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Abstract

Recent advances in energy-harvesting (EH) technology have enabled the realization of wireless systems composed of
rechargeable devices. In this paper, we analyze the problem of maximizing the data transmission for the
point-to-point (P2P) wireless communication systems which the transmitter is able to harvest energy from ambient
environment. To be more general, we consider the EH optimal problem under the quasi-static frequency-selective
fading channel. Our optimization work also includes energy storage loss constraint of the battery; therefore, we apply
an efficient harvesting architecture, i.e., harvest-use-store (HUS), where the harvested energy is prioritized for use in
data transmission. To balance the energy stored in or extracted from the battery for maximization throughput with
the randomly arrival harvesting energy constraint, we first characterize the amazing properties of our optimal policy,
implying a double-threshold structure of the solution, then investigate a dynamic programming (DP)-based
double-layer optimal allocation policy. Further, we tend to analyze the online solution. First, the optimal policy is
provided by using the continuous time stochastic dynamic programming. Then, building on the intuition from the
optimal offline policy (i.e., double-threshold structure), a heuristic online policy is proposed, which is simple to be
implemented. Numerical results are presented to validate the theoretical analysis and to demonstrate the superior
performance over the existing counterparts in the previous literatures and show that the proposed online policies
track well to the optimal solution.

Keywords: Energy harvesting; Throughput maximization; Storage inefficiency; Harvest-use-store; Double threshold;
Dynamic programming

1 Introduction
Energy-harvesting (EH) technology has become an alter-
natively promising energy supplier to current battery-
powered communication networks, such as wireless
sensor networks, in order to extend the network lifetime
by harvesting ambient energy (solar, vibration, etc.) [1]. As
opposed to battery-limited devices that are subject only
to a power constraint or a sum energy constraint, EH
transmitters are, in addition, subject to energy-harvesting
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constraints, i.e., sporadic arrival of the harvested energy
in limited amounts performs a totally different energy
available profile in each block. Thus, it is critical to reop-
timize the transmission policy to adapt to the causality
constraint imposed on the use of the harvested energy.
Recent works on optimizing transmission policy with

an energy-harvesting transmitter have drawn great atten-
tions [2-8]. Ozel et al. [2] introduced two related
optimization problems in single-link fading channels: a)
maximization of data transmission (or throughput) within
a deadline T and b) minimization time of transmission
(or delay) by B bits of data is completed. Gong et al. [3]
considered joint energy-harvesting and grid power sup-
ply, formulating the problem of minimizing the power
grid consumption by completing the required data trans-
mission before a given deadline. Other communication
scenarios with EH ability include broadcast channel [4,5],
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multiple access channel [6], and two-hop networks [7,8].
Furthermore, note that battery imperfections are also key
factors of energy harvesting, leading to researchers to
focus on. Devillers and Gunduz [9] converged the influ-
ence of constant leakage rate and battery degradation over
time into the battery model. Tutuncuoglu and Yener [10]
studied the data maximization problem under finite bat-
tery capacity constraints.
All these contributions are made under flat fading chan-

nels; however, variations of the transmitter location within
a dense urban wireless environment lead to constantly
changing scattering scenarios, which in turn result in a
varying channel law. Thus, in this paper, we pay attention
tomore general cases, i.e., quasi-static frequency-selective
fading channels. Moreover, we focus on battery imperfec-
tion case which has not been involved in above papers,
i.e., energy loss during storage; therefore, we apply an
energy-efficient harvesting strategy, i.e., harvest-use-store
(HUS) [11] which puts the highest priority to usage, fol-
lowed by storage, contrary to harvest-store-use (HSU)
strategy, which leads to a server energy loss due to stor-
age dominated. Thus, in this paper, we study the problem
of throughput optimization for P2P system within a finite
block under various constraints regarding the EH profile,
quasi-static frequency-selective fading channels as well as
storage loss and propose a dynamic programming-based
double-layer allocation policy with non-causal energy and
fading information.We show that the optimal offline solu-
tion has a double-threshold structure. With this structure
property in mind, we further extend the results to causal
case and present an optimal online policy and a heuristic
one.
The remainder of the paper is organized as follows. We

provide the system model and formulate the problem in
Section 2. Optimal offline policy operating on HUS mode
is solved by investigating a dynamic programming (DP)-
based double-layer optimal allocation policy in Section 3,
followed by online policies in Section 4. Numerical results
are presented in Section 5 for performance comparison of
our optimal offline solution with various existing energy-

harvesting architectures. Also, we provide a thorough
numerical study of the proposed online policies under var-
ious algorithms and compare them to the offline policy.
Section 6 finishes the paper with concluding remarks.

