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Abstract 

Graph-based learning and estimation are fundamental problems in various appli-
cations involving power, social, and brain networks, to name a few. While learning 
pair-wise interactions in network data is a well-studied problem, discovering higher-
order interactions among subsets of nodes is still not yet fully explored. To this end, 
encompassing and leveraging (non)linear structural equation models as well as vector 
autoregressions, this paper proposes autoregressive graph Volterra models (AGVMs) 
that can capture not only the connectivity between nodes but also higher-order inter-
actions presented in the networked data. The proposed overarching model inherits 
the identifiability and expressibility of the Volterra series. Furthermore, two tailored 
algorithms based on the proposed AGVM are put forth for topology identification and 
link prediction in distribution grids and social networks, respectively. Real-data experi-
ments on different real-world collaboration networks highlight the impact of higher-
order interactions in our approach, yielding discernible differences relative to existing 
methods.

Keywords:  Higher-order interactions, Volterra series, Graph inference, Link prediction

1  Introduction
Full awareness of networks and networked interactions is required for understanding 
the behavior of complex systems. These systems are typically modeled as graphs in many 
applications such as financial markets, social networks, power systems, and transporta-
tion systems [1–3], to name a few. Graph structure identification (prediction) is to iden-
tify (predict) if an edge exists (will exist) between a pair of nodes of a graph, given a 
set of network observations in the form of node attributes at different time instances. 
Applications include studying the growth of social networks [1] and their dynamics in 
social sciences, predicting what are the most likely links between users in recommender 
systems, unveiling pair-wise interactions between elements of different ecological niches 
or predicting interactions that were not studied due to time or cost restrictions in biol-
ogy [4].

Albeit pair-wise interactions have the ability to capture the dynamics of the under-
lying graph, a lot of the interplay among networked data occurs beyond just two 
nodes [5]. For instance, human interaction over social media takes place with a team 
rather than two individuals. Furthermore, molecules tend to show more interactions 
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among different groups. Moreover, in smart grids, the dependency among power 
variables such as voltage and current occurs in a region instead of single pairs. Early 
approaches to capture higher-order relations in the underlying network have mainly 
relied on set systems, hypergraphs, and simplicial complexes [6–10], to name a few. 
Furthermore, to address the existence of nonlinear connectivity, topology identifica-
tion approaches leveraging partial correlations as well as kernels have recently been 
developed [11, 12]. A link prediction approach for evaluating higher-order data mod-
els of complex systems is proposed in [13]. While offering mathematical frameworks 
to study higher-order relations, these works either directly leverage the network 
structure, e.g., connections in a hypergraph, or make use of concepts inherited from 
physical phenomena, e.g., the analysis based on simplicial complexes, using cohomol-
ogy [14], which might not exist for all kinds of datasets.

Aiming to modeling dynamical processes over a network, different attempts have 
been made. Specially, data-driven neural network solutions have attracted growing 
attention recently to learn the nonlinear connectivity [15–17]. Furthermore, rooted 
in structural equation models [18] (SEMs), and in particular combinatorial vector 
autoregressive models [19], several efforts leveraging either kernels or partial correla-
tions [11, 12] have been devoted to capturing the dynamics; see [20–22], and refer-
ences therein. Despite that these approaches manage to capture complex dynamics 
existing in networked data, they lack interpretability beyond pair-wise interactions. 
Another issue of the mentioned models is their poor scalability; in other words, the 
complexity grows exponentially along with the model order.

Volterra series and kernels have emerged as promising tools for data analysis in 
different applications, e.g., brain networks [23], gene data [24] and communications 
[25]. Leveraging the sparsity of the Volterra kernels as well as a parsimonious model 
description, the computational complexity can be reduced [24], especially when using 
an appropriate basis expansion model of the kernels. Moreover, one can retrieve the 
original Volterra kernels from the considered basis expansion without losing model 
expressibility [26]. Although the Volterra series is powerful in modeling nonlinear-
temporal interactions, using it to capture the higher-order relations in the networked 
data is not well-explored. Furthermore, in Volterra series models, the autoregressive 
property is not fully considered as in SEM when interpreting the dynamics in net-
worked data.

Building upon SEMs and Volterra series models, this work advocates an autoregres-
sive graph Volterra model (AGVM) to capture higher-order interactions present in 
networked data. Different identifiability conditions for the proposed model are derived 
including the identifiability of the network connection based on exogenous data, spar-
sity (relieving sampling complexity) and the restricted isometry property in the bipolar 
case. The proposed model uses graph Volterra kernels to identify interactions between 
nodes or groups of nodes, providing a principled way to tackle higher-order interactions 
in networks. Furthermore, to estimate the graph Volterra kernels, two tailored AGVM 
algorithms for topology identification in power systems and link prediction in social 
networks are introduced. The proposed approaches differ from existing higher-order 
interaction methods [13, 27], which solely focus on extending metrics commonly used in 
informal scoring for classical link prediction and identification.
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Paper outline. The rest of the paper is organized as follows: Sect. 2 briefly reviews 
the mathematical model that is used throughout the paper. Section 3 introduces the 
higher-order interactions model based on Volterra series. Section 4 provides identifi-
ability guarantees for the proposed model. Section 5 presents two tailored algorithms 
for the application of topology identification in power systems as well as link predic-
tion in social networks. Concluding remarks are drawn in Sect. 6.

Notation. Lower- (upper-) case boldface letters denote column vectors (matri-
ces), and normal letters represent scalars. Calligraphic letters are reserved for 
sets with the exception of matrices X  and H . Symbol ⊤ stands for transposi-
tion. The (i,  j)th entry of matrix X  is denoted as xi,j or [X]i,j . The definition of the 
operator ⊠ is the reduced Kronecker product on two equal-size vectors, that is, 
x ⊠ y := [x1y1 x1y2 · · · xiyj · · · xN−1yN xNyN ]⊤ , where i ≤ j . The operation ∗ denotes 
the Khatri-Rao product.

2 � Preliminaries
Consider a graph G = (V , E) , where V is the vertex (node) set with cardinality |V| = N  , 
and E is the edge set with cardinality |E | = E , respectively. A time-series of graph signals 
{x(t) ∈ R

N }Tt=1 is collected at the nodes V . In addition, external (exogenous) observa-
bles {ζ (t) ∈ R

N }Tt=1 are available such as features of the nodes, inputs from different net-
works, and network-level snapshots or layers [28].

The classical structural equation model (SEM) [18] considering the signal x(t) over the 
graph and the exogenous variables ζ (t) can be described as follows

where Ŵ ∈ R
N×N is a diagonal matrix representing the mapping of the exogenous input 

on the node variables x(t) , and A ∈ R
N×N represents the inter-relations among those 

variables. Let xi(t) and ζi(t) denote the ith entry of x(t) and ζ (t) , respectively. The signal 
at the ith node xi(t) can then be obtained by a weighted combination of the signal of all 
other nodes and the corresponding exogenous variables as

where ai,j and γi,j are the (i, j)th entry of A and Ŵ , respectively.
The SEM in (2) is able to express the relation between different node variables through 

the nonzero entries ai,j of A , where A is a hollow matrix and shares the support with the 
adjacency matrix of the graph. However, it only accounts for the first-order dependen-
cies (i.e., pair-wise relations) in a linear fashion. Several efforts have focused on expand-
ing the expressive power of linear SEMs via nonlinear kernels of nodal variables; see, e.g., 
[11] and references therein. Although meaningful in many applications, they neglect the 
so-called higher-order interactions that are present in networked data through higher-
order graph structures [5], such as subgraphs and k-cliques, which are subsets of vertices 
of an undirected graph where every two distinct vertices in the subset are adjacent.

In the following section, we introduce a Volterra model to capture such higher-order 
interactions and their descriptors.

(1)x(t) = Ax(t)+ Ŵζ (t) ∈ R
N

(2)xi(t) =
j∈V

ai,jxj(t)+
j∈V

γi,jζj(t)
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3 � Higher‑order interactions in graphs
Before modeling the higher-order interactions in graphs, let us give a description of 
the ith node signal, xi(t) , in terms of a set of subsets of nodes, Si . To model first-order 
interactions, these subsets of nodes are simply single nodes and the set Si is noth-
ing more than the set of neighbors of the ith node, i.e., the nodes j for which ai,j is 
nonzero in a SEM. Modeling higher-order interactions though requires the subsets to 
consist of more than one node and hence Si will yield a set of subsets of nodes.

Mathematically, the set S(P)
i  which contains the subsets for defining interactions up 

to order P is defined as follows

where p denotes the order of the set, Lp the number of subsets of order p that exist, and 
S
(l,p)
i ⊂ V the lth set of p nodes related to the ith node in the graph G . For simplicity, the 

exogenous variable has been omitted. With (3), we can put forth the following signal 
model

where f maps the signals x(t) from S(P)
i  to xi(t) . For example, considering P = 1 and S(l,p)

i  
only containing the lth neighbor of the ith node, i.e., S(1)

i = ∪L1
l=1S

(l,1)
i  , and assuming a 

linear map for f, we retrieve the SEM without considering exogenous variables [cf. (2)].
The subsets in S(P)

i  capture the gregarious behavior of the nodes. For example, the 

subsets {S(l,2)
i }L2l=1 can be viewed as the pairs of nodes that form a triad with the ith 

node. Similarly, the subsets {S(l,p)
i }Lpl=1 can be defined as the nodes that complete a 

(p+ 1)-clique when the ith node is added. In fact, this subset assignation can be done 
for any other graph motif [c.f [5]] that seems adequate for the data under analysis. 
We can now approximate the nonlinear relationship in (4) by a Volterra expansion as 
follows

where h(0)i  is a constant term, and H (p)
i [x(t)] denotes the pth order Volterra module 

given by

with h(l,p)i  the lth expansion coefficient of order p for the ith variable, g a permutation-
invariant nonlinear function describing the type of interaction among the variables, and 
q means the nodes that complete a (q + 1)-clique when the ith node is added. As the 
set S(P)

i  is generally unknown, meaning the interactions at all orders are unknown, the 
module (6) can be equivalently rewritten using the set of all index combinations of size 
p, that is

(3)S
(P)
i :=

P
⋃

p=1

S
(∗,p)
i , with S

(∗,p)
i :=

Lp
⋃

l=1

S
(l,p)
i

(4)xi(t) = f (x(t),S
(P)
i )+ ǫi(t) ∀ i ∈ {1, . . . ,N }

(5)xi(t) = h
(0)
i +

P
∑

p=1

H
(p)
i [x(t)] + ǫi(t)

(6)H
(p)
i [x(t)] :=

Lp
∑

l=1

h
(l,p)
i g({x(q)(t) : q ∈ S

(l,p)
i })
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where the Volterra kernel h(p)i (k1, . . . , kp) denotes a (p+ 1)-clique for the index combina-
tion 

{

k1, . . . , kp
}

 . The nonzero coefficients of (7) can be uniquely mapped to the coeffi-
cients of (6). A fundamental result of Volterra expansion is that any continuous nonlinear 
system can be uniformly approximated (i.e., in the L∞-norm) to arbitrary accuracy by a 
Volterra series operator of sufficient but finite order if the input signals form a compact 
subset of the input function space [29, 30].

