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1  Introduction
1.1 � Background and significance

Hyperspectral imaging is an analytical technique operating on images at different wave-
lengths for given geographical areas [1–3]. Exploiting a wealth of spectral–spatial infor-
mation, hyperspectral images (HSIs) have seen broad applications in areas such as urban 
mapping, environment management, crop analysis and food safety inspection [4–6]. 
Among a variety of hyperspectral imaging analysis for these applications, graph-based 
approaches have recently attracted substantial attentions due to its power in uncover-
ing the underlying spatial structures of HSI. Modeling pixels as nodes and their internal 
interactions as edges, graph models can be constructed to capture the geometric infor-
mation of hyperspectral images. Advanced tools, such as graph signal processing (GSP) 
[7] and graph convolutional networks (GCN) [8], can next be applied in HSI processing 
tasks, including coding [9], classification [10] and reconstruction [11].

Despite the successes in hyperspectral imaging analysis, most of the graph-based 
methods focus primarily on spatial geometry and consider the same graph connec-
tions for the multiple spectral bands, shown as Fig. 1b. However, such a single-layer 
graph model fails to explore different spectrum features of each individual band. For 
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example, Fig.  1a shows that different spectral bands may display different distribu-
tions of the pixel volumes, which could mean different spatial structures. The high 
dimensionality of HSIs and their heterogeneous underlying structures for different 
bands do not lend themselves to traditional single-layer graphs. A more generalized 
geometric model needs to be explored to represent HSI efficiently.

To capture the complex spectral–spatial interactions among pixels, recent atten-
tion has been attracted in a high-dimensional graph named as multilayer networks 
(also known as multilayer graphs) [12]. In a multilayer network, nodes are grouped 
into meaningful clusters called “layers” depending on their features. Different layers 
could have heterogeneous graph structures and interact with each other. An example 
of multilayer network (graph) is shown in Fig.  1c. Modeling each spectral frame as 
layers, the multilayer graph (MLG) can be an intuitive model to capture the spectral–
spatial interactions. Now, one major problem is how to generalize traditional graph-
based analysis to multilayer graphs and process the high-dimensional multilayer 
structures efficiently. To compensate, some works would represent each layer with an 
individual graph while neglecting the interlayer correlations [13]. Although one can 
also construct interlayer connections for spectral frames [9], the spectral (interlayer) 
and spatial (intralayer) connections are still processed separately [14], where certain 
joint spectral–spatial information in HSI can be neglected. Some works also consider 
a two-step analysis for MLG. For example, in [15], a two-step transform is proposed, 
where graph Fourier transform (GFT) is applied first to interlayer connections and 
then to interlayer interactions. However, the interlayer and intralayer connections 
are still processed separately in different graph Fourier spaces. For these reasons, one 
untackled challenge is how to capture such heterogeneous spectral–spatial structures 
for the MLG model of HSI in an integrative manner jointly. Recently, a tensor-based 
framework of multilayer graph signal processing (M-GSP) is proposed in [16] to ana-
lyze the inter- and intra-layer connections. Defining MLG spectral space based on 
tensor decomposition, MLG spectral analysis can be implemented for HSI, which 
allows both joint and individual analysis for spectral–spatial interactions in HSI by 
incorporating the information of inter- and intra-layer connections.

Our goal is to explore MLG in HSI processing and provide a guideline for analyzing 
the high-dimensional spectral–spatial correlations of HSI based on M-GSP. In this 
work, we revisit the M-GSP framework and introduce MLG-based spectral analy-
sis for hyperspectral imaging. More specifically, we first introduce the models and 

Fig. 1  Examples of graph models for HSI: a Stack of 3-band images in Indian Pines where six pixels/
superpixels are selected as examples of nodes; b A single-layer graph model for the 3-band HSI in (a) based 
on feature similarity; c Example of a multilayer graph model with 3 layers
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algebraic representation of HSI in M-GSP. Next, we develop M-GSP spectral analy-
sis to extract features for HSI analysis. To illustrate the power of MLG in HSI, we 
investigate the applications of M-GSP in the feature extraction for both unsupervised 
HSI segmentation and supervised HSI classification as guidelines of MLG-based HSI 
analysis. We summarize our contributions in this work as follows:

•	 We introduce an MLG model, together with an alternative singular space for HSI 
analysis.

