2 :
m′∑
i=1

Econl,i ≤
m′−1∑
i=0

El,i,

(3)

where m ∈ {1, 2, . . . ,M} ,m′ ∈ {1, 2, . . . ,M + 1} and

l ∈ {1, 2, . . . , L}. Econl,i =
(

ξ
N∑

n=1
pn,l,i + PC

)
si denotes the

energy consumption of RRU l at the ith time interval. ξ is
defined as ξ = ε/η , where ε denotes the peak-to-average
power ratio (PAPR) and η denotes the PA efficiency. PC

Figure 4 The sequences of energy arrivals and time intervals.
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stands for the power consumption of other facilities in the
RRU. (·)+ is defined as (·)+ = max {0, ·}. Non-overflow
constraint C1 states that in order to prevent energy over-
flow in the battery of RRU l, ∀l ∈ {1, 2, . . . , L}, at least( m∑
i=0

El,i − EC
)+

amount of energy must be consumed

by the time the mth energy arrives. In other words, the
total amount of energy stored in the battery of each RRU
never exceeds the battery capacity EC . Causality con-
straint C2 implies that during every transmission period
[ 0, tm), ∀m ∈ {1, 2, . . . ,M + 1}, the energy that can be
drawn from the battery of RRU l to cover the energy
requirement at the PA is constrained to consume at most
the amount of available energy currently stored in the
battery [21]. Which means that even more energy will be
harvested in future time but can not be used to meet the
energy requirement currently.

3.2 Formulation of online transmission scheduling
problem

So far in our formulation, we have considered the offline
problem with the assumption that a priori knowledge
about CSI during the whole transmission period [ 0,T) is
available. However, in practice, it is difficult to obtain the
prior knowledge about CSI during the whole transmission
period [ 0,T) [28]. Fortunately, with channel prediction
technology which has been extensively investigated in the
literature [29,30], it is possible to obtain the predicted CSI
for a finite time period. Specifically, we further formulate
the transmission scheduling problem in an online manner
by assuming the knowledge about the predicted CSI for
each two consecutive time intervals.
The online problem is formulated in two steps, and

details are given as follows.

Step 1: With the help of Etot =
L∑

l=1

M+1∑
i=0

El,i, denot-

ing the total available energy of the system during the
whole transmission period [ 0,T), the objective function
of optimization problem (3) can be described as

max
N∑

n=1

M+1∑
i=1

Rn,i(pn,l,i)si

= max

N∑
n=1

M+1∑
i=1

Rn,i(pn,l,i)si

Etot
· Etot

= max UEE · Etot ,

(4)

where UEE denotes average energy efficiency, mea-
sured in bit/Joule. Hence, with the prior knowledge
about CSI during the whole transmission period [ 0,T),
to maximize the total number of transmitted bits

is to maximize the average energy efficiency of the
system.
Step 2: We assume that the knowledge about the pre-

dicted CSI during the time period [ tk−1, tk+1),∀k ∈
{1, 2, . . . ,M}, is available, i.e., the kth and k + 1th time
intervals. Therefore, based on Step 1, for any transmission
period [ 0, tk+1), ∀k ∈ {1, 2, . . . ,M}, it is reason-
able to regard the average energy efficiency maximiza-
tion problem during [ 0, tk+1) with predicted CSI during
[ tk−1, tk+1) as the transmission scheduling target, which
can be formulated as

max
p̂n,l,i

N∑
n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si

L∑
l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i

s.t. C3 :
k−1∑
i=1

E
′
l,i +

k+1∑
i=k

Econl,i ≥
⎛⎝k+1∑

i=0
El,i − EC

⎞⎠+
,

C4 :
k−1∑
i=1

E
′
l,i +

u∑
i=k

Econl,i ≤
u−1∑
i=0

El,i.