Notice that in the case of the absence of exogenous variables, the Volterra expan-
sion (5) for the ith signal can be directly related to the SEM expression (2) by considering 
h
(0)
i  , h(1)i (j) = ai,j

1 and h(p)i (k1, . . . , kp) = 0, ∀ p > 1 . Thus, a SEM can be seen as a special 
case of the Volterra expansion where the Volterra kernels are constrained and the inputs 
are assumed to be the signals on the graph.

Now, we are ready to postulate our AGVM that considers higher-order interactions as 
follows

The proposed expansion  (8) captures both the autoregressive nature of SEMs and the 
identifiability and expressibility of Volterra series models. This aspect distinguishes the 
model from existing nonlinear extensions of SEMs that only consider nonlinear func-
tions of pair-wise interactions. Therefore, higher-order structures in the graph are not 
seen as fundamental atoms to establish the behavior of the node signal. On the other 
hand, the expansion  (8) allows identifying the existence of higher-order interactions 
such as triads or p-cliques by observing its nonzero coefficients.

�Remark 1  For simplicity, the present work only focuses on interactions up to the second 
order and uses a product for g. A generalization to higher-order interactions and other 
permutation-invariant functions is straightforward. For other nonlinear functions, a 
more careful analysis should be carried out.

By stacking the signal on node i over time steps t = (1, . . . ,T ) in xi , i.e., 
xi := [xi(1), xi(2), . . . , xi(T )]⊤ (similarly stacking the modeling errors 
through time in ǫi ), stacking the signals on all nodes at time step t in x(t) , i.e., 
x(t) := [x1(t), x2(t), . . . , xN (t)]⊤ ∈ R

N , and restricting ourselves to a second-order 
model and a product for g, we can rewrite (8) in a matrix-vector form as

(7)H
(p)
i [x(t)] =

N
∑

k1=1

· · ·
N
∑

kp=kp−1

h
(p)
i (k1, . . . , kp)g({x(kq)(t)}pq=1)

(8)xi(t) = h
(0)
i +

P
∑

p=1

N
∑

k1=1

· · ·
N
∑

kp=kp−1

h
(p)
i (k1, . . . , kp)g({x(kq)(t)}pq=1)+ ǫi(t).

(9)x⊤i = h
(0)
i 1

⊤ + (h
(1)
i )⊤X (1) + (h

(2)
i )⊤X (2) + ǫ⊤i ∈ R

T .

1  With a slight abuse of notation, the notation after h enclosed by parentheses indicates the node index.
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Here, we have made the following definitions: X (1) := [x(1), . . . , x(T )] ∈ R
N×T , 

X (2) := [x(1)⊠ x(1), . . . , x(T )⊠ x(T )] ∈ R
M×T , [h(1)i ]j = h

(1)
i (j) , and

where vech(·) is the half-vectorization operation that retrieves the upper-triangular part 
of its matrix argument, and M := N (N + 1)/2.

The second-order expansion of xi can be further expressed as

where the unknown parameter θ i ∈ R
1+N+M contains the equivalent graph Volterra ker-

nels for the ith variable and M ∈ R
(1+N+M)×T is the (known) system matrix.

For all involved node signals i ∈ [N ] , we finally obtain

 where � ∈ R
(1+N+M)×N collects all the unknown parameters of the system, and E is the 

corresponding modeling error matrix. For interpretability of (11), one can also rewrite it 
as

where H (i) is the ith-order graph Volterra kernel matrix whose entries are in lexico-
graphic order, i.e., as defined through X (i) . In particular, H (0) = h(0) ∈ R

N is a column 
vector with all constant terms stacked. Here, we present the general form of the AGVM 
model also accounting for the exogenous variables Y .

One of the challenges to find the unknown parameters � is its large dimensionality. 
Although symmetrized Volterra kernels can be uniquely identified [31], the order of the 
number of unknown parameters in  (11) is O(N 3) which leads to high computational 
costs and poor sampling efficiency. Fortunately, as it is shown ahead, judicious modeling 
of the graph Volterra kernels leads to efficient higher-order interaction identification. 
But before presenting methods for estimating the graph Volterra kernels, we need to 
provide identifiability guarantees for the proposed model.

4 � Identifiability of AGVM
This section focuses on the conditions that the input/output data should exhibit in order 
to uniquely identify the second-order AGVM model (12). Although asymptotic results 
have been obtained for sparse regression, i.e., the Lasso estimator, here we are more 
interested in the finite-sample regime. Therefore, borrowing tools from the compressing 
sensing literature and linear algebra, we are able to provide recovery guarantees in both 
deterministic and probabilistic settings.

h
(2)
i

= vech

























h
(2)
i
(1, 1) h

(2)
i
(1, 2) · · · h

(2)
i
(1,N )

h
(2)
i
(2, 1) h

(2)
i
(2, 2) · · · h

(2)
i
(2,N )

.

.

.
.
.
.

.

.

.
.
.
.

h
(2)
i
(N , 1) h

(2)
i
(N , 2) · · · h

(2)
i
(N ,N )

























∈ R
M

(10)
x⊤i =

�

h
(0)
i , (h

(1)
i )⊤, (h(2)i )⊤

�





1
⊤

X (1)

X (2)



+ ǫ⊤i

= θ⊤i M + ǫ⊤i

(11)X (1) = �⊤M + E ∈ R
N×T

(12)X (1) = H (0)
1
⊤ +H (1)X (1) +H (2)X (2) + ŴY + E
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Without loss of generality, we present our following results considering that the 
zeroth-order term H (0) is projected out and the noise term E is not present or has been 
removed.

Our first result asserts identifiability of the network connections, represented through 
the graph Volterra kernels, highlighting the role of the exogenous data Y  . Notice that 
this result is a generalization of the result in [32] obtained for resolving direction ambi-
guities in structural equation models applied for directed graphs.