2 Systemmodel and problem formulation
Consider a point-to-point wireless communication sys-
tem with an energy-harvesting transmitter wearing
a rechargeable battery which suffers storage loss, as
depicted in Figure 1. The energy comes from the ambi-
ent environment and harvested by the energy unit. Based
on the harvested energy pattern and energy loss during
storage, the transmitter operates in HUSmode, suggesting
that the decision device should optimize the scheduling
of the energy that stored in or drawn from the battery for
data transmission.
In our system, we will focus on an N-block transmis-

sion which starts from block 1 as shown in Figure 2. En
units of energy arrives at the beginning of block n, and
the time interval between two consecutive energy arrival
is defined as the transmission time �n. We assume that the
harvested energy increments and their arrival times can
be exactly known at the transmitter prior to the transmis-
sion (similar to [12]). Further, with the lemmas in [12], we
indicate that the transmit power must separately remain
constant within each block, due the rate function (i.e.,
r = (1/2) log (1 + p)) is concave in power. In what follows,
we assume the L-tap quasi-static frequency-selective fad-
ing channel in block n to be Turin model, as shown by:

hn(t) =
∑L

i=1
hn,iδ

(
t − τn,i

)
(1)

where hn,i and τn,i respectively denote the channel gain
and the delay at ith-tap in block n. Under the time-
invariant assumption, its discrete form is given by a
Toeplitz matrix (i.e., each descending diagonal from left
to right is constant) [13], which has a special eigenstruc-
ture H = U†�U . The � matrix is diagonal with diagonal
entries defined by the Fourier transform of hn(t). Based on

Figure 1 A HUS energy-harvesting communication system diagram.
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Figure 2 Transmission model with random energy arrivals. Energies arrive at the beginning of the block which are denoted as ◦. The
transmission starts from block 1.

this, the transmission over a frequency-selective channel
can be simplified to the M-subcarriers system by adding
a cyclic prefix of length L, as shown in [13]. The mth
channel component of block n, is defined as:

h̃n,m =
∑L

i=1
hn,iexp(−j2πmi/M) (2)

Now the transmission channel can be viewed as a col-
lection of parallel AWGN sub-channels, one for each
subcarrier m with the fading gains h̃n,m, n = 1, . . . ,N ,
m = 1, . . . ,M. We assume that h̃n,m remains unchanged
during a transmission block, i.e., block-fading mode.

2.1 Problem statement
The transmission rate in block n is then the sum rate
of all the sub-channnels, given by the mutual informa-
tion In = ∑

m In,m in bits per symbol. In general, we
assume that In,m is concave and increasing in pn,m, which
represents the power allocated to the subcarrier m of
block n. Consider a complex Gaussian channel with aver-
age signal power constraint pn,m with the channel gain
Hn,m = |h̃n,m|2 and the noise power is 1, the informa-
tion theoretically optimal channel coding scheme, which
employs randomly generated codes, achieves the channel
rate given by (as is well known in [14]):

In,m = 1
2
log
(
1 + pn,mHn,m

)
(3)

Hence, the total data transmission (i.e., throughput) over
N blocks for the P2P wireless communication is described
as:

C =
∑N

n=1
�n
2
∑M

m=1
log(1 + pn,mHn,m) (4)

To proceed on, we characterize the HUS strategy by the
battery modes as follows:

(a) Charging: when En >
∑M

m=1 pn,m�n, the transmitter
will use

∑M
m=1 pn,m�n amount of energy directly

from energy unit, and the battery will store the excess
energy En −∑M

m=1 pn,m�n which is denoted as Dn for
simplification.

(b) Discharging: when En <
∑M

m=1 pn,m�n, the
transmitter will use all the harvesting energy in
current block, and the battery replenishes the lacking

part
∑M

m=1 pn,m�n − En which is denoted as −Dn
correspondingly.

(c) Neutral: when En = ∑M
m=1 pn,m�n, specially, the

transmitter uses up all the harvested energy for
transmission without any operation to the battery.