•	 We provide guidelines of applying M-GSP in HSI and suggest several application 
examples with novel M-GSP algorithms:

–	 We develop an unsupervised HSI segmentation method based on the M-GSP 
spectral clustering as an application example.

–	 We derive an MLG-based method for supervised HSI classification by jointly uti-
lizing multi-resolution information. We further propose several novel schemes 
for decision fusion of the results from different resolutions.

We test our algorithms using the widely used Indian Pines dataset, Pavia University data-
set and Salinas dataset. Our experimental results demonstrate the strength of M-GSP 
in modeling some spectral–spatial structures in HSI, and the efficiency of the proposed 
HSI segmentation algorithms.

We organize the rest of this manuscript as follows. Starting with the introduction of 
MLG model and M-GSP representations of HSI in Sect. 2.1, we investigate unsupervised 
HSI segmentation based on M-GSP spectral clustering in Sect. 2.2. Next, we introduce 
the M-GSP framework of supervised HSI classification in Sect.  2.3, and further pro-
pose several methods for the decision fusion of different resolutions. Section 3 presents 
details on the experiments and results of the proposed methods. Finally, we summarize 
our works in Sect. 4.

1.2 � Related work

In this section, we provide an overview on graph signal processing and graph learning in 
hyperspectral images.

1.2.1 � Graph signal processing and graph convolutional networks

Graph signal processing (GSP) has emerged as an exciting and promising new paradigm 
for processing large datasets with complex structures, owing to its power to extract 
underlying relationships among signals [7, 17]. Modeling data points and their interac-
tions as a graph, a graph Fourier space can be defined according to the eigenspace of a 
graph representation for data analysis [18] including image processing [19], point cloud 
resampling [20] and video compression [21]. The framework of GSP is further general-
ized with fundamentals within the graph Fourier space, such as graph Fourier transform 
[22], sampling theory [23], graph wavelet [24] and stationary processing [25]. Beyond 
normal graphs, GSP has also been considered for high-dimensional graphs, such as mul-
tilayer graphs [16], hypergraphs [26] and simplicial complexes [27]. In addition, Graph 
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neural networks (GNN) and graph convolutional networks (GCN) have become impor-
tant tools in data analysis [8].

1.2.2 � Graph‑based hyperspectral image analysis

With the development of signal processing and learning over graphs, graph-based tools 
have attracted significant attentions in HSI analysis. In [9], a coding method is devel-
oped for HSI based on graph wavelets. Inspired by graph spectral transform, GSP-based 
methods have also been developed for the compression of hyperspectral scenes [28]. 
Exploring spectral–spatial features of HSI in graph spectral space, a feature extraction 
algorithm is proposed using collaboration-competition graphs [29]. In addition to basic 
GSP analysis, graph learning also has shown promise in hyperspectral imaging. For 
example, leveraging graph spectral convolution, GCN becomes an important tool in HSI 
applications, including HSI classification and reconstruction [10, 11, 30–32]. In addition 
to GCNs, a semi-supervised hyperspectral dimensionality reduction approach is intro-
duced in [33] by propagating labels on a learnable graph. In [34], a novel semi-super-
vised cross-modality learning framework is introduced for HSI analysis with a learnable 
manifold. Other graph-based learning frameworks for HSI include X-ModalNet [35] 
and Deep-hybrid [36]. Interested readers are referred to a recent survey [37] to explore 
further.

2 � Methods
In this section, we introduce the models and representations for hyperspectral images 
within the M-GSP framework. Then, we will introduce the M-GSP-based approaches for 
HSI unsupervised segmentation and supervised classification.

To avoid confusion of the term “network” because of its different meanings in com-
munication and deep learning, we will use the less ambiguous term of “multilayer graph” 
instead of “multilayer network” in the remaining of this work.

2.1 � Models and representations for hyperspectral images

We first introduce the MLG models and representations for HSI.

2.1.1 � Superpixel segmentation for HSI

Before venturing into the M-GSP analysis, we first introduce the superpixel segmenta-
tion for HSI. In traditional graph-based HSI analysis, image pixels act as nodes and their 
pair-wise distances are calculated to form a graph [38]. However, given a large number of 
pixels, it becomes inefficient and sometimes impossible to implement full graph-based 
analysis for pixel-based HSIs. Practically, since pixels within a small region may share 
similar features, grouping neighboring pixels into superpixels could be a more practical 
way for graph construction.

In general, a suitable superpixel segmentation algorithm for HSI classification should 
exhibit low computation complexity and accurate detection of the object bounda-
ries [39]. One category of superpixel segmentation in HSI uses image features such as 
brightness, color and texture cues, to estimate the location of segment boundaries. In 
[40], a superpixel estimation is developed by adopting the ultrametric contour map 
(UCM) approaches to the hyperspectral volumes. In [41], the band smoothness is jointly 
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considered with general features to group pixels. Graph-based segmentation approaches 
are also common in superpixel segmentation [42]. In [43], an eigen-based solution to 
normalized cuts (NCuts) is used for superpixel group. However, such eigen-based meth-
ods tend to suffer from time-consuming graph construction and matrix decomposition.

For more efficient superpixel segmentations, our work in this manuscript considers 
the entropy rate superpixel segmentation (ERS). Compared to other superpixel con-
struction algorithms, ERS is very efficient as it only takes about 2.5 seconds to segment 
an image of size 481× 321 , while achieving superior performances in terms of standard 
metrics such as undersegmentation errors [44]. In ERS [44], a dataset is modeled as a 
graph G = {V , E} , in which the pixels serve as the nodes V and their pairwise similarities 
are represented by edges E . Next, a subgraph A = {V ,L} is formed by choosing a subset 
of edges L ⊆ E , such that A consists of fewer connected components. To obtain such a 
subgraph, the problem can be formulated as

in which entropy rate term H(L) favors more compact clusters, and regularizing term 
T (L) punishes large cluster size. The balancing parameter is given by α = βKǫ where 
ǫ = 0.5 , K is the number of superpixels, and β is the calculated based on the maximal 
entropy rate increase. Interested readers may refer to [39,44] for more details about the 
design of H(L) and T (L) , as well as other details on ERS algorithm. Based on the objec-
tive function of Eq. (1), a greedy algorithm can be implemented to solve the problem.

ERS can segment pixels into superpixels for M-GSP with low complexity and good 
efficiency. From the constructed superpixels, we average the positions and features of all 
the pixels within each superpixel as its new position and feature for MLG construction. 
Note that, our goal is to provide a guideline of applying M-GSP in HSI and show M-GSP 
can achieve robust performance even with simple methods. We adopt ERS superpixel 
construction and averaging-based feature aggregation in this work. We plan to consider 
other advanced approaches for superpixel construction and feature generation in future 
works.

2.1.2 � Multilayer graph construction for HSI datasets

With superpixel-represented HSI, we now begin multilayer graph construction outlined 
as Fig.  2. An HSI X ∈ R

K×N , containing K spectral frames and N superpixels, can be 
modeled by a multilayer graph with M layers and N nodes in each layer. Specifically, the 
MLG consists of the following attributes

•	 Layers: To construct a MLG, we define layers based on the spectral bands. Since dif-
ferent spectral frames may share similar features, we first divide the bands into M 
clusters, i.e., Xi ∈ R

Ki×N , i = 1, · · · ,M and M
i=1 Ki = K  . Next, each cluster serves 

as one layer in the multilayer graph. Various clustering methods can generate fea-
tures Xi for layer i. For example, one can divide spectral band based on a range of 
wavelengths. To capture correlation across different bands more efficiently, the 
k-means clustering is applied for band division.

(1)L∗ = arg
L
max Tr{H(L)+ αT (L)}

(2)s.t. L ⊆ E ,
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•	 Nodes: Shown as Fig. 2, the multilayer graph can be viewed as embedding N super-
pixels {x1, x2, · · · , xN } into M layers {l1, · · · , lM} . Then, we can form a multilayer 
graph with M layers and N nodes in each layer. We characterize each superpixel 
using the divided attributes, i.e., Xα,j ∈ R

Ki for the superpixel j’s embedded node in 
layer α.

•	 Interlayer connections: For interlayer connections, each embedded node is con-
nected to its counterparts in other layers, i.e., fully connected for all the embed-
ded nodes of the same superpixel (multiplex structure [12]). Denote the weight of 
edge between superpixel j’s embedded node in layer β and superpixel i’s embedded 
node in layer α as Aαiβj . The weights of interlayer connections can be calculated as 

 where each term indicates link presence. One can also assign weights to Aαiβi based 
on the feature similarities. Note that, here we introduce the weighted multiplex 
structure as an example for interlayer connections. Our M-GSP framework is appli-
cable to various interlayer structures. Readers could construct graphs depending on 
the specific dataset and learning task.

•	 Intralayer connections: For the intralayer connections, we calculate the weights 
between the embedded nodes of superpixels i and j in layer α based on the local-
ized Gaussian distance as follows: 

(3)Aαiβj =

{

1, α �= β , i = j;

0, otherwise,

(4)Aαiαj =















e
−

||Xα,i−Xα,j ||
2
2

σ2 , dis1(Xα,i,Xα,j) < p,

dis2(p(α, i), p(α, j)) < q;

0, otherwise.

Fig. 2  Scheme of MLG-based unsupervised HSI segmentation
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 where σ , p and q are design parameters and p(α, i) is the position of the superpixel i 
in layer α.

Beyond the traditional Gaussian distance, our intralayer connections consider two 
conditions for determining the presence of links: (1) features between two nodes 
should be similar; and (2) two connected superpixels should be in a localized region 
in the HSI. The first condition ensures the similarity of connected nodes while the 
second condition emphasizes geometric closeness in the HSI. For an initial setup 
of the parameters, we define dis1 = ||Xα,i − Xα,j||2 , and define dis2 as the Euclidean 
distance between the respective centroids of two superpixels. In terms of designing 
parameters, we set p as the mean of all pairwise similarities and tune the parameters 
q, σ based on the specific dataset. Details of parameter selection in practical applica-
tions can be found in Sect. 3.2.

2.1.3 � Algebraic representations for HSI in M‑GSP

Following the aforementioned process, we can easily construct HSI as a MLG with M 
layers and N nodes in each layer. In M-GSP [16], such multilayer graph structure can 
be intuitively represented by a fourth-order tensor A ∈ R

M×N×M×N  defined as

where each entry is calculated as Eqs. (3) and (4). Similar to normal graphs, Laplacian 
tensor L = D− A ∈ R

M×N×M×N can be defined as the alternative representation of 
MLG, where D is the degree tensor with the node degrees as its diagonal entries [16].

Discussion Before we venture into the M-GSP spectral representation of HSI, we 
provide a discussion on the interpretation of tensor representation and its relationship 
to the aforementioned “embedding” process in Sect. 2.1.2. Given a set of superpixels 
X = {x1, x2, · · · , xN } , one can construct a vector zi ∈ R

N  to characterize the underly-
ing structural features of each superpixel i. Next, the interaction between two super-
pixels can be represented by a second-order tensor AX =

∑N
i,j=1 aijzi ◦ zj ∈ R

N×N  , 
where aij quantifies the relationship between superpixel i and j. Similarly, given a 
set of clustered bands (layers) L = {l1, l2, · · · , lM} , a vector zα ∈ R

M can capture the 
structural properties of layer α , and the connectivity between two layers could be rep-
resented by AL =

∑M
α,β=1 bαβzα ◦ zβ ∈ R

M×M . Following this approach, connectivity 
between the embedded nodes of superpixels in the layers can be represented by a 
fourth-order tensor to describe the features of superpixels and layers, i.e.,

where ◦ is the tensor outer product [45], wαiβj is the weight of connection between the 
superpixel i’s embedded node in layer α and the superpixel j’s embedded node in layer 
β . More specially, if we select the vector zi = [0, · · · , 0, 1, 0, · · · , 0]T in which the only 
nonzero element is the ith element (equal to 1) for both layers and superpixels, the 
fourth-order tensor becomes the adjacency tensor of the multilayer network. Interested 
readers may refer to [12, 16] for more details of the adjacency and Laplacian tensor.

(5)A = (Aαiβj) 1 ≤ α,β ≤ M, 1 ≤ i, j ≤ N ,

(6)A =

M
∑

α,β=1

N
∑

i,j=1

wαiβjzα ◦ zi ◦ zβ ◦ zj ∈ R
M×N×M×N ,
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2.1.4 � Spectral representations for HSI in M‑GSP

We now introduce the spectral representation of HSI in M-GSP. In M-GSP, multiple 
MLG spectra are introduced for different purposes. Since the MLG singular space is 
more robust when analyzing the order-wise features, we focus on the singular analysis 
in this work. More details of other MLG spectral analysis, e.g., M-GSP eigen-tensor 
analysis, can be found in [16]. With the adjacency tensor A ∈ R

M×N×M×N  , it can be 
decomposed via higher-order singular value decomposition (HOSVD) [46] as

where ×n is the n-mode product [45] and U(n) = [u
(n)
1 u

(n)
2 · · · u

(n)
In

] is a unitary 
(In × In) matrix, with I1 = I3 = M and I2 = I4 = N  . S is a (I1 × I2 × I3 × I4)-tensor of 
which the subtensor Sin obtained by freezing the nth index to α:

•	 < Sin=α , Sin=β >= 0 where α  = β.
•	 ||Sin=1|| ≥ ||Sin=2|| ≥ · · · ≥ ||Sin=In || ≥ 0.

The Frobenius-norms σ (n)
i = ||Sin=i|| is the n-mode singular value, with corre-

sponding singular vectors in U(i) . Since the representing tensor shows partial sym-
metry in the undirected MLG, there are two modes of singular spectrum, i.e., 
U(1) = U(3) = (fα) characterizes the features of layers and U(2) = U(4) = (ei) charac-
terizes the nodes. Renotating U(1) = U(3) as Fs = [f1 · · · fM] ∈ R

M×M and U(2) = U(4) 
as Es = [e1 · · · eN ] ∈ R

N×N  , Eq. (7) can be written as

With the singular tensors Fs and Es , the MLG singular transform (M-GST) for a MLG 
signal s ∈ R

M×N can be defined as

Suppose that γi ’s are the layer-wise singular values and σi ’s are the node-wise singular 
values. The M-GSP spectral filter can be designed as

where functions g(·) and f (·) are designed by the specific tasks.
Here, we mainly focus on fundamentals of singular analysis of the undirected multi-

layer graphs. For more details on other concepts, such as MLG Fourier transform and 
M-GSP filter design, interested readers are referred to [16].

2.2 � MLG‑based unsupervised HSI segmentation

In this part, we propose an unsupervised segmentation approaches based on M-GSP 
spectral clustering.

(7)A = S×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4),

(8)A = S×1 Fs ×2 Es ×3 Fs ×4 Es.

(9)š = FTs sEs ∈ R
M×N .

(10)s′ = Fs







g(γ1) · · · 0
...

. . .
...

0 · · · g(γN )






FTs sEs







f (σ1) · · · 0
...

. . .
...

0 · · · f (σN )






ET
s ,



Page 9 of 25Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:92 	

Spectral clustering is an efficient method for unsupervised HSI segmentation [38]. 
Modeling HSI by a normal graph before spectral clustering, significant improvement 
is possible owing to its power in capturing the underlying structures [47]. However, 
by representing HSI by a single-layer graph, distinction of individual spectral bands 
might be overlooked. To capture the heterogeneous spectral–spatial structure in HSI, 
we propose to segment the HSI based on the M-GSP spectral clustering.

Given a HSI, we construct the multilayer graph as Sect. 2.1.2. We then calculate the 
spectra Fs = [f1 · · · fM] ∈ R

M×M and Es = [e1 · · · eN ] ∈ R
N×N to characterize the bands 

and superpixels, respectively, according to Eq. (8). Since we aim to segment superpixels 
into meaningful clusters, we focus on the superpixel-wise spectrum Es . Arranging ei in 
the descending order of its corresponding singular value σi , i.e.,

where Si2=i ∈ R
M×1×M×N is the subtensor of the core tensor S in Eq. (7) by freezing 

the second-order i2 = i , we pick the first P singular vectors to preserve the most criti-
cal information for HSI based on the largest gap among the singular values. Clustering 
based on the P selected singular vectors and labeling each pixel within the superpixel, we 
can obtain a segmentation of the given HSI. The major process of MLG-based unsuper-
vised segmentation is provided in Algorithm 1.

2.2.1 � Discussion

Before we dive further to develop MLG-based supervised HSI classification, we provide 
a short conceptual discussion on the M-GSP singular tensors. In literature, SVD is an 
efficient method to obtain the spectrum for signal analysis, such as spectral clustering 
and PCA analysis. In MLG-GSP, the order-wise singular vectors can be interpreted as 
subspaces characterizing features of frames and superpixels, respectively. Since HOSVD 
is robust and efficient, transforming signