
Tonami and Imoto ﻿
EURASIP Journal on Audio, Speech, and Music Processing          (2023) 2023:5  
https://doi.org/10.1186/s13636-022-00270-7

METHODOLOGY

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

EURASIP Journal on Audio,
Speech, and Music Processing

Sound event triage: detecting sound events 
considering priority of classes
Noriyuki Tonami1 and Keisuke Imoto2*    

Abstract 

We propose a new task for sound event detection (SED): sound event triage (SET). The goal of SET is to detect an arbi-
trary number of high-priority event classes while allowing misdetections of low-priority event classes where the prior-
ity is given for each event class. In conventional methods of SED for targeting a specific sound event class, it is only 
possible to give priority to a single event class. Moreover, the level of priority is not adjustable, i.e, the conventional 
methods can use only types of target event class such as one-hot vector, as inputs. To flexibly control much informa-
tion on the target event, the proposed SET exploits not only types of target sound but also the extent to which each 
target sound is detected with priority. To implement the detection of events with priority, we propose class-weighted 
training, in which loss functions and the network are stochastically weighted by the priority parameter of each class. 
As this is the first paper on SET, we particularly introduce an implementation of single target SET, which is a sub-
task of SET. The results of the experiments using the URBAN–SED dataset show that the proposed method of single 
target SET outperforms the conventional SED method by 8.70, 6.66, and 6.09 percentage points for “air_conditioner,” 
“car_horn,” and “street_music,” respectively, in terms of the intersection-based F-score. For the average score of classes, 
the proposed methods increase the intersection-based F-score by up to 3.37 percentage points compared with the 
conventional SED and other target-class-conditioned models.

Keywords  Sound event triage, Sound event detection, Loss-conditional training

1  Introduction
In our everyday life, humans utilize much information 
obtained from various environmental sounds [1]. The 
automatic analysis of environmental sounds will lead 
to the realization of many applications, e.g., anomalous 
sound detection systems [2], life-logging systems [3], sys-
tems for hard-of-hearing persons [4], systems for smart 
cars [5], and monitoring systems [6].

Sound event detection (SED) [7] is a major task in envi-
ronmental sound analysis, which identifies sound event 
classes (e.g., “dog barking,” “car passing by,” and “people 

walking”) with those time stamps. In conventional SED, 
many methods using the hidden Markov model (HMM) 
[8, 9] and non-negative matrix factorization (NMF) [10, 
11] have been proposed. Recently, numerous deep neu-
ral network (DNN)-based SED methods have been in 
developed. In DNN-based SED, the convolutional neural 
network (CNN) [12], recurrent neural network (RNN) 
[13], and convolutional bidirectional gated recurrent unit 
(CNN–BiGRU) [14] have been applied. Moreover, some 
studies have shown that the self-attention-based Trans-
former [15, 16] and Conformer [17] are useful for SED.

The target sounds to be analyzed depend on the user 
or application. In the analysis of environmental sounds, 
a method to target a specific class in sound event locali-
zation and detection (SELD) has been proposed [18]. For 
SED, target sound detection (TSD) has been proposed by 
Yang et al. [19], in which only the single target sound class 
is detected, where a reference audio signal or a one-hot 
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vector of the target sound is input to the TSD model. In 
SED, the goal is to generalize the performance of detect-
ing all sound events, i.e., the SED models are trained to 
equally detect all of the sound events in a dataset. The 
widely used objective function of SED, binary cross 
entropy, is equally weighted for each event class. In real 
environments, however, the detection priority for each 
event depends on the user or application. For example, 
when SED is used for a surveillance system, anomalous 
events such as “gunshot” or “baby crying” have to be pref-
erentially detected over other events. On the other hand, 
in the case of a life-logging system, a sound event “ket-
tle” or “footsteps” has to be more preferentially detected 
in addition to other events. The conventional TSD system 
is trained only once on many event types and allows the 
user to choose a target event to focus on during infer-
ence. However, its limitation is that the degree of interest 
cannot be controlled.