Note that only fraction or none of the harvested energy
will be wasted in the presence of storage efficiency 0 <

ηB < 1 under HUSmode, more energy efficient than HSU
that all the harvested energy will suffer the energy loss,
accounting for it always stored the harvested energy in
a battery first before its subsequent use. With definition
[Di]+ = max(0,Di), therefore, the battery level at the end
of block n (i.e., the residual battery level), denoted here by
Bn, is given by:

Bn = ηB
∑n

i=1
[Di]+ −

∑n

i=1
[−Di]+ (5)

where ηB
∑n

i=1 [Di]+ and
∑n

i=1 [−Di]+ represent, respec-
tively, the energy stored in and taken out from the battery
at the end of block n. For simplicity and ease of analysis,
we assume that the initial battery level is zero (i.e., B0 = 0)
and has an infinite capacity.
Thus, our throughput maximization problem over N

transmission blocks can be expressed as:

(P1) C = max
pn,m≥0

N∑
n=1

�n

M∑
m=1

log(1 + pn,mHn,m) (6)

s. t. Bn = ηB
∑n

i=1
[Di]+ −

∑n

i=1
[−Di]+ ≥ 0,

∀n ∈ {1, 2, . . . ,N} (7)

BN = 0 (8)

where the battery level must not be negative at the end
of each block in order to supply sufficient energy for data
transmission. The equality constraint on BN , as shown
in Equation 8, is obvious since otherwise, we can always
increase the transmission data rate by increasing pn,m
without violating any other constraints in Equation 7.
Note that (P1) is not only the power allocation prob-
lem between blocks in the time domain but also the
power allocation of each subcarrier within the block in
the frequency domain. The former will affect the latter.
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Moreover, the non-linearity and non-differentiability of
the constraint conditions make the whole (P1) become
more difficult to solve. Thus, we start with the proper-
ties of the solution, and then we propose a DP-based
double-layer allocation algorithm to solve the problem.

3 Optimal offline policy for frequency selective
fading channel

We first employ the Lagrangian technique to investigate
the properties of the transmit power whereby to obtain an
intuitive insight into our optimization problem and then
introduce dynamic programming algorithm to achieve the
solution.

3.1 Solvability and properties of the solution
Theorem 1. The optimal solution to Problem (P1) has

the double-threshold structure, and the form is described
as follows:

p∗
k,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
ξk − (Hk,j)

−1]+ , Dk > 0

[
ρk − (Hk,j)

−1]+ , Dk < 0

[
σk − (Hk,j)

−1]+ , Dk = 0

(9)

where

ξk =
( N∑
n=k

λnηB

)−1

, ρk =
( N∑
n=k

λn

)−1

where ξk, ρk, and σk is the water level of charging, discharg-
ing, and neutral block, respectively. Specially, the water
level of neutral block can be obtained by maximizing the
rate of block k, with a total power constraint

∑M
m=1 pk,m =

Ek/�k (i.e., the harvesting power, derived from Dk = 0)
across the sub-channels, using the traditional water-filling
method.

Proof. The objective function (Equation 6) is a sum of
log functions and is, thus, concave with respect to the
power sequence. We can further show the convexity of
the constraint set defined by Equation 7 by the method of
induction. As such, our throughput maximization prob-
lem has a unique solution, according to the theory of
convex optimization. For notational simplicity, denote the
Lagrangian function for any λn ≥ 0 by:

L = C +
N∑

n=1
λn

(
ηB

n∑
i=1

[Di]+ −
n∑

i=1
[−Di]+

)
(10)

The Lagrangian function in Equation 10 is, in essence,
the summation of all the non-zero entries of a lower

triangularmatrix. DifferentiatingLwith respect to pk,j, we
obtain:

∂L
∂pk,j

= �kHk,j

1 + pk,jHk,j
+

N∑
n=k

λn
d
(
ηB[Dk]+ − [−Dk]+

)
dpk,j

(11)

To handle the non-linearity of the rectifier function
[Dk]+, we alternatively represent [Dk]+ in terms of the
signum function to yield [Dk]+ = (

Dk + Dksgn (Dk)
)
/2.