Theorem  1  Suppose that data {X (1),X (2)} and Y  abide to the second-order AGVM 
model

for a matrix H (1) with diagonal entries [H (1)]ii = 0 and diagonal matrix Ŵ with diagonal 
entries[Ŵ]ii �= 0 . If X := [(X (1))⊤ (X (2))⊤]⊤ is full row rank, then H (1) , H (2) and Ŵ are 
uniquely expressible in terms of X  and Y  as

where YX † = [Q1 ∈ R
N×N Q2 ∈ R

N×M].

�Proof  See Appendix. 
This result exhibits the importance of the exogenous data (perturbation), Y  , to 

uniquely identify the AGVM model. This shows, as in the classical SEM, that given a 
sufficiently rich perturbation, the directionality, as well as the higher-order interactions 
(triplets), can be uniquely determined from the measured data.

Although the result of Theorem 1 establishes the identifiability of the AGVM model, 
it requires a full row rank data matrix X  , which in many cases might not be possible, 
i.e., the number of samples must be at least O(N 2) . Thus, in order to improve the sam-
pling complexity for the problem, prior information is required to constrain the model. 
A natural assumption, arising in many networked-data applications, is the sparse inter-
action among the nodes. That is, the number of connections (edges) among nodes 
are much smaller than the size of the network, and therefore, the number of triads in 
which they participate are restricted. Before proceeding, we need the following sparsity 
assumptions. 

A. 1	 Each row of matrix H (1) has at most K1 nonzero entries, i.e., �h(1)i �0 ≤ K1 ∀ i.

A. 2	 Each row of matrix H (2) has at most K2 nonzero entries, i.e., �h(2)i �0 ≤ K2 ∀ i.

Assumptions A.1 and A.2 on the graph Volterra kernels can be seen as restrictions 
on the number of edges and triangles existing in the graph. By letting K1 ∈ O(1) and 
K2 ∈ O(N ) , these assumptions translate into graph Volterra kernels that represent a 

X (1) = H (1)X (1) +H (2)X (2) + ŴY

diag(Ŵ) = diag(Q1)
−1

H (1) = I − ŴQ1

H (2) = −ŴQ2

�
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sparse graph, i.e., O(N ) edges and O(N 2) triangles. In addition, as shown in the fol-
lowing, the sparsity assumptions make the identification of the system possible when 
only a reduced number of measurements are available.

Before stating our second result, a definition is required.

Definition 1  The Kruskal rank of a matrix A ∈ R
N×M , denoted kr(A) , is the maximum 

number k such that any combination of k columns of A forms a sub-matrix with full col-
umn rank.

Although the Kruskal rank is, in general, more restrictive than the traditional rank 
and harder to verify, when the entries of A are drawn from a continuous distribution, 
its Kruskal rank equals its rank [33].

To begin with, we consider a model without exogenous inputs. That is, a pure self-
driving system.

Theorem 2  Let {X (1),X (2)} abide to the second-order AGVM

for sparse matrices H (1) with diagonal entries [H (1)]ii = 0 and H (2) satisfying A.1 and 
A.2, respectively. Ifkr(X⊤) ≥ 2(K1 + K2) , where X := [(X (1))⊤ (X (2))⊤]⊤ , then H (1) and 
H (2) can be uniquely identified.

�Proof  See Appendix. 
This result shows that it is possible to uniquely identify both graph Volterra kernel 

matrices when the Kruskal condition is met even in the case that the model is self-
driven, i.e., no exogenous inputs.

In the following, we present a result involving the exogenous inputs.

Theorem 3  Let {X (1),X (2)} and Y  abide to the second-order AGVM

for sparse matrices H (1) with diagonal entries [H (1)]ii = 0 and H (2) satisfying A.2; 
and a diagonal matrix Ŵ with diagonal entries [Ŵ]ii �= 0 . Given a matrix �1 such that 
X (1)�1 = 0 and Y�1  = 0 , if kr(C[X (1) ∗ X (1)]�1) ≥ 2K2 + 1 , where C is a binary selec-
tion matrix picking the appropriate rows of the Kronecker product, then the positions of 
the nonzero entries of H (2) are unique.

�Proof  See Appendix. 
Here, differently from the pure self-driven case, the presence of the exogenous term 

leads to a different identifiability condition: structural identifiability. That is, given that 
the condition on the Kruskal rank of the projected data matrix is met, the positions of 
the nonzero entries of the second-order graph Volterra kernels H (2) can be uniquely 

X (1) = H (1)X (1) +H (2)X (2)

�

X (1) = H (1)X (1) +H (2)X (2) + ŴY ,

�
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identified. When the graph Volterra kernels are related to the (p+ 1)-cliques [cf. (7)] in 
a network, the above result allows for higher-order link prediction. In addition, the sup-
port of H (1) can then also be partially estimated from the nonzero entries of H (2) , as by 
assumption, in this case, their supports share a relation. More specifically, the existence 
of a triangle between nodes directly implies edges among the elements in the clique. 
However, as the nonexistence of a clique, e.g., a triangle, does not rule out the existence 
of an edge, not all edges, i.e., positions of the nonzeros of H (1) , can be identified.

To present an identifiability result using sparse recovery, we employ the following 
definition.

Definition 2  (Restricted Isometry Property (RIP)) Matrix A ∈ R
N×M possesses the 

restricted isometry of order s, denoted as δs ∈ (0, 1), if for all h ∈ R
M with �h�0 ≤ s [34]

RIP is a fundamental property for providing identifiability conditions of sparse recov-
ery. It has been shown that given δ2s <

√
2− 1 , the constrained version of the Lasso 

optimization problem

yields �h− h∗�22 ≤ cǫ2 for some constant c depending on δ2s when the linear model 
y = Ah∗ + v , �v�2 ≤ ǫ holds, where h∗ is the solution of (14) [34, 35].