To tackle this problem, we propose a new SED task: 
sound event triage (SET). The goal of SET is to improve 
the performance of detecting an arbitrary number of 
high-priority sound event classes while allowing the per-
formance of detecting low-priority event classes to be 
compromised where the priority is given for each event 
class, that is, the triage. In Fig. 1, the concept of the SET 
task is illustrated. A SET system enables user-prefer-
ence sound event detection. The difference between the 

conventional methods for SED including TSD [19] and 
the SET task is whether the degree to which events are 
detected with priority can be set. Both SET and TSD 
models are trained once and select a class of interest. 
Furthermore, only SET models can control the degree 
of the class of interest, i.e., the priority, at an inference 
stage. For this first paper on SET, we design a network 
architecture for single target SET that is a subtask of SET, 
wherein the single event class is targeted with priority, 
and evaluate it in detail. We propose a method for single 
target SET where loss-conditional training [20] is utilized 
for detecting sound events with priority.

2 � Related works
In this section, we describe works related to the pro-
posed method. In particular, the section comprises 
three subsections: strongly supervised SED, the conven-
tional methods of environmental sound analysis using 
class-conditional techniques, and You Only Train Once 
(YOTO) [20], with which the arbitrary linear combina-
tion of loss weights for multiple tasks can be set with a 
single model.

2.1 � Strongly supervised SED
In strongly supervised SED, given a SED model f, model 
parameters � , an acoustic feature X , and a ground truth 
zn,t ∈ {0, 1} for a sound event n in time t, the SED model 

Fig. 1  Concept of SET task
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outputs the probability yn,t for the event n and time 
frame t:

In the training of the DNN-based SED model, to opti-
mize the model parameters � , the following binary 
cross-entropy (BCE) loss function is used:

where s(·) denotes the sigmoid function. N and T are the 
numbers of sound event classes and total time frames, 
respectively. In an inference stage of SED, s(yn,t) is bina-
rized with a predefined threshold to obtain detection 
results. As can be seen in Eq.  3, all sound events are 
equally weighted for generalizing the performance of 
detecting all sound events.

2.2 � Methods of environmental sound analysis 
for targeting a specific sound

In the analysis of environmental sounds, several meth-
ods considering user-guided or target-class-conditioned 
information have been proposed [18, 19]. In works 
related to SED, TSD [19] and class-conditioned SELD 
where information on target event classes or sounds is 
employed [18] have been studied. Yang et  al. [19] have 
proposed the TSD task derived from SED, which detects 
target sound events with a one-hot vector of the target 
event class. In the TSD network, a reference signal or a 
one-hot vector of the target event class is input to a net-
work as a condition, which is embedded and then fused 
with a SED network. Slizovskaia et al. [18] have proposed 
the class-conditioned SELD, which analyzes a specific-
target event similarly to TSD to detect the target sound 
using a one-hot vector of the target class. These conven-
tional systems related to SED can only handle informa-
tion about the types of sound to be analyzed, not the 
degree of priority given to the events of special interest.

2.3 � YOTO
YOTO [20] is a technique that enables a single network to 
change into various specialist models without retraining in 
inference stages. Each specialist model has better perfor-
mance for a particular task. For example, we assume two 
specialist models, image-quality and compression-rate 

(1)yn,t = P(zn,t | f ,�,X).

(2)
LSED = −

N

n=1

{zn logs(yn)

+ (1− zn)log 1− s(yn)

(3)
= −

N
∑

n=1

T
∑

t=1

{

zn,t logs(yn,t)

+ (1− zn,t)log
(

1− s(yn,t)
)}

,

specialists [20]. In this case, a single network using YOTO 
can change into the two specialists or a model with an inter-
mediate expertise of the two specialists without retraining 
in inference stages. The YOTO scheme is efficient in terms 
of the training cost or model complexity compared with 
multiple networks for each type of expertise.

In YOTO, we assume a problem setting that a single 
DNN-based network performs multiple tasks where the 
network is trained with multiple losses for each task. Let 
Lm be a loss function for task m. The following loss func-
tion is often used for optimizing the parameters of the 
network:

where �m(0 ≤ �m ≤ 1.0) is the m-th element of a vector � 
for balancing among the tasks.. M denotes the number of 
tasks. In the training stage, the single network is trained 
with various � . In inference stages, an arbitrary � can be 
input to the single network trained. When �m is set to be 
larger than those in other tasks, the network focuses on 
the training and/or inference of task m instead of other 
tasks.