(5)

In (5), n ∈ {1, 2, . . . ,N}, l ∈ {1, 2, . . . , L} and
u ∈ {k, k + 1}. B′

n,i is the bits transmitted on sub-
channel n at the ith time interval and given by B′

n,i =

log2

⎛⎝1 +
(

L∑
l=1

γn,l,i
√
p̂n,l,i

)2
⎞⎠ si, where p̂n,l,i is the trans-

mit power of RRU l on sub-channel n at the ith time inter-

val. E′
l,i =

(
ξ

N∑
n=1

p̂n,l,i + PC
)
si denotes the energy con-

sumed by RRU l at the ith time interval.
{
B′
n,i

}
and

{
E′
l,i

}
are constant sequences which have been determined by
resolving the above optimization problem during the
transmission period [ 0, ti+1), ∀i ∈ {1, 2, . . . , k − 1}.
Note that in (5),

k−1∑
i=1

B′
n,i and

k−1∑
i=1

E′
l,i are equal to zero when

k = 1 for ∀n.
The transmission scheduling with limited pre-

knowledge about CSI is obtained by solving (5) for each
two consecutive time intervals, as is shown in Figure 5.
The grey part denotes the transmission period during
which the bits can be transmitted, and the consumed
energy for each of the time intervals has been determined,
i.e., the transmission scheduling has been determined.
The time period framed by the red box denotes the time
intervals at which the transmission scheduling is about to
be determined with predicted CSI at the current and the
next time intervals.
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Figure 5 A graphic explaining the online transmission scheduling problem.

4 Offline solution and joint transmission and
energy scheduling algorithm

The offline optimization problem (3) can be proved to be
concave with the composition rules of concavity and the
first order condition [31], with details as follows.

Proof: Making D
({
pn,l,i

}) =
N∑

n=1

M+1∑
i=1

Rn,i(pn,l,i)si =
N∑

n=1

M+1∑
i=1

Dn,isi where

Dn,i= log2

⎛⎝1 +
( L∑

l=1
γn,l,i

√pn,l,i

)2⎞⎠

= log2

⎛⎝1+
L∑

l=1
γ 2
n,l,ipn,l,i+

L∑
l=1

∑
k 
=l

γn,l,iγn,k,i
√pn,l,ipn,k,i

⎞⎠.
(6)

Since D
({
pn,l,i

})
is a linear combination of Dn,i,

D
({
pn,l,i

})
is concave if Dn,i is concave.

Making G = log2(·), fn,i =
L∑

l=1
γ 2
n,l,ipn,l,i and gn,i =

L∑
l=1

∑
k 
=l

γn,l,iγn,k,i
√pn,l,ipn,k,i, then Dn,i can be written as

Dn,i = G(1 + fn,i + gn,i), (7)

where n ∈ {1, 2, . . . ,N} and i ∈ {1, 2, . . . ,M + 1},
respectively.
Since log2(·) is concave and non-decreasing, and fn,i is

linear, Dn,i is concave if gn,i is concave according to the
composition rules of convexity [31]. The concavity of gn,i
is verified with the first order condition [31].

Making x1 =
[
px1k,1,i, p

x1
k,2,i, . . . , p

x1
k,L,i,

]T
and x2 =[

px2k,1,i, p
x2
k,2,i, . . . , p

x2
k,L,i,

]T
, then we have

gn,i(x1) − gn,i(x2) − ∇gn,i(x2)T (x1−x2)

=
∑
k 
=l

⎛⎜⎜⎜⎜⎝
√
px1n,l,ip

x1
n,k,i − px1n,l,i

√
px2n,k,i
px2n,l,i

−px1n,l,i

√
px2n,l,i
px2n,k,i

⎞⎟⎟⎟⎟⎠ γn,l,iγn,k,i

= −
∑
k 
=l

⎛⎜⎜⎜⎝
√
px1n,l,i

(
px2n,k,i
px2n,l,i

) 1
4

−
√
px1n,l,i

(
px2n,l,i
px2n,k,i

) 1
4

⎞⎟⎟⎟⎠
2

γn,l,iγn,k,i ≤ 0,

(8)

i.e. gn,i(x1) − gn,i(x2) ≤ ∇gn,i(x2)T (x1−x2) .
Hence, gn,i is concave and consequently, D