The Kuhn Tucker condition for the optimality of a power
allocation is as follows [14]:

∂L
∂pk,j

=
{= 0, if pk,j > 0

≤ 0, if pk,j = 0 (12)

which guarantees the constraint pk,j ≥ 0 is satisfied. Rec-
ognize that dsgn (x)/dx = 2δ (x), xδ (x) = 0, the optimal
power allocation can be described as below:

pk,j =
[[∑N

n=k
λn

{
(ηB + 1)

+ (ηB − 1) sgn (Dk)

}
/2
]−1

− Hk,j
−1
]+

(13)

To solve this equation for the optimal power, we iden-
tify three cases for the signum function, which will lead
to Equation 9. Particularly, when Dk = 0, which means
all the harvested energy of block k has been allocated to
the same block. Based on water-filling method in [13,14],
we know the maximum throughput will be obtained by
allocating the power σk , which is determined by:

M∑
j=1

[
(σk)

−1 − (Hk,j)
−1]+ = Ek/�k (14)

Above all, the main result in Equation 9 provides a basis
to investigate the properties of the optimal power allo-
cation policy for the new energy-harvesting system. This
theorem reveals more interesting properties in the opti-
mal power-allocation pattern, as summarized below. For
ease of description, we define some terms for subsequent
use.

Definition 1. A block that hits the zero battery level is
called a valley block or simply a valley. The blocks between
any two closest valleys constitute a hill segment.

A hill segment starting from block a and ending at s > a
is briefly denoted as HS(a, s), which means Ba−1 = Bs =
0. Now we can state the main properties of our problem.

Property 1. The subcarriers in the same block possess
the same water level.
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Proof. Since the water level is only related with the block
index k in Equation 9 rather than the subcarrier index j,
thus the water level in the same block is equal.

Property 2. Within a hill segment (e.g., HS(a, s)), all the
energy-charging blocks have the same water level, equal to
w+, whereas the energy-discharging blocks has the similar
property, which has a lower water level w−, where:

w+ =
( N∑

n=s
λnηB

)−1

= ξs

w− =
( N∑

n=s
λn

)−1

= ρs

Particular, the energy-neutral block k ∈ [a, s] has the
water level w0, which is determined by Equation 14. Here,
we always have w+ ≥ w0 ≥ w−.

Proof. Since Bk �= 0, we assert λk = 0, ∀k ∈
[a, s − 1], in accordance with the slackness conditions
λk
(
ηB
∑k

i=1 [Di]+ −∑k
i=1 [−Di]+

)
= 0. Thus, for Dk >

0 which corresponds to the battery state of energy charg-
ing, the water level, j = 1, 2, . . . ,M:

wk,j =
( N∑
n=k

λnηB

)−1

=
( N∑

n=s
λnηB

)−1

= w+.

Similarly for Dk < 0 which corresponds to the battery
state of energy discharging, we obtain:

wk,j =
( N∑
n=k

λn

)−1

=
( N∑

n=s
λn

)−1

= w−.

Then, consider block s with Bs = 0. The only possibility
for Bs = 0 is that block s is a discharging period and hence,
Ds < 0. It follows from Equation 9 that:

ws,j =
( N∑

n=s
λn

)−1

= w−.

Particular, when Dk = 0, which corresponds to the
battery state of energy neutral, we obtain:

wk,j =
( N∑
n=k

λn
{
(ηB + 1) + (ηB − 1) sgn (0)

}
/2
)−1

= w0 = σk

Since Dk = 0 means all the harvested energy of block
k has been allocated to the same block, the water level w0

is determined by Equation 14. Since 1 ≥ ηB ≥ 0, we can
easily know w+ ≥ w0 ≥ w−.

Property 3. The water levels of charging blocks, though
equal within a hill segment, is monotonically non-
decreasing from one hill segment to the next. The same
assertion is true for the discharging blocks.

Proof. Assuming there are M valley blocks, we denote
these blocks as V1,V2, . . . ,VM, and then respectively
denote w+

Vi
and w−

Vi
as the optimal water level of charg-

ing and discharging blocks within the hill segment
HS(Vi−1 + 1, Vi), yielding:

w+
Vi

=
⎛
⎝ N∑

n=Vi

λnηB

⎞
⎠−1

w−
Vi

=
⎛
⎝ N∑

n=Vi

λn

⎞
⎠−1

Since λn ≥ 0,Vi > Vi−1, thusw+ andw− monotonically
increase from one hill segment to the next.

These properties imply that:

1. Actually, within the block, the power allocation is
equivalent to the traditional water filling.

2. The water level has a close relationship with the
battery mode (i.e., charging Dk > 0, discharging
Dk < 0, neutral Dk = 0).

3. In order to maximize the total throughput, the
power management policy should balance the
tradeoff among the whole transmission process.
Thus, the energy may be transferred from current
block to the future to ensure the optimal benefit.
Also, on account of the causality constraint,
energy can not be used before its arrival. These
two aspects in turn prove the properties.

4. The main insight is that the optimal solution has
a double-threshold structure as shown in
Theorem 1.

All above leads to an intuitive understanding of our
optimal solution; based on this, we introduce dynamic
programming algorithm and form a double-layer alloca-
tion problem to obtain our optimal solution, which is
shown below.
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3.2 Dynamic programming
In this subsection, we develop a DP approach for our
throughput maximization problem. Recall that the battery
status of a block, say block n, depends on its charging and
discharging history up to the time n. Specifically, it follows
from Equation 5 that:

Bn =
n∑

i=1

(
ηB[Di]+ − [−Di]+

)

=
n−1∑
i=1

(
ηB[Di]+ − [−Di]+

)+ (
ηB[Dn]+ − [−Dn]+

)
= Bn−1 + αn (15)

where αn can be regarded as an operation of the bat-
tery (i.e., battery mode), which accords with the dynamic
programming model (i.e., basic discrete dynamic sys-
tem) [15]. Equation 15 is a basic discrete time dynamic
system, which can be regarded as an order-one Markov
process or more accurately random walk model. In what
follows, we introduce the first layer allocation which
characterizes how to allocate the power within block n
to achieve the maximum throughput in the frequency
domain:

(
First layer

)
CPn
n,M := �n

2

M∑
m=1

log
(
1 + pn,mHn,m

)
(16)

s.t. pn,m =
[
w − (

Hn,m
)−1
]+

,
M∑

m=1
pn,m = Pn (17)

where the water level w is determined by the argumentDn
based on Equation 9. Pn is the sum power which allocated
to the block n, and is actually a mapping relation with αn:

Pn =

⎧⎪⎨
⎪⎩

En− αn
ηB

�n
, αn ≥ 0, αn = ηBDn

En−αn
�n

, αn < 0, αn = Dn

(18)

Now, the benefit function is related to αn, and we can
rewriteCPn

n,M asCαn
n,M. Therefore, the maximum total bene-

fit is to find a series battery operation α1,α2 · · ·αN for the
N blocks which leads to our second layer allocation in the
time domain, as shown by:

(Second layer) max
α1,α2···αN

N∑
n=1

Cαn
n,M (19)

s.t. Bn = Bn−1 + αn ≥ 0, ∀n ∈ {1, 2, . . . ,N} (20)

The second layer allocation problem can be solved
by dynamic programming, which can be obtained by
recursively computing JN , · · · , J1 based on Bellman’s
equation [15]:

JN (BN−1) = max
αN=−BN−1

CαN
N ,M (21)

Jn (Bn−1) = max
−Bn−1≤αn≤ηBEn

{
Cαn
n,M + Jn+1 (Bn)

}
,

n = 1, 2, . . . , N − 1 (22)

where Bn is updated by Equation 15. Equation 22
denotes the optimal benefit of last N − n + 1
blocks, which describes the tradeoff between the cur-
rent rewards Cαn

n,M and the future rewards Jn+1 (Bn).
A battery operation is feasible if the energy con-
straints −Bn−1 ≤ αn ≤ ηBEn are satisfied for all
possible Bn−1, accounted for during block n the sys-
tem can at most store ηBEn amount of energy and
at most take Bn−1 amount of energy from the bat-
tery. Equation 21 denotes the optimal benefits for the
last block and the constraint (Equation 8) suggest-
ing that the corresponding battery operation should be
αN = −BN−1 for optimality evolved from any previ-
ous state BN−1. We compute Jn (Bn−1) as well as the
optimal battery operation policy αn = μn (Bn−1) for
every Bn−1, n ∈ {1, 2, . . . ,N}, where μn(Bn−1) is equiv-
alent to a mapping function which maps the given
Bn−1 to the optimal αn. Obviously, the search proce-
dure for the optimal battery operation α1, α2, . . . , αN
is the dynamic programming which starts with the last
period and proceeds backward in time [15]; thus, we
can obtain the optimal battery operation policy set{
μ∗
1 (B0) , μ∗

2 (B1) , . . . , μ∗
N (BN−1)