3 � Proposed method
3.1 � Framework of SET
In the SET task, an arbitrary number of event classes are 
detected with priority. In the training stage of SET, triage 
weights are given for detecting target events with priority 
in addition to acoustic features and model parameters.

where � = (�1, �2, ..., �N ) are the parameters for the 
triage, that is, detecting sound events with priority. 
�n(0 ≤ �n ≤ 1.0) is a triage weight for the sound event n. 
In an inference stage of SET, an arbitrary triage param-
eter � is input to the SET model. When �n is set to a larger 
value than the others, the model targets with higher 
priority the sound event n than the other events. Exam-
ples of the loss functions on the right side in Fig.  2 are 
described in section 3.4.

3.2 � Class‑weighted training
In the DNN-based SED, as shown in Eq. 3, the BCE loss 
can be divided into losses of each event class. In other 
words, the BCE loss can be regarded as the sum of losses 
for the task of detecting each sound event class. To train a 
SET model, the following loss function is used:

(4)L =

M
∑

m=1

�mLm,

(5)yn,t = P(zn,t | f ,�,X, �),

(6)LSET =L(F(X, �),Z, �)
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where F(· ) is the output of a SED model. Z and � indicate 
the outputs of the model and triage parameters, respec-
tively. LSED(yn, zn) and �n are the loss function and tri-
age parameter for event class n, where yn and zn are 
{yn,1 . . . yn,t . . . yn,T } and {zn,1 . . . zn,t . . . zn,T } , respectively. 
The loss functions for each event class are weighted by 
the priority parameters of each class. We call the training 
scheme using the loss function “class-weighted training.” 
In Eq.  7, we normalize �  so that 

∑

n �n = 1.0,  and scale 
the loss function by  multiplying by  N. As can be seen 
from Eq. 6, both the SED model and the loss function are 
conditioned with the triage parameters.

To use arbitrary �n in inference stages of a SET net-
work, � = (�1, �2, ..., �N ) are repeatedly and randomly 
sampled from a distribution during the training, which 
cover various � values in the single SET network. The 
sampled parameters � are input to the SET network and 
used for the loss calculation (Eq. 7) in the training stage. 
As shown in Fig. 2, � values are firstly fed to two multi-
layer perceptrons (MLPs). The MLPs output two vectors, 
µ = (µ1,µ2, ...,µC) and σ = (σ1, σ2, ..., σC) . As shown 
in Fig.  3, feature-wise linear modulation (FiLM) [21] is 
then used to bridge between the outputs of the MLPs and 
the SED model for detecting events (Fig. 2). The FiLM is 
applied to a feature map in CNN layers of the SED model. 
The feature map is multiplied by σ and added to µ : 
M̂ijc = Mijcσc + µc . Here, Mijc is a feature at a location 

(7)=

N
∑

n=1

N�nLSED(yn, zn),
(i, j) of a channel index c in a feature map of a CNN layer, 
as shown in Fig.  3. FiLM has been reported to perform 
better than including conditional information, e.g., the 
triage weights, as additional inputs to the network  [20]. 
Because all the CNN layers in our network have the same 
number of channels, we feed the same µ  and σ  to all of 
them for convenience. In addition to the conditioning of 
the SED model, the sampled � values are directly used for 
the losses (Eq. 7) in training stages.

3.3 � Single target SET
As the initial work of SET, we introduce a model train-
ing scheme for the single target SET, which is a subtask of 
SET. In Fig. 2, the overview of single target SET method 
in the training stage is shown. For single target SET, as 
the distribution of the triage weight �n , we use the Dir-
ichlet distribution D(α) . The probability density function 
of the (K − 1)-dimensional Dirichlet distribution is

where xk ≥ 0 and αk > 0 are stochastic variables for a 
dimension k and a parameter for the shape of the distri-
bution. Ŵ(·) represent the gamma function. In a training 
stage of a SET model, we need a distribution that can be 

(8)D(α) =
Ŵ(

∑K
k=1 αk)

∏K
k=1 Ŵ(αk)

K
∏

k=1

x
αk−1
k ,

(9)s.t.