({
pn,l,i

})
is

concave.
Therefore, we can solve the maximization problem (3)

with dual decomposition. Upon rearranging terms, the
Lagrangian associated with the problem (3) can be written
as

L
(
ςl,m,μl,m′ , pn,l,i

)
=

L∑
l=1

M∑
m=1

ςl,m

( m∑
i=1

Econl,i −
( m∑

i=0
El,i − EC

)+)

+
L∑

l=1

M+1∑
m′=1

μl,m′

⎛⎝m′−1∑
i=0

El,i −
m′∑
i=1

Econl,i

⎞⎠
+

N∑
n=1

M+1∑
i=1

Rn,i(pn,l,i)si

(9)

where {ςl,m} and {μl,m′ } denote the Lagrange multi-
plier matrices associated with constraints C1 and C2,
respectively.
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Thus, the dual problem is given by

min
ςl,m,μl,m′≥0

max
pn,l,i

L(ςl,m,μl,m′ , pn,l,i). (10)

Making the derivative of L(ςl,m,μl,m′ , pn,l,i) in (9)
respecting to pn,l,i equal to zero, we obtain

∂L(ςl,m,μl,m′ ,pn,l,i)
∂pn,l,i = siWn,iγn,l,i√pn,l,i ln 2 − Kl,iξ si = 0, (11)

where

Wn,i =

L∑
g=1

γn,g,i
√pn,g,i

1 +
(

L∑
g=1

γn,g,i
√pn,g,i

)2 , (12)

and

Kl,i =
M+1∑
m′=i

μl,m′ −
M∑
m=i

ςl,m. (13)

Define ϕn,i = {
l|pn,l,i > 0, l = 1, 2, . . . , L

}
, ∀n ∈

{1, 2, . . . ,N} as the set of RRUs which have the positive
transmit power on sub-channel n at the ith time interval.
According to (11), there is

γn,l1,i
Kl1,i

√pn,l1,i
= · · · = γn,lϑ ,i

Klϑ ,i
√pn,lϑ ,i

= · · · = γn,lLn ,i

KlLn ,i
√pn,lLn ,i

= ξ ln 2
Wn,i

,
(14)

where ϑ ∈ {1, 2, . . . , Ln} and l1, . . . , lLn ∈ ϕn,i. Ln = |ϕn,i|
is the size of ϕn,i. Therefore, pn,lϑ ,i can be derived as

√pn,lϑ ,i = γn,lϑ ,i
γn,l1,i

· Kl1,i
Klϑ ,i

· √pn,l1,i, (15)

where Kl1,i · γn,lϑ ,i can be viewed as the weighted CNR of
RRU lϑ .
Substituting (15) into (11) and (12), and making pn,l,i =

0, ∀l /∈ ϕn,i, the optimal solution of (3) can be expressed as

p∗
n,l,i =

⎧⎪⎪⎨⎪⎪⎩
1

Hn,l,iK2
l,i

⎛⎝∑g∈ϕ∗
n,i

γ 2n,g,i
Kg,i

ξ ln 2 − 1

⎞⎠+

, l ∈ ϕ∗
n,i

0 , l /∈ ϕ∗
n,i

(16)

where ϕ∗
n,i =

{
l|p∗

n,l,i > 0, l = 1, 2, . . . , L
}
and

Hn,l,i =

(∑
g∈ϕ∗

n,i

γ 2
n,g,i
Kg,i

)2

γ 2
n,l,i

. (17)

According to (16), the optimal ϕ∗
n,i need to be selected,

which may need to search over 2L cases for each time
interval. However, we will prove in following that there are
only two possible cases for ϕ∗

n,i. To describe our theory,
two lemmas are first given as follows.

Lemma 1: The solution satisfying (16) with all p∗
n,l,i >

0, i.e., ϕ∗
n,i = {1, 2, . . . , L}, is an extreme point solution.

Moreover, it is also the optimal solution of (3), if exists,
due to the concavity of the objective function in (3).