}
. Then, given the ini-

tial battery level B0 = 0 and the optimal battery
operations α∗

1 = μ∗
1 (0),α∗

2 = μ∗
2
(
α∗
1
)
, . . . , α∗

N =
μ∗
N

(∑N−1
n=1 α∗

n

)
can be obtained. Through the map-

ping relation (Equation 18), our optimal policy can be
solved. According to the analysis, we give Algorithm 1
to find the optimal power allocation and to make
the process more clearly. It is interesting to note
that the DP algorithm is similar, in principle, to the
Viterbi algorithm except that the former is a back-
ward operation, and thus, our algorithm enjoys the
same computational efficiency as the Viterbi algorithm.
The optimality can be proved by applying Bellman’s
equation [15].
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Algorithm 1 Optimal offline power allocation algorithm
in HUS mode for energy-harvesting wireless systems
Initialization:

Block size N , subcarrier numberM, energy arrival
and amount �n, En, channel information Hn which is
defined in the first paragraph in Section 4, for ∀n ∈
{1, 2, . . . ,N}.
Set B0 = 0, n = N and discretize each 0 ≤ Bn ≤
ηB
∑n

n=1 En into a sufficient number to make the
transition from state Bn to a future state Bn+1 possible,
provided that (Bn+1 − Bn) is a feasible input.

Iteration:
1: while n ≥ 1 do
2: Compute Jn with for all discretized Bn−1;
3: n ← n − 1;
4: end while

Output:
Optimal battery operation policy set

{
μ∗
1 (B0) ,

μ∗
2 (B1) , . . . , μ∗

N (BN−1)
}

Iteration:
5: while n ≤ N do
6: α∗

n = μ∗
n (Bn−1);

7: Bn = Bn−1 + α∗
n ;

8: n ← n + 1;
9: end while

Output:
The determined value of the optimal battery
operation for each block α∗

1 = μ∗
1 (0),α∗

2 =
μ∗
2
(
α∗
1
)
, . . . , α∗

N = μ∗
N

(∑N−1
n=1 α∗

n

)
, and the

corresponding battery level B1,B2 . . .BN .
Iteration:
10: while n ≥ 1 do
11: Calculate the optimal sum power P∗

n allocated
to block n using the corresponding relationship
between optimal control variables and allocated
powers from Equation 18;

12: Solve the first layer problem using Equations 16
and 17;

13: n ← n − 1;
14: end while
Output:

The optimal power allocation pn,m for subcarrierm in
block n;

4 Online policy
Previously, we solve the maximization problem non-
causally, which means it is necessary to know the realiza-
tion of the harvesting energy and the channel in advance
in order to determine the optimal transmission power.
However, such information may not be available in all cir-
cumstances. Thus, in this section, based on a benchmark
solution as well as insights provided in last section, we
will analyze the online scheduling with the assumption

that the transmitter only has the knowledge of the energy
amount of the current block and the probability den-
sity function of the harvesting energy and the channel
gains. We say that causal current block information is
available (i.e., sn) as future states are not a priori known.
Thus, this allows us to model and treat the unpredictable
nature of the wireless channel and harvesting environ-
ment. Let the accumulated channel states be Hn �(
Hn,1,Hn,2, . . . ,Hn,M

)
and thus denote the state sn =

(Hn,En,Bn−1), n ∈ {1, 2, . . .N}.We assume the initial state
s1 = (H1,E1,B0) to be always known at the transmitter.

4.1 Optimal online policy
The optimal solution is to decide the optimal battery oper-
ation αn for the block n. Hence, the optimization now
is becoming the expected mutual information summed
over a finite horizon of N blocks, by choosing a deter-
ministic battery operation policy from the set π =
{αn = μ (sn) ,∀sn, n = 1, 2, . . . ,N} based on the state sn.
Then, by applying Equation 18, we will obtain the opti-
mal power allocation for each subcarrier in each block.
This can be solved by the dynamic programming with the
only knowledge of the current block state. The detail is
described as follows.
Given the initial state s1 = (H1,E1,B0), the maximum

throughput is given by J1 (s1) which can be obtained
by recursively computing JN (sN ) , · · · , J1 (s1) based on
Bellman’s equation [15]:

JN (sN ) = max
αN=−BN−1

CαN
N ,M (23)

Jn (sn) = max
−Bn−1≤αn≤ηBEn

{
Cαn
n,M + Jn+1 (sn+1|sn)

}
,

(24)

for n = 1, 2, . . . , N − 1, where

Jn+1 (sn+1|sn)

= EEn+1,Hn+1

⎡
⎢⎣Jn+1

⎛
⎜⎝Hn+1,En+1,Bn−1 + αn︸ ︷︷ ︸

Bn

⎞
⎟⎠
∣∣∣∣∣∣∣

Hn,En,Bn−1,αn

⎤
⎥⎦ (25)

E(·) is a function that takes the expectation over the
distribution of the harvesting process and the fading
process. The optimal battery operation policy is denoted
as π∗ = {

α∗
n = μ∗

n (sn) ,∀sn, n = 1, 2, . . .N
}

and can be
solved iteratively. However, it is possible to further
decrease the dimension of the problem to make it more
tractable. For example, if the arrival process is Markovian
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or i.i.d., the past states do not provide any additional infor-
mation about the process. The optimality can be proved
by applying Bellman’s equation [15].

4.2 Structure online policy
In this subsection, based on the structure properties of
the offline optimal solution obtained, we give an intu-
itive understanding of the optimal solution. During the
hill segment HS(j,m), if Ek/lk ≥ ∑M

j=1 βk,j (i.e., charg-
ing), block k ∈ [

j, . . . ,m
]
is allocated with the water

level w+, or if Ek/lk ≤ ∑M
j=1 γk,j (i.e., discharging) block

k ∈ [j, . . . ,m] is allocated with the water level w−. Other-
wise, that is,

∑M
j=1 γk,j < Ek/lk <

∑M
j=1 βk,j (i.e., neutral),

block k ∈ [
j, . . . ,m

]
is allocated with power w0, where

βk,j = [
w+ − (Hk,j)

−1]+, γk,j = [
w− − (Hk,j)

−1]+. Hence,
we now proposed a heuristic online policy as follows,
based on the determination ofw+ andw−. Note that with-
out loss of the generality, we assume the energy arrival
duration is unit (i.e., �k = 1,∀k ∈ {1, 2, . . .N}).

p∗
k,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
w+ − (Hk,j)

−1]+ , Ek ≥
M∑
j=1

βk,j[
w− − (Hk,j)

−1]+ , Ek ≤
M∑
j=1

γk,j[
w0 − (Hk,j)

−1]+ , otherwise

where w0 can be obtained by traditional water-filling
method with the power constraint Ek . Assuming that the
distribution of the harvesting process is known as f (pE),
we propose finding fixed water levels w+ and w− that
simultaneously satisfy:

ηB

∫ ∞
∑M

j=1 βk,j

⎛
⎝pE −

M∑
j=1

βk,j

⎞
⎠f (pE) dpE

=
∫ ∑M

j=1 γk,j

0

⎛
⎝ M∑

j=1
γk,j − pE

⎞
⎠f (pE) dpE (26)

ηBw+ = w− (27)

Equation 26 provides long-term energy stability by
ensuring that the expected energy stored in and drawn
from the battery are equal. Equation 27 can be obtained
from Property 2. A more simple way to approximately
determine the water levels w+ and w− can be described as
follows:

ηB

⎛
⎝Ek −

M∑
j=1

βk,j

⎞
⎠ =

M∑
j=1

γk,j − Ek (28)

where only the knowledge of the current state is needed,
simplifying the computation due to there is unnecessary
to know the distribution of the energy-harvesting process.
For completeness, an implementation of the proposed
online policy algorithm is given in Algorithm 2.

Algorithm 2 Proposed online power allocation algorithm
in HUS mode for energy harvesting wireless systems
Initialization:

Block size N , subcarrier numberM, B0 = 0, n = 1;
Iteration:
1: while n ≤ N − 1 do
2: Compute w+ and w− with Equations 26 and 27 or

Equations 27 and 28 based on the method used;
3: Compute

∑M
j=1 βn,j and

∑M
j=1 γn,j;

4: if En ≥ ∑M
j=1 βn,j then

5: Bn = Bn−1 + ηB
(
En −∑M

j=1 βn,j
)
;

6: m = 1;
7: whilem ≤ M do
8: pn,m = [

w+ − (Hn,m)−1]+;
9: m ← m + 1;

10: end while
11: else if En ≤ ∑M

j=1 γn,j then
12: if Bn−1 ≤ ∑M

j=1 γn,j − En then
13: Find the water level wnew with the power

constraint En + Bn−1 using conventional
water-filling algorithm;