In the literature, in particular works on sparse polynomial regression [35] and Volt-
erra series [36], several guarantees have been established for system matrices spawning 
from different alphabets and/or different distributions. For instance, in [24] results for 
Volterra system identification have been derived for signals drawn from {−1, 0, 1} and in 
[35] signals drawn from U [−1, 1] . However, the bipolar case, e.g., {−1, 1} , has not been 
considered and its treatment within the self-driven Volterra expansion is still missing. 
Therefore, in the following, we present a RIP result for the second-order AGVM, whose 
technical proof is detailed in Appendix.

Theorem 4  Let {xi(t)}Ni=1 for t ∈ [1, 2, . . . ,T ] be an input sequence of independent ran-
dom variables drawn from the alphabet {−1, 1} with equal probability. Assume that the 
AGVM regression matrix is defined as

 where L = N + N (N − 1)/2 , X l := X (1) and Xb is X (2) with the quadratic terms 
removed, i.e., it only contains bilinear terms xi(t)xj(t), i  = j . Then, for any δs ∈ (0, 1) and 

for any γ ∈ (0, 1) , whenever T ≥ 4C
(1−γ )δ2s

s2 logN  , the matrix X̃⊤ possesses RIP δs with 

probability exceeding 1− exp

(

− γ δ2s
C · T

s2

)

 , where C = 2.

(13)(1− δs)�h�22 ≤ �Ah�22 ≤ (1+ δs)�h�22.

(14)min
h∈RM

�h�1 subject to �y − Ah�2 ≤ ǫ

X̃
⊤ =

1√
T
[X l Xb]⊤ ∈ R

T×L,
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Notice that the pure quadratic terms in X (2) have been removed. This is due to the 
fact that for the bipolar signal case, these quadratic terms are constant when the alpha-
bet is {−1, 1} and equivalent to X (1) when the alphabet is {0, 1} . Hence, in both cases 
its contribution can be omitted without loss of generality. Furthermore, the data matri-
ces are normalized concerning for the number of available measurements, i.e., T. This is 
done in order to guarantee that the diagonal entries of the Grammian of X̃⊤ are unity in 
expectation.

This theorem asserts that T ∈ O(s2 logN ) observations suffice to recover an s-sparse 
vector with graph Volterra kernels. Since it is considered that the number of unknowns 
per row of H (1) and H (2) is at most O(N ) [cf. 1-2], the bound on the sampling complexity 
scales as O(N 2 logN ) which agrees with bounds obtained for linear filtering setups [24, 
37]; however, in this paper, the constant C is relatively small.

Given that under the established conditions, the proposed AGVM model is identifi-
able and is able to leverage sparsity to relieve its sampling complexity, in the following 
section, we present task-specific constraints for higher-order link inference and methods 
for estimating the graph Volterra kernels.

5 � Real data applications
With the identifiability guarantees at hand, this section investigates how various learn-
ing tasks can benefit from the proposed AGVM. Specifically, two tailored AGVM algo-
rithms for different applications namely topology identification in power systems and 
link prediction in social networks are presented.

5.1 � Topology identification in distribution grids

The vertex set V of a graph in a distribution grid comprises the indices of the nodal 
buses, while the edge set E collects all the power distribution lines. The distribution grid 
is supposed to be a radial structure and thus the vertex set V := {0,N } has a root (sub-
station) bus indexed by n = 0 . Every non-root bus n ∈ N = {1, . . . ,N } has a unique par-
ent bus πn . Naturally, the number of non-root buses is equal to the number of power 
lines in a radial network, that is, |N | = |E | = N2.

In order to reveal both the edge connections as well as their higher-order interactions 
in power grids, we need to analyze the dependency of the signals on buses. The signal 
xn(t) here is the squared voltage magnitude of bus n ∈ N  at time t. Based on our previ-
ous work [38], the voltage relationship among bus n and its children buses is given by

where i ∈ {k : k ∈ N ,πk = n} and j ∈ {k : k ∈ N ,πk = n, k ≥ i} ; and h(2)n (i, j) are the 
first- and second-order expansion coefficients relating bus n with the sets {i} and {i, j} , 
respectively; ǫn comprises the modeling error and measurement noise on bus n. Collect-
ing the data into {x(t)}Tt=1 , and stacking the first- and second-order coefficients h(1)n (i) 

(15)xn(t) =
∑

i

h(1)n (i)xi(t)+
∑

i

∑

j

h(2)n (i, j)xi(t)xj(t)+ ǫn(t), n ∈ N

2  With a slight abuse of notation, we use N here to denote the number of non-root buses and hence the number of 
nodes in the network is N + 1.
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and h(2)n (i, j) into the vectors h(1)n  and h(2)n  in a lexicographic order. Similar to the deriva-
tion from (9) to (12), we can get the voltage on all buses (15) in a compact form as

where the t-th columns of X (1) and X (2) are x(t) and x(t)⊠ x(t) respectively; the n-th 
rows of H (1) and H (2) are (h(1)n )⊤ and (h(2)n )⊤ , respectively.

To estimate the coefficients of model (16), the following assumptions are needed. 

A. 3	 There is no self-interaction on a bus; therefore, the matrix H (1) is a hollow 
matrix, i.e., h(1)n (n) = 0, ∀n ∈ N .

A. 4	 There is no second-order interactions between two buses, that is to say, the coef-
ficients for the second-order interactions satisfy h(2)n (j, k) = 0 , if n = j , or j = k , or 
n = k holds.

A. 5	 The second-order interactions only exist among two buses connected through 
a central bus. Thus, the graph Volterra coefficients obey h(2)n (j, k) = 0 , if there exists 
h
(1)
n (l) = 0, ∀ l ∈ {j, k}.