Lemma 2: The solutions satisfying (16) with at least one
p∗
n,l,i = 0, i.e., ϕ∗

n,i ⊂ {1, 2, . . . , L}, are boundary point solu-
tions. When the extreme point is not feasible, the optimal
solution must be one of these solutions.
To solve the optimization problem (3), it is natural that

to first check whether the extreme point is feasible. If not,
then check each boundary point solution.
With the above two lemmas, the following theorem is

provided.

Theorem 1: If the extreme point solution does not exist,
then the feasible solution of (3) must be the solution with
all p∗

n,l,i = 0, i.e., ϕ∗
n,i = ∅.

Proof: According to (16), if the extreme point solution
does not exist, there is

p∗
n,l,i < 0 ⇔

∑
g∈ϕ∗

n,i

γ 2
n,g,i

Kg,i
< ξ ln 2, (18)

where ϕ∗
n,i = {1, 2, . . . , L}.

Supposing there exist a boundary point solution
{
p′
n,l,i

}
satisfying (16) with ϕ′

n,i =
{
l|p′

n,l,i > 0, l = 1, 2, . . . , L
}


=
∅ and ϕ′

n,i ⊂ ϕ∗
n,i, then

∑
g∈ϕ′

n,i

γ 2
n,g,i

Kg,i
<
∑

g∈ϕ∗
n,i

γ 2
n,g,i

Kg,i
<ξ ln 2 ⇔ p′

n,l,i<0, l ∈ ϕ′
n,i

(19)

i.e., the solution
{
p′
n,l,i

}
is not feasible. Hence, except the

solution with p∗
n,l,i = 0 and ϕ∗

n,i = ∅, none of the boundary
point solutions is feasible.
Therefore, for the optimal solution of (3) in (16), ϕ∗

n,i
equals either {1, 2, . . . , L} or ∅. The optimal solution of (3)
can be reformed as

p∗
n,l,i = 1

Hn,l,iK2
l,i

⎛⎜⎜⎜⎝
L∑

l=1

γ 2
n,l,i
Kl,i

ξ ln 2
− 1

⎞⎟⎟⎟⎠
+

, (20)

where ∀n ∈ {1, 2, . . . ,N}, ∀l ∈ {1, 2, . . . , L} and ∀i ∈
{1, 2, . . . ,M + 1}.



Wang et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:97 Page 9 of 16

Table 1 Simulation parameters

Simulation parameter Value

Number of RRUs L 2

Number of sub-channels N 12

Number of time intervalsM + 1 10

Length of each time interval si (s) 1

Battery capacity EC (J) 300

Static circuit power consumption PC (dBm) 40

Power amplifier efficiency η 0.3

Peak-to-average power ratio ε (dB) 12

Path-loss exponent α 4

Noise power σ 2 (dBm) −128

Reference distance dREF (m) 35

The gradient update equations for {ςl,m} and {μl,m′ } are
given as

ςυ+1
l,m =

(
ςυ
l,m − κυ

1

( m∑
i=1

Econl,i −
( m∑
i=0

El,i − EC
)+ ))+

,

(21)

μυ+1
l,m′ =

(
μυ
l,m′ − κυ

2

(
m′−1∑
i=0

El,i −
m′∑
i=1

Econl,i

))+
, (22)

where l ∈ {1, 2, . . . , L}; m ∈ {1, 2, . . . ,M}; m′ ∈
{1, 2, . . . ,M + 1}; υ is the iteration number; κυ

1 and κυ
2 are

the sequences of scalar step size.

5 Online solution and joint transmission and
energy scheduling algorithm

The optimization problem in (5) is a nonlinear frac-
tional programming problem [30] and can be associ-

ated with the following parametric programming (PP)
problem.

max
p̂n,l,i

⎛⎝⎛⎝ N∑
n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si

⎞⎠
− q

⎛⎝ L∑
l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i

⎞⎠⎞⎠ .