14: Update the water level w− = wnew;
15: Bn = 0;
16: m = 1;
17: whilem ≤ M do
18: pn,m = [

w− − (Hn,m)−1]+;
19: m ← m + 1;
20: end while
21: else
22: Bn = Bn−1 −

(∑M
j=1 γn,j − En

)
;

23: m = 1;
24: whilem ≤ M do
25: pn,m = [

w− − (Hn,m)−1]+;
26: m ← m + 1;
27: end while
28: end if
29: else
30: Find the water level w0 with the power constraint En

using conventional water-filling algorithm;
31: m = 1;
32: whilem ≤ M do
33: pn,m = [

w0 − (Hn,m)−1]+;
34: m ← m + 1;
35: end while
36: end if
37: n ← n + 1;
38: end while
39: Find the final block water level wfinal with the power

constraint En + Bn−1 using conventional water-filling
algorithm due to BN = 0 for optimality;

40: m = 1;
41: whilem ≤ M do
42: pn,m = [

wfinal − (Hn,m)−1]+;
43: m ← m + 1;
44: end while
Output:

The power allocation pn,m for each subcarrier in each
block.
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Figure 3Water-filling of frequency selective fading channel for inefficient energy-harvesting system. The block length N = 8.

5 Numerical results
In this section, we present the numerical results in order
to demonstrate the performance of our offline and online
policies.
We first give a pictorial view of the optimal offline

power allocation strategy for our HUS harvesting system
in Figure 3. The channel level, defined as the reciprocal
of channel gain, serves as the bottom of a vessel. Note
that there are two hill segments, i.e., HS(1, 4) andHS(5, 8).
We can see that the water levels of charging of blocks are
equal within hill segment and the same phenomenon to
the discharging blocks. Moreover, the water levels of dif-
ferent modes are respectively non-decreasing between hill
segments. In the second hill segment, note that w+, w−,
w0 satisfy the relationship w+ ≥ w0 ≥ w−. Particularly,
no power are allocated to the first subcarrier of block 1,
the third subcarrier of block 3, and the second subcarrier
of block 5 accounting for the fact that the corresponding
channel gain is so bad that the reciprocal of channel gain
exceeds the water level.
We compare the maximum throughput of our policy to

various harvesting architectures in Figure 4, where each

throughput point is obtained by averaging over 1,000 ran-
dom harvested energy data in Rayleigh fading of unit
power. We assume that there are a total of N = 6
blocks, for which harvested energy varies independently
from one block to another following the uniform dis-
tribution over the range [1, 8], symbolically denoted as
U (1, 8). Each block has a random duration uniformly
distributed as U (1, 4). We determine the HSU results
by using the optimal power policy developed in [12]
and taking into account the storage efficiency. HU (i.e.,
harvest-use) is the greedy policy which means imme-
diately using up the harvesting energy without storage.
It is observed from the figure that HUS mode always
outperforms its counterparts, regardless of the storage
efficiency. For very low storage efficiency less than 0.4,
the performance of HUS coincides with that of HU,
implying that no energy is stored, as shown in the left
subfigure. Specially, when ηB = 1, HSU achieves the
same performance as HUS does, as shown in the right
subfigure.
Figure 5 shows the average throughput achieved with

the optimal offline policy and the online policies. It is

Figure 4Maximum throughput of HU, HSU, and HUS versus the storage efficiency. The block length N = 6, Ek ∈ U (1, 8), lk ∈ U (1, 4).
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Figure 5 Average transmission throughput versus battery
efficiency for offline and online policies.

observed that either the proposed online with the deter-
mination of w+ and w− in Equation 26 or in Equation 28
performs significantly well in comparison with the online
optimal policy, while all remain notably close to the opti-
mal offline upper bound in the absence of non-causal
harvesting and fading information.

6 Conclusions
In this paper, we analyzed the problem of maximizing
the data transmission for the energy-harvesting wireless
communication systems in the frequency-selective fading
channel, which operates on HUS mode. We proposed a
DP-based double-layer policy and analyzed the properties
of the solution. It was shown that the optimal policy has
a double-threshold structure. Based on this, we further
provided an optimal online policy and a heuristic online
one. Numerical results perform superiorly over other
offline strategies with different energy-harvesting archi-
tectures and show that the proposed online policy per-
formed notably well, closely tracking the optimal online
policy.
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