Assumptions A. 3 and A. 4 both entail linear constraints, and thus can be easily fit in an 
optimization problem. To cope with the conditional constraint in A. 5, we call for the 
auxiliary matrix

where the first column equals h(1)n  . To guarantee that if h(1)n (i) = 0 , then h(2)n (i, j) = 0 , we 
enforce row sparsity in n by adding using ℓ2,1-regularization on H⊤

n  , ∀n ∈ N  . Based on 
the sparsity result from Sect. 4, we can estimate the expansion coefficients by the follow-
ing sparsity-aware ℓ2,1-regularized least-squares 

 where

 The set Xh is convex and signifies the constraints characterized by Assumptions A. 3 
and A. 4. The convex optimization problem (18) can be efficiently solved (and distrib-
uted) by off-the-shelf convex programming toolboxes.

(16)X (1) = H (1)X (1) +H (2)X (2) + E

(17)Hn :=













h
(1)
n (1) h

(2)
n (1, 1) · · · h

(2)
n (1,N )

h
(1)
n (2) h

(2)
n (2, 1) · · · h

(2)
n (2,N )

...
...

. . .
...

h
(1)
n (N ) h

(2)
n (N , 1) · · · h

(2)
n (N ,N )













(18a)min
{θn}Nn=1

∑

n∈N
�xn −M

⊤θn�22 + ��θn�1 + µ�H⊤
n �2,1

(18b)s. to [θ1, θ2, . . . , θN ]⊤ ∈ Xh.

M =
[

X (1)

X (2)

]

, and θn =
[

h(1)n

h(2)n

]
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To identify the underlying topology, the Southern California Edison (SCE) 47-bus dis-
tribution grid [3, 39] using real consumption and solar generation data from the Smart∗ 
project [40] was employed. Feeding this data to AC power flow equations [41, 42], we 
can obtain the voltage squared magnitude measurements {x(t)}Tt=1 across T = 240 time 
slots. The voltage magnitudes of the substation bus satisfies v0(t) = 1, ∀t ∈ {1, . . . ,T } . 
The radial grid comprises 41 buses where the interactions need to be inferred, after 
ignoring the root bus and the buses connected to their parent buses with zero-imped-
ance lines. With {x(t)}Tt=1 , the graph Volterra kernels were estimated by solving (18) and 

constructing H (1) and H (2) as in (16). While removing non-significant entries by a point-

wise thresholding operation, the grid topology was inferred from the support of H (1) and 
the higher-order interactions were retrieved from H (2).

To assess the performance of the proposed AGVM approach (18), we have simulated 
three edge connectivity recovery methods, namely: i) multi-kernel based partial corre-
lations (MKPC)-scheme [22]; ii) linear PC-scheme [43]; and iii) concentration matrix-
based  scheme [44]. The results were measured by the empirical receiver operating 
characteristic (ROC) curves and the area under the curve (AUC) values. Figure 1 depicts 
the ROC curves of all methods, while the AUC for AGVM, MKPC, linear PC, and con-
centration matrix are 0.9483, 0.9008, 0.8836, and 0.8052, respectively. The results show-
case the proposed scheme outperforms all competing alternatives by exploiting the 
nonlinear interactions.

The second experiment entailed the IEEE 123-bus feeder to examine the scalability 
and performance of the algorithm in topology identification. Voltage squared magnitude 
measurements {x(t)}Tt=1 across T = 400 time slots were used. The ROC curves of the 
AGVM, MKPC, linear PC, and concentration matrix method are shown in Fig. 2. The 
AUC values for the AGVM, MKPC, linear PC, and concentration matrix method are 

Fig. 1  ROC curves for topology inference of the SCE 47-bus distribution grid
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0.8935, 0.8024, 0.6952, and 0.4963, respectively. Evidently, these results corroborate the 
effectiveness of our proposed algorithm.

5.2 � Link prediction in social networks

Another important domain inspiring higher-order interactions is link prediction in social 
and other biological networks. The goal of link prediction is to find the most likely subsets 
of vertices that will interact in the near future based on available observations of the activa-
tion of different nodes, e.g., song releases, email exchanges, and paper publications. Spe-
cifically, given a set of binary measurements X ∈ {0, 1}N×T at time slots t = {1, . . . ,T } , one 
needs to predict what is the most likely set of nodes to be activated together at any t ′ > T .

In this subsection, we are considering the problem of predicting the closure of tri-
angles, i.e., triplets of nodes that activate at the same time. Therefore, AGVMs can be 
restricted to order P = 2 . Further, using the binary input data assumption, we can regard 
the interaction between variables as its joint activation and assume the function g in (7) is 
the product operation. As a result, a direct instantiation of an AGVM produces a model 
that constructs real-valued signals. Instead of directly modeling xi(t) , we borrow an idea 
from binary regression methods and use a latent variable zi(t) to model the probability 
P(xi(t) = 1|zi(t)) as P(xi(t) = 1|zi(t)) = σ(zi(t)) , where σ(·) represents the sigmoid func-
tion. The latent variable zi(t) is then modeled as

Gathering the latent variables for nodes through time slots, the AGVM (12) for the link 
prediction task becomes

(19)zi(t) = h(i)o + ((h(1)n )⊤x(t)+ ((h(2)n )⊤(x(t)⊠ x(t)).

Fig. 2  ROC curves for topology inference of the IEEE 123-bus distribution grid
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where [Z]i,t = zi(t) ; � = [H (0)H (1)H (2)] ; and M = [1 (X (1))⊤ (X (2))⊤]⊤ . Different from 
traditional logistic regression, the binary labels in (20) are the node variables themselves.