(23)

In (23), q ∈ R is referred as a parameter which determines
the relative weight of the total energy consumption of sys-
tem and can be intuitively interpreted as the overhead
caused by energy consumption [32].
We denote the optimal solution p̂n,l,i in (23) as p̂∗

n,l,i
with a fixed q. According to Dinkelbach’s theory [33],

when
N∑

n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si is concave, and

L∑
l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i is convex, the p̂∗
n,l,i is also optimal

for (5) if, and only if,
N∑

n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂∗
n,l,i
)
si

− q

⎛⎝ L∑
l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i

⎞⎠ = 0.

(24)

and the corresponding q denotes the optimal average
energy efficiency in (5).
Therefore, the Dinkelbach’s theory indicates a possible

method to solve the problem (5). For the transmission
period [ 0, tk+1),

{
B′
n,i
}
and

{
E′
l,i

}
, ∀i ∈ {1, 2, . . . , k − 1},

are constant sequences mentioned earlier. The proof of

Figure 6 Accumulated energy consumption versus transmission time.
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Figure 7 Energy utilization efficiency versus transmission time.

concavity of
N∑

n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si is similar to the proof

of concavity of the objective function of offline problem.
k+1∑
i=k

Econl,i is a linear function of p̂n,l,i, which satisfies the

convexity. Hence, the primal problem in (5) is equivalent
with the following optimization problem.

max
p̂n,l,i

⎛⎝ N∑
n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si

− q

⎛⎝ L∑
l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i

⎞⎠⎞⎠
s.t. C3, C4.

(25)

The Lagrangian of (25) is given by

L
(
ρl,ψl,u, p̂n,l,i

)
=

L∑
l=1

ρl

⎛⎝k−1∑
i=1

E′
l,i +

k+1∑
i=k

Econl,i −
⎛⎝k+1∑

i=0
El,i − EC

⎞⎠+⎞⎠
+

L∑
l=1

k+1∑
u=k

ψl,u

⎛⎝u−1∑
i=0

El,i −
⎛⎝k−1∑

i=1
E′
l,i +

u∑
i=k

Econl,i

⎞⎠⎞⎠
+

N∑
n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si

− q

⎛⎝ L∑
l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i

⎞⎠ ,

(26)

Figure 8 Transmitted bits versus transmission time.
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where {ρl} and
{
ψl,u
}
denote the Lagrange multiplier

vector and matrix associated with constraint C3 and con-
straint C4, respectively.
Thus, the dual optimization problem is given by

min
ρl ,ψl,u≥0

max
p̂n,l,i

L
(
ρl,ψl,u, p̂n,l,i

)
. (27)

By using dual decomposition and following a similar
approach as in (11) - (20), the optimal solution of (5) with
a fixed q can be described as

p̂∗
n,l,i = 1

Hn,l,iK
2
l,i

⎛⎜⎜⎜⎝
L∑

l=1

γ 2
n,l,i
Kl,i

ξ ln 2
− 1

⎞⎟⎟⎟⎠
+

, (28)

where ∀n ∈ {1, 2, . . . ,N}, ∀l ∈ {1, 2, . . . , L} and ∀i ∈ {k, k+
1}. Kl,i is given by

Kl,i =
⎧⎨⎩

k+1∑
u=k

ψl,u − ρl + q, i = k

ψl,k+1 + q . i = k + 1
(29)

and Hn,l,i is described as

Hn,l,i =

(
L∑

g=1

γ 2
n,g,i
Kg,i

)2

γ 2
n,l,i

. (30)

Thus, the power allocated at the kth time interval for
signal transmission of RRU l on sub-channel n is deter-
mined by p̂∗

n,l,k =
{̂
p∗
n,l,i|n ∈ {1, 2, . . . ,N}, l ∈ {1, 2, . . . , L} ,

i = k
}
.

The gradient update equations for {ρl} and
{
ψl,u
}
are

given as

ρυ+1
l =

⎛⎝ρυ
l −κυ

3

⎛⎝k−1∑
i=1

E
′
l,i+

k+1∑
i=k

Econl,i −
⎛⎝k+1∑

i=0
El,i−EC

⎞⎠+⎞⎠⎞⎠+

,

(31)

ψυ+1
l,u =

⎛⎝ψυ
l,u − κυ

4

⎛⎝u−1∑
i=0

El,i −
k−1∑
i=1

E
′
l,i −

u∑
i=k

Econl,i

⎞⎠⎞⎠+
,

(32)

where l ∈ {1, 2, . . . , L}; u ∈ {k, k + 1}; υ is the iteration
number; κυ

3 and κυ
4 are the sequences of scalar step size.