K
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controlled to give a larger weight into a specific class (tar-
get) than into other classes (nontarget). The Dirichlet dis-
tribution with smaller α produces such a vector for giving 
a larger weight into a specific class. The Dirichlet distri-
bution is suitable for single target SET because one class 
has a larger weight than the others by setting α smaller. 
Our single target SET model is conditioned by class-
weighted training using YOTO, where the triage weight � 
is sampled for each sound event class, to handle arbitrary 
� , i.e., the priority of the detection. N is also multiplied by 
inputs of the MLPs for conditioning the SED model, as 
shown in Fig. 2.

3.4 � SET losses with priority of event classes
To perform our SET, Eq. 7 is specified in this section. We 
propose two loss functions for the class-weighted train-
ing of SET. First, we introduce a loss function of SET with 
active and inactive frames (SET–AI) as follows.

In SET–AI, the triage weight �n affects the active and 
inactive frames of sound event n. When �n is set to a 
larger value than the others, the model focuses on the 

(10)
LSET−AI = −

N
∑

n=1

N�n

{

znlogs(yn)

+ (1− zn)log
(

1− s(yn)
)}

(11)
= −

N
∑

n=1

T
∑

t=1

N�n

{

zn,t logs(yn,t)

+ (1− zn,t)log
(

1− s(yn,t)
)}

training and/or inference of the active and inactive 
frames of event n compared with the others. In SET–AI, 
the loss of inactive frames is multiplied by �n.

A large number of inactive frames disturb the training 
of active frames, as reported in [22]. Hence, only the loss 
of active frames is multiplied by �n . Thus, we also intro-
duce a loss function of SET with active frames (SET–A), 
wherein the model focuses on the training of the active 
frames, as follows.

The difference between SET–AI and SET–A is whether 
the number of inactive frames is multiplied by the triage 
weight �n.

4 � Experiments
4.1 � Experimental conditions
To evaluate the effectiveness of our methods, we con-
ducted the following experiments:

[Experiment 1]: We verified that class-weighted 
training enables the detection of sound events with 

(12)
LSET−A = −

N
∑

n=1

{

N�nznlogs(yn)

+ (1− zn)log
(

1− s(yn)
)}

(13)
= −

N
∑

n=1

T
∑

t=1

{

N�nzn,t logs(yn,t)

+ (1− zn,t)log
(

1− s(yn,t)
)}

Fig. 3  Illustration of FiLM operation
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priority in terms of F-scores (Sections  4.2.1 and 
4.2.2).
[Experiment 2]: To analyze in more detail the prop-
erties of the proposed methods, we observed misde-
tection results in terms of insertion or deletion rate 
for the proposed methods (Section 4.2.3).
[Experiment 3]: We investigated how the triage 
weights are affected for each event class and evalua-
tion metric (Section 4.2.4).

For the experiments, we used the URBAN–SED [23] 
dataset. URBAN–SED includes 10,000 synthetic audio 
clips (train, 6000; validation, 2000; test, 2000), where 
the duration of each clip is 10 s with a sampling rate of 
44,100 Hz. The dataset consists of 10 sound event classes. 
In Fig.  4, the numbers of active and inactive frames for 
each event are indicated. As acoustic features, we used 
64-dimensional log-mel band energies, which were cal-
culated with the window size of 40 ms and the hop size 
of 20 ms. This setup is based on the baseline system of 
DCASE2018 Challenge task4 [24]. The threshold value 
for detecting events is tuned using the validation sets for 
each event class and method with the intersection-based 
F-score. The other hyperparameters are also optimized 
with the intersection-based F-score. For post-processing 
before detection, a median filter is applied, where the fil-
ter size is tuned with the validation sets for each event 
class and method. The batch size was 64, and models were 
trained with 100 epochs. To measure the detection per-
formance, we used frame-based and intersection-based 

metrics [25]. In the intersection-based metric, the detec-
tion tolerance criterion (DTC) and ground truth inter-
section criterion (GTC) are both set to 0.5.

As the SED model in Fig.  2, we used two models. 
We used CNN–BiGRU with selective kernel units 
(CNN–BiGRU–SK) [26, 27], which achieved the best 
performance in DCASE2021 Challenge task4. In CNN–
BiGRU–SK, kernels of multiple sizes are adopted in a 
CNN of a single model to handle various types of sound 
event. Moreover, for comparison, we used the TSD 
model [19]. We used two versions of the TSD model: 
conditioned with a one-hot vector and with a reference 
signal. For the one-hot-vector-based TSD model, to make 
the conditions for TSD and our SET the same, we used 
only the detection and conditional networks. In other 
words, we did not employ the classification loss, which is 
used only when the TSD model is conditioned by a ref-
erence signal. We used the same architecture as that in 
the one-hot-vector-based TSD model for the detection 
network. For the conditional network of the one-hot-vec-
tor-based TSD model, we used the same two MLP layers 
as that in the single target SET method because one-hot 
vectors of sound events were utilized instead of refer-
ence signal. For the reference-signal-based TSD model, 
we randomly chose clips of UrbanSound8k [28], as in 
[19]. Other detailed parameters are shown in Table 1. In 
Table 1, “FC” means fully connected.

The FiLM operation ( m̂ijc = σcmijc + µc ) was imple-
mented between convolution and max pooling in each 
CNN layer. As shown in Fig. 2, the SED model and two 

Fig. 4  Numbers of active and inactive frames for each event
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MLPs are simultaneously optimized using the loss func-
tion Eq.  11 or 13. In this work, α∀k is set to 0.1 for the 
symmetric Dirichlet distribution D(α) , which was tuned 
using the validation sets. � ∼ D(α) is sampled for each 
batch of an epoch during the training of a SET model. K 
is set to the number of sound event classes.

4.2 � Experimental results
4.2.1 � [Experiment 1]: SET results in terms of frame‑based 

F‑score
In this experiment, we selected one target event class n 
for single target SET and then observed the F-scores of 

the target event class with various �n values in inference 
stages. The triage weight for a nontarget class is fixed at 
1.0/

∑

n �n . For example, when the index of a target class 
is n = 1 and the triage weight �1 is set to 5.0/

∑

n �n , 
� = (5.0, 1.0, . . . , 1.0)/

∑

n �n . In all of the experimen-
tal results, all detection results of our SET are obtained 
with the optimal triage weight tuned using the validation 
sets. The optimal triage weights are set for each method, 
class, and evaluation metric using the validation sets. As 
aforementioned in section 3.2, � is multiplied by N for the 
scaling before � is input to the two MLPs for µ and σ.

Figure 5 shows the results of the proposed methods 
in terms of the frame-based F-score. “baseline” indi-
cates the results of CNN–BiGRU–SK. “TSD w/ one-
hot” and “TSD w/ signal” represent the TSD model 
conditioned by the one-hot vector and by the refer-
ence signal, respectively. “SET w/ SET–AI” and “SET 
w/ SET–A” are SET with class-weighted training using 
Eqs. 11 and 13, respectively. The results show that the 
proposed SET methods with class-weighted training 
achieved a reasonable performance. For the average 
detection performance of the classes, the SET model 
with SET–A loss improved the frame-based F-score 
by 2.29 percentage points compared with the baseline 
value. Moreover, the performance of detecting those 
sound events increases when using the SET–A loss 
compared with using the SET–AI loss. This is because 
the number of inactive frames of the sound events is 
large in the training set, as can be seen in Fig.  4. In 
other words, the models using the SET–AI loss might 

Table 1  Experimental conditions

SED model
Network architecture 3 CNN + 1 BiGRU + 2 FC

# channels of CNN layers 64, 64, 64

Filter size ( T × F) 3×3

Pooling size ( T × F) 8× 1, 2 × 1, 2 × 1 (max pooling)

# of units in BiGRU layer 64

# of units in FC layers 32

# of units in output layer 10

MLPs for each µ and σ

Network architecture 3 FC

# of units in FC layers 64, 256, 128

# of units in output layer 64

Optimizer Adam [29]

Activation functions leaky ReLU

Fig. 5  SET results in terms of frame-based F-score (%) for target classes
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focus on the training of inactive frames. This leads 
to the degradation of the detection performance, as 
reported in [22].

For individual class, the SET–A loss improved the 
performance of detecting the sound events “air_con-
ditioner,” “car_horn,” and “street_music” by 6.17, 3.65, 
and 5.12 percentage points, respectively, compared 
with the baseline values. In particular, the detection 
performance of “air_conditioner” using the conven-
tional methods is lower than those of the other classes, 
but it markedly increased when using the proposed 
methods. This indicates that our SET can boost the 
performance of recognizing the laborious-to-detect 
classes. On the other hand, the sound events “drill-
ing” and “jackhammer” are not well detected using the 
proposed SET compared with the baseline values. This 
might be because “drilling” is acoustically similar to 
“jackhammer.” In [28], the timbre of these two events 
is similar and could also be confused in the classifica-
tion task. To confirm the similarities among the sound 
events, we visualized the acoustic feature space using 
t-SNE in Fig.  6. Note that we used UrbanSound8k 
[28], which is composed of isolated sound events of 

the URBAN–SED dataset for visualizing relationships 
among the sound event classes. This is because it is 
difficult to clearly visualize the relationships owing to 
overlapped sound events, i.e., polyphonic, in an audio 
clip of the URBAN–SED dataset. Figure 6 also indicates 
that “drilling” is acoustically similar to “jackhammer.” 
The SET–A loss, which focuses on the active frames, 
may detect a target sound event and similar one simul-
taneously compared with the SET–AI loss.

We next compare the TSD models with our single tar-
get SET models. As shown in Fig. 5, our single target SET 
models detected many events better than the TSD model, 
e.g., “air_conditioner,” “car_horn,” and “street_music.” The 
TSD models outperform the SED model for some events 
such as “engine_idling” and “gun_shot.” In particular, 
the F-score of “gun_shot” when using the TSD models 
achieved a reasonable performance comparable to that 
of our single target SET. As previously indicated in Fig. 4, 
the number of active frames of “gun_shot” is smaller than 
those of the other classes. This indicates that the target-
ing methods, such as TSD and SET, are useful for event 
classes where the number of frames is small, e.g., rare 
sound event classes.

Fig. 6  Relationship among event classes on test set of UrbanSound8k in terms of acoustic features visualized using t-SNE
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4.2.2 � [Experiment 1]: SET results in terms 
of intersection‑based F‑score

We also evaluated the proposed methods in terms of the 
intersection-based F-score. In the intersection-based 
F-score, unlike the frame-based F-score, models are evalu-
ated instance by instance. Here, “instance” means a block 
with the associated onset and offset [30]. Figure 7 is SET 
results in terms of the intersection-based F-score. The 
results show that the F-score of the proposed SET method 
is improved compared with that of the baseline system. 
For the average detection performance of the classes, the 
SET model with the SET–A loss increased the intersection-
based F-score by 3.37 percentage points compared with the 
baseline model. For each class, the SET–A loss improved 
the performance of detecting the sound events “air_con-
ditioner,” “car_horn,” and “street_music” by 8.70, 6.66, and 
6.09 percentage points, respectively, compared with the 
baseline values. Comparing Figs. 5 and 7, we find that SET 
w/ SET–A greatly outperformed SET w/ SET–AI for most 
of the classes in terms of the intersection-based F-score 
rather than the frame-based F-score.

4.2.3 � [Experiment 2]: SET results in terms of misdetection
To investigate in more detail the performance of SET in 
Figs. 8 and 9, we used the error-related evaluation metrics, 
that is, frame-based insertion rate (IR) and deletion rate 
(DR).

Given false positives (FPs) and false negatives (FNs) for 
each event and time frame t, IR and DR are defined using 
the insertion (I) and deletion (D) [30] as follows:

where n and t represent the indexes of a sound event class 
and a time frame, respectively. I(n, t), D(n, t), FP(n, t), and 
FN(n,  t) are each a binary variable indicating whether 
there is I, D, FP, or FN of event n at time t, respectively. 
A(n, t) is a binary variable indicating whether event n is 
active at frame t. IR(n) and DR(n) are the insertion and 
deletion rates for each event class n, respectively.

Figures 8 and 9 show results in terms of IR and DR for 
each target event. The results show that the proposed 
SET methods outperformed the conventional methods 
in terms of IR and DR. In particular, SET w/ SET–AI 
reduced the IR of “air conditioner” by 0.605 points 
compared with the baseline value. On the other hand, 
the IRs of the proposed SET for “drilling” and “jack-
hammer” are higher than the baseline values. Our SET 
tends to increase false positives of acoustically similar 
classes more than the conventional method. As shown 
in Figs.  8 and 9, most of the classes suffer from the 

(14)I(n, t) =max(0, FP(n, t)− FN(n, t))

(15)D(n, t) =max(0, FN(n, t)− FP(n, t))

(16)IR(n) =

∑T
t=1 I(n, t)

∑T
t=1 A(n, t)

,

(17)DR(n) =

∑T
t=1 D(n, t)

∑T
t=1 A(n, t)

,

Fig. 7  SET results in terms of intersection-based F-score (%) for target classes
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trade-off between IR and DR. On the other hand, both 
the IR and DR of “engine_idling” and “street_music” are 
improved when using the proposed method compared 
with the baseline values.