The goal of closure prediction is to find the most likely sets of nodes, which form an 
open structure that will become close. Here, an open structure refers to a set of nodes, A , 
that have interacted with each other, but have not appeared simultaneously on a single 
simplex set, whose elements are the indexes of the nonzero elements of x(t) [45]. There-
fore, based on the analysis in our previous work [45], we have the following conclusions. 
Observing the support of off-diagonal entries of W = X (1)(X (1))⊤ , we can obtain an 
initial network connectivity. From this connectivity, and enforcing h(2)i (i, i) = 0, ∀i ∈ V , 
the set of open triangles TO , closed triangles T  , and the candidates for the nonzero 
graph Volterra coefficients S(2) := {S(2)

i }Ni=1 (cf. (3)) can be obtained. Upon S(2) , it holds 
vec(�) = Bθ̄ , where θ̄ captures the nonzero kernels, and B is an expansive binary matrix 
that relates the nonzero entries of the graph Volterra kernels in vec(�) . These nonzero 
Volterra kernels are defined by the support obtained from W  . Noticing that we know 
the nonzero positions of vec(�) , and the dimensions of vec(�) and θ , we can build this 
B matrix based on the initial network connectivity. To estimate the parameter θ̄ , we pro-
pose a proximal gradient ascent algorithm with sparsity regularization, which is sum-
marized in Alg. 1. Notice that get_mtx_row takes the row of the input which is related 
to the latent variable zi(t) ; soft_thr(·, η� ) entails soft threshold with respect to η� . We 
assume that open triangles with large coefficients, which means a high level of interac-
tion, are the most likely triangles to become closed. After obtaining θ̄ , we sort the entries 
related to TO by their absolute value, and the top K entries are then the K most likely 
open triangles to become closed.

(20)Z = H (0)
1
⊤ +H (1)X (1) +H (2)X (2) = �⊤M
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�Remark 2̇  The most expensive step in Alg. 1 is updating the gradient, which takes an 
effort of O(NTd) , where d is the dimension of θ̄k . Thus, the complexity per iteration is 
O(NTd) as the rest of the operations incur at most a O(d) complexity. If we consider the 
worst case, that is, the algorithm runs until it hits its maximum number of iterations, 
kmax , the overall worst-case complexity of the algorithm is then O(NTdkmax).

To examine the effectiveness of Alg.  1, the third experiment entailed the “Enron_
email” [46] and “primary_school_contact” [47] datasets as well as several alter-
natives in [13] in terms of open triangle closure prediction. In the “Enron_email” 
dataset, the nodes denote the email addresses of different Enron employees, while in the 
“primary_school_contact” dataset, nodes are proximity-based contacts recorded 
by wearable sensors in a primary school. The training set contains the first 10% and 1% 
of timestamped events in the “Enron_email” and “primary_school_contact” 
datasets, respectively, while the testing set includes the remaining data. The proposed 
algorithm employs � = 10−3 , η = 10−4 and kmax = 500 for both experiments. The AUC 
metric on the first 100 nodes of the datasets for all methods is shown in Fig.  3. The 
curves showcase the effectiveness of the proposed model along with the logistic regres-
sion of Alg. 1 compared with recently proposed methods based on generalizing the link 
prediction scores for the task of triangle closure prediction.

6 � Conclusions
This paper proposes a principled manner to identify and predict the higher-order inter-
actions in networked data. Borrowing ideas from SEMs and Volterra models, a node 
signal in the network is modeled as a combination of its neighbor signals and a non-
linear combination of the signals in the groups (higher-order links) it belongs to. Some 
identifiability guarantees of the proposed second-order AGVM are then provided under 

Fig. 3  AUC values for different models on dataset a “Enron_email” and b “primary_school_
contact”, namely harmonic, geometric, and arithmetic means of the three edge weights in the open 
triangle, Adamic-Adar model, preferential attachment model, dyadic link prediction Katz and personalized 
PageRank (PPR), Common Neighbors, and Jaccard; see [13] (and references therein) for more details. When 
applicable, the subscripts w, u, and 3w stand for weighted, unweighted and 3-way, respectively



Page 16 of 21Yang et al. EURASIP Journal on Advances in Signal Processing          (2023) 2023:4 

three conditions that input/output data exhibit. Our model provides both expressibil-
ity for higher-order interactions, as well as interpretability for further understanding of 
the underlying network dynamics. Moreover, the proposed AGVM is particularized to 
handle two different applications, which are, topology identification in power systems 
and link prediction in social networks. The merits of the proposed algorithms relative 
to existing methods are corroborated through numerical tests using real data. This work 
also opens up interesting directions for future research, including avoiding the compu-
tational burden for large-scale networks as well as generalizations of the higher-order 
model to other challenging applications.

Appendix

Proof of Theorem 1  Let us consider the expansion

Rewriting the linear terms, i.e., terms related with X (1) , we obtain the system

where X := [(X (1))⊤ (X (2))⊤]⊤ and H := [(I −H (1)) | −H (2)].

Due to hypothesis that X  is full row rank, the unique least-squares solution for the ker-
nel matrices is obtained by HLS := ŴYX † . Defining Q := YX † and partitioning this 
matrix appropriately, i.e., Q = [Q1 ∈ R

N×N | Q2 ∈ R
N×M],

we obtain the following relations

Now, let us recall that Ŵ is a diagonal matrix and that H (1) is a hollow matrix, i.e., its 
diagonal is filled with zeros. Thus, it holds diag(ŴQ1) = 1,

which implies diag(ŴLS) := diag(Q1)
−1.

Finally, the estimates for the kernel matrices are given as

The proof is completed. � �

X (1) = H (1)X (1) +H (2)X (2) + ŴY .

HX = ŴY

I −H (1) = ŴQ1

−H (2) = ŴQ2.

H
(1)
LS := I − ŴLSQ1

H
(2)
LS := −ŴLSQ2.
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Proof of Theorem 2  First, let us rewrite the expansion as

Now, consider the ith column of both sides of the expression above, i.e., 
[(X (1))⊤]i = X⊤[H⊤]i.

Suppose there exists a vector hi , hi  = [H⊤]i , satisfying the same relation and with 
K = K1 + K2 nonzero entries. This implies that 0 = X⊤([H⊤]i − hi)

must hold. As [H]⊤i  and hi have at most K entries, their difference has at most 2K 
nonzero entries. Hence, if kr(X⊤) ≥ 2K , any possible subset of columns of X⊤ are lin-
early independent. Thus, ([H⊤]i − hi) = 0 holds. This contradicts the assumption, hence 
the result of the theorem holds. 

Proof of Theorem 3 Let us consider the expansion

 Notice that the jth column of X (2) is given by C
(

[X (1)]j ⊗ [X (1)]j
)

 where [X (1)]j is the jth 
column of X (1) , ⊗ is the Kronecker product. and C is a binary selection matrix picking 
the appropriate rows of the Kronecker product. Hence, we can express X (2) using the 
Khatri-Rao product ∗ , and X (1) as

By hypothesis, we have that X (1)�1 = 0 . Thus, by right multiplying the expansion by �1 
and reorganizing terms, we obtain

where Ỹ := Y�1 �= 0 (by assumption) and the identity X (2) = C(X (1) ∗ X (1)) has been 
used. Now, let us consider the ith equation of the above relation, i.e.,

where X̃ (2) := X (2)�1 ; h(2)i  and ỹi are the ith rows of H (2) and Ỹ  in column-vector form, 

respectively. As kr(X̃
(2)
) ≥ 2K2 + 1 and the number of nonzero elements per row in H (2) 

is bounded above by K2 by hypothesis, the above system has a unique solution (up to an 

(X (1))⊤ = [(X (1))⊤ (X (2))⊤]
[

(H (1))⊤

(H (2))⊤

]

= X⊤H⊤.

�

X (1) = H (1)X (1) +H (2)X (2) + ŴY .

X (2) = C

[

[X (1)]1 ⊗ [X (1)]1 [X (1)]2 ⊗ [X (1)]2 · · ·
]

= C(X (1) ∗ X (1)).

−H (2)X (2)�1 = ŴỸ

−H (2)C(X (1) ∗ X (1))�1 = ŴỸ

−(X̃
(2)
)⊤h(2)i = [Ŵ]iiỹi
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scalar ambiguity that does not affect the support) with such a sparsity level, i.e., sparsest 
solution, ∀ i . 

Proof of Theorem 4  Let us consider a particular realization of 
X̃
⊤ := [ 1√

T
X l 1√

T
Xb]⊤ = [X̃ l

X̃
b] ∈ {−1, 1}T×L and its Grammian G̃ := X̃X̃

⊤ . By the 

Gersgorin disc theorem [48], if |[G̃]ii − 1| < δd and |[G̃]ij| ≤ δo
s  for every i, j with j  = i 

and δd + δo = δ for some δ ∈ (0, 1) , then X̃ possesses RIP δs ≤ δ . Therefore, we can 
upper bound the probability of X̃ not satisfying RIP of value δ , Pr(δs > δ) , as

As G̃ is symmetric, we can use the union bound only for its unique entries to upper 
bound Pr(δs > δ) as

To show the result of the theorem, we proceed next to bound the probabilities above. 
The analysis of these probabilities is similar to the one in [24]. However, here we obtain 
results for a different distribution and for linear and bilinear components. To simplify 
the notation, we introduce the following partition for the Grammian matrix, i.e.,

where G̃ll := X̃
l
(X̃

l
)⊤ , G̃lb := X̃

l
(X̃

b
)⊤ and G̃bb := X̃

b
(X̃

b
)⊤.

Recalling that the raw moments for the inputs are given by

we obtain the following relations

and E{[G̃lb]ij} = 0 ∀ i, j. By a quick inspection, we notice that the terms of the first part 
of Pr(δs > δ) are identically zero, hence δd = 0.

To bound the required probabilities, we make use of the following Hoeffding’s inequality.

Lemma 1  (Hoeffding’s Inequality) Given t > 0 and independent random variables 
{xi}Ni=1 bounded as ai ≤ xi ≤ bi almost surely, the sum sN :=

∑N
i=1 xi satisfies

�

Pr

( L
⋃

i=1

{

|[G̃]ii − 1| ≥ δd
}

or

L
⋃

i=1

L
⋃

j=1,j �=i

{

|[G̃]ij| ≥
δo

s

})

.

L
∑

i=1

Pr

(

|[G̃]ii − 1| ≥ δd

)

+
L

∑

i=1

L
∑

j=i+1

Pr
(

|[G̃]ij| ≥
δo

s

)

.

G̃ =
[

G̃
ll

G̃
lb

(G̃
lb
)⊤ G̃

bb

]

mr =
{

0 r odd
1 r even

[G̃ll]ii = 1, E{[G̃ll]ii} = 1, E{[G̃ll]ij} = 0

[G̃bb]ii = 1, E{[G̃bb]ii} = 1, E{[G̃bb]ij} = 0
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Let us consider the off-diagonal elements of G̃ll . The related probability can be bounded 
as

as we consider that these entries are the result of a sum of T independent variables con-
tained in {−1, 1} . Similar bounds can be found for the other entries of G̃ , i.e.,

Recollecting the probabilities for all the entries, we obtain

for N > 2 . Considering δ = δo (as δd = 0 ) and setting C = 2 , for a γ ∈ (0, 1) and 
T ≥ 4C

(1−γ )δ2
s2 logN , we can simplify the above bound as
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