The proposed offline and online transmission schedul-
ing algorithms are summarized in Algorithm 1 and
Algorithm 2, respectively. The proofs of convergence of
proposed offline and online algorithms are similar to
Appendix B in [34].

Algorithm 1: Iterative algorithm for offline transmis-
sion scheduling

1: Initialize: Select tolerance �,
{
ςυ
m
}
and

{
μυ

m′
}
,

where υ = 0;
2: Repeat
3: Obtain the solution

{
pυ
n,l,i

}
of (3) with (20) and

obtain
{
ςυ+1
m

}
and

{
μυ+1
m′
}
with (21) and (22),

respectively;
4: υ = υ + 1;
5: Until
|

N∑
n=1

M+1∑
i=1

Rυ
n,i(pn,l,i)si −

N∑
n=1

M+1∑
i=1

Rυ−1
n,i (pn,l,i)si| < �.

6: Return
{
p∗
n,l,i

}
=
{
pυ−1
n,l,i

}

Algorithm 2: Iterative algorithm for online transmis-
sion scheduling
1: Initialize: Select tolerance � and q = qinitial;
2: Repeat
3: Solve the problem in (5) for a given q with (28) - (32)
and obtain the transmission scheduling scheme

{̂
pn,l,i

}
;

4: Obtain Btr =
N∑

n=1

k−1∑
i=1

B′
n,i +

N∑
n=1

k+1∑
i=k

Rn,i
(
p̂n,l,i

)
si

and Econ =
L∑

l=1

k−1∑
i=1

E′
l,i +

L∑
l=1

k+1∑
i=k

Econl,i ;

5: If
∣∣∣q − Btr

Eon
∣∣∣ < � then

6: Return
{̂
p∗
n,l,i

}
= {̂pn,l,i}

7: Else
8: Update q with q = Btr

Eon ;
9: Until

∣∣∣q − Btr
Eon
∣∣∣ < �.

6 Performance evaluation and analysis
In this section, the performance of the proposed transmis-
sion scheduling algorithms are evaluated in a determin-
istic energy arrival sequence setting and compared with
single RRU transmission (SRT) algorithms with a priori
knowledge and limited pre-knowledge about CSI. Besides,
we also compare the proposed online algorithm with the
Markov decision process (MDP)-based algorithm [35]. It
is assumed that energy arrives at time t =[ 1, 2, 3, . . . , 9]s
with different amount for each RRU and the total trans-
mission time T = 10 s. The simulation parameters
obtained from [16,21] are listed in Table 1.
We first show the influence that the non-overflow and

the causality constraints impose on transmission schedul-
ing. The energy consumption line versus transmission
time for the proposed algorithms are given in Figure 6.
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Figure 9 Transmit power allocation versus weighted CNR.

The upper curve in Figure 6 represents the total energy
arrived for each RRU, and the lower curve is obtained
by subtracting the battery capacity EC from the upper
curve. The non-overflow and the causality constraints in
(3) and (5) impose the energy consumption line to remain
above the lower curve as well as below the upper curve.
At the ith time interval, the maximum energy consump-
tion is limited by the total energy arrived before time
instant ti. Besides, it is also limited by the channel state,
e.g., the slope of the energy consumption curve of the pro-
posed offline algorithm for RRU 2 in [ 1, 2)s is larger than
in [ 0, 1)s, implying that the relatively bad channel state
during [ 0, 1)s makes more energy reserve for future use
when the channel state is better. What is more, it can be
observed that both the proposed offline algorithm and the

proposed online algorithm strictly satisfy the causality and
non-overflow constraints for each RRU.
We define the energy utilization efficiency as the ratio

of the energy consumed for transmission to the currently
available energy. As shown in Figure 7, all algorithms
achieve high energy utilization efficiency with the mini-
mumof 80% and reach 100% at the end of the transmission
period. This reason is that, to maximize the total number
of transmitted bits, all algorithms are trying to make the
best of the available energy. It can also be obtained that
the proposed algorithms achieve higher energy utiliza-
tion efficiency than the algorithms under SRT. It is shown
that the maximum difference value between the proposed
offline algorithm and the algorithm under SRT with a
priori knowledge about CSI is 4.3% and the maximum