Comparing the TSD and SET models, we find that the 
detection performance characteristics of the TSD mod-
els are unstable among the event classes compared with 

those of the SET models. In other words, the differ-
ence in detection performance between SED and TSD 
is large and the superiority of one over the others often 
reverses compared with SED and SET. In the training 
of the TSD models, the loss function of the target class 
is weighted with the same value even if the target class 
is being overtrained. On the other hand, in our SET, 

Fig. 8  SET results in terms of insertion rate for target classes

Fig. 9  SET results in terms of deletion rate for target classes
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the loss function of the target class is weighted with a 
random value referring to the Dirichlet distribution. 
This random weighting may lessen the instability of the 
detection performance.

4.2.4 � [Experiment 3]: Optimal triage weights of SET
We then analyze the optimal triage weight for each event 
class and evaluation metric. Figure 10 shows the optimal 
triage weights represented by the radar chart. As previ-
ously mentioned, the SET results are obtained using the 
optimal triage weight, which gives the best detection per-
formance for each target event class, method, and evalu-
ation metric. As shown in Fig.  10, in most of the event 
classes, the optimal triage weights of SET w/ SET–A are 
larger than those of SET w/ SET–AI. This is because the 
ability of detecting the active frames of the target class 
does not change significantly even when changing the 
triage weight with the SET–AI loss, as mentioned in 
Section 4.2.1. In SET w/ SET–A, most of the optimal tri-
age weights for the classes are between 10 and 20. This 
is because the weight of 5 is very small for boosting the 
detection of the target class. Weights over 25 are not 
densely sampled from the Dirichlet distribution we used. 
In other words, the triage weight of the lower probability 
density does not greatly contribute to the training of the 
target class. In practical applications, we can tune detec-
tion models for other evaluation metrics or scenes with-
out retraining by the proposed methods. This flexibility 

of the proposed methods has not been provided by the 
conventional methods.

Figure 11 shows acoustic features and the system out-
puts and ground truths for selected events. In this figure, 
the SET results where the triage weight is optimized for 
the intersection-based F-scores are selected. In most of 
the cases, the proposed SET outperformed the conven-
tional methods. In particular, SET w/ SET–A is out-
standing for detecting active frames for “gun shot.” In 
“air conditioner,” however, the proposed methods still 
produce false positives as with the conventional meth-
ods. The problem of producing false positives needs to be 
solved in a future work.

5 � Conclusion
In this work, we proposed a new task for SED: sound 
event triage (SET), in which an arbitrary number of 
event classes are prioritized. In this first study of SET, we 
introduced training method for single target SET, which 
is a subtask of SET. To perform single target SET, class-
weighted training is used for detecting events with pri-
ority. In the class-weighted training, loss functions and 
the network are stochastically weighted by the prior-
ity parameter of each class. In inference stages, the sin-
gle target SET network with class-weighted training can 
change into various specialists for each class without 
retraining.

The results of the experiments using the URBAN–SED 
dataset show that the proposed method with the SET–A 

Fig. 10  Optimal triage weights for each event class and evaluation metric
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loss outperforms the conventional SED method by 8.70, 
6.66, and 6.09 percentage points for “air_conditioner,” 
“car_horn,” and “street_music,” respectively, in terms of 
the intersection-based F-score. The results revealed that 
the SET–A loss contributes more to the detection of a 
target class than the SET–AI loss. In the average perfor-
mance of the classes, the proposed methods increased 
the intersection-based F-score by 3.37 percentage points 
compared with the conventional SED and TSD models.

As the limitation of the proposed methods, the results 
indicate that the confusion errors among similar events 
might be enhanced. In a future work, the multitarget 
SET needs to be studied by redesigning the distribution 
of the priority used during training for the multitarget 
SET. Moreover, the SET performance for a small number 
of training data, e.g., one-shot or few-shot learning, also 
needs to be investigated.
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