Figure 10 Energy efficiency versus transmission time.
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Figure 11 Transmitted bits versus number of sub-channels.

difference value between the proposed online algorithm
and the algorithm under SRT with limited pre-knowledge
about CSI is 5.8%.
Figure 8 depicts the number of bits transmitted dur-

ing [ 0,T) versus transmission time. It can be observed
that the proposed online algorithm has a performance
close to that of the proposed offline algorithm. The gap
between them is no more than 69 bits which brought by
the priori knowledge about CSI in the assumption of the
offline algorithm. It can be also observed that, the gap
between the proposed offline algorithm and the proposed
online algorithm is more stable than the gap among the

algorithms under SRT. This phenomenon is due to that the
SRTs are more easily influenced by channel conditions. In
other words, the diversity of channel conditions in CoMP
transmission can be explored to enhance the system per-
formance. This analysis can also be verified by observing
the slope variation trend of the transmitted bits curve
which indicates the relationship between the data rate and
the channel state at each time interval.
Figure 9 demonstrates a snapshot of the power distri-

bution across sub-channels and RRUs for the proposed
algorithms at the time intervals i = 1 and i = 2. It
can be observed that the larger the sum of the weighted

Figure 12 Average number of transmitted bits versus energy arrival rate.
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Figure 13 Average energy efficiency versus energy arrival rate.

CNRs from both of the RRUs is, the more the sum of
the transmit power on this sub-channel is. Note that, for
each sub-channel, the larger the weighted CNR from RRU
is, the more the transmit power from the same RRU is.
This is due to the fact that at the ith time interval, for
sub-channel n, the transmit power from each RRU is pro-
portional to the ratio of weighted CNR from the same
RRU, as described in (15).
Figure 10 shows the energy efficiency at each time

interval versus transmission time and Figure 11 shows
the number of transmitted bits versus number of sub-
channels. It can be observed that CoMP transmission not
only achieves higher energy efficiency but transmits more
bits than SRTs which prove again that the CoMP transmis-
sion is helped for achieving a better system performance.
Besides, it can be observed that the larger the number
of sub-channels is, the more the bits are transmitted. For
instance, compared with four sub-channels, more bits are
transmitted under the condition of 18 sub-channels, with
increments of 1,570 bits and 1,530 bits for the proposed
offline algorithm and the proposed online algorithm,
respectively.
The statistical performances of the proposed algorithms

are illustrated in the following two figures and com-
pared with the MDP-based algorithm with different num-
ber of battery levels, denoted as z, which determines
the size of the action space. Figure 12 shows the aver-
age number of transmitted bits, which are calculated

as
N∑

n=1

M+1∑
i=1

Rn,i
(
p∗
n,l,i

)
si/T and

N∑
n=1

M+1∑
i=1

B′
n,i

(
p̂∗
n,l,i

)
/T for

the proposed offline algorithm and the online algorithm,
respectively. It can be observed that the performance of
the proposed online algorithm approaches the proposed
offline algorithm and especially in the low energy arrival

rate region. This is because in this case, the transmission
scheduling is limited to the amount of available energy
which can be used for transmission, and knowledge about
the future CSI in the offline algorithm is less valuable
for a transmission scheduling purpose. While in the high
energy arrival rate region, the high energy arrival rate con-
verts the battery into a continuous energy source. As a
result, the influence of knowledge about the future CSI in
the offline algorithm becomes significant.
The average energy efficiency of the proposed offline

algorithm and the online algorithm is obtained by

si
N∑

n=1

M+1∑
i=1

Rn,i
(
p∗
n,l,i

)
/

L∑
l=1

M+1∑
i=1

Econl,i

(
p∗
n,l,i

)
and

N∑
n=1

M+1∑
i=1

B′
n,i

(̂
p∗
n,l,i

)
/

L∑
l=1

M+1∑
i=1

E′
l,i

(̂
p∗
n,l,i

)
, respectively, which are

provided in Figure 13 and compared with the MDP-
based algorithm with varied energy arrival rates. It can
be observed that the proposed offline/online algorithm
achieves similar average energy efficiency whether in the
low energy arrival rate region or in the high energy arrival
rate region. This is because both the offline and the online

Table 2 Comparisons of average energy efficiency,
average data rate, and reduced CO2 emissions of different
algorithms

I1a I2b I3c

Offline under CoMP 0.71 109.06 3.36

Online under CoMP 0.62 102.25 3.14

SRT with a priori knowledge about CSI 0.29 73.17 1.17

SRT with limited pre-knowledge about CSI 0.22 61.95 –

aI1 stands for average energy efficiency, measured in bit/J.
bI2 stands for average data rate, measured in bit/s.
cI3 stands for reduced CO2 emission, measured in × 10–4g/bit.
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algorithms are trying to make the best of the available
energy obtained during the transmission. What is more, it
can be seen from Figures 12 and 13 that the performance
of the MDP-based algorithm can be improved as the
number of battery level, z, increases. In addition, it can
also be obtained that the performance of the proposed
online algorithm outperforms the MDP-based algorithm,
due to the fact that the proposed online algorithm is
immune to the number of battery levels.
Table 2 lists the comparisons of the average energy

efficiency, average data rate, and CO2 emissions of the
proposed algorithms. With the latest estimates from
the International Energy Agency, each kWh of elec-
tricity coming from the electric grid produces roughly
386 g of CO2 [32]. Compared with the algorithm under
SRT (averaged over RRU1 and RRU2) with limited
pre-knowledge about CSI, for every bit transmitted, the
reduced CO2 emissions are 3.36 × 10−4 g, 3.14 × 10−4 g,
and 1.17 × 10−4 g for the proposed offline algorithm, the
proposed online algorithm, and the algorithm under SRT
with a priori knowledge about CSI, respectively.

7 Conclusions
In this paper, we propose a new REH enabled transmission
framework powered by hybrid energy sources includ-
ing on-grid energy source and off-grid renewable energy.
Based on the framework, the joint transmission and har-
vested energy scheduling algorithms are investigated for
the hybrid energy powered cellular transmission system
under CoMP transmission. Firstly, we formulate an opti-
mal offline transmission scheduling problem with a priori
knowledge about CSI. Considering practical constraint of
limited pre-knowledge about CSI, we further transform
the offline problem into an energy-aware energy-efficient
transmission problem. By extending convex optimization
method and non-linear fractional programming to the
offline problem and the online problem, respectively, we
design two joint transmission and energy scheduling algo-
rithms.Moreover, we prove that at each transmission time
interval during the finite transmission period, the trans-
mit power of each RRU is proportional to the weighted
CNR of each sub-channel. Numerical results show that
the performance of the proposed online algorithm is close
to that of the proposed offline algorithm and outperforms
the MDP-based algorithm. Besides, the proposed REH
enabled transmission framework not only reduces the
CO2 emissions but also improves the energy utilization
efficiency of renewable energy.
So far, the transmission scheduling problems have been

considered with the assumption that all data packets have
arrived at RRUs before transmissions begin. Interesting
topics for future work include investigating joint trans-
mission and harvested energy scheduling algorithm for
random data packets arrival scenario where data packets

arrive at arbitrary time instants during the course of trans-
mission and each packet contains an individual transmis-
sion constraint. As RRU cannot transmit the data that has
not arrived yet, the transmission algorithm is not only
subject to individual transmission delay constraint but
also to transmission causality constraint. The design of the
transmission scheduling algorithm becomes even more
challenging when taking into account the random charac-
teristics of data packet arrival time and transmission delay
requirement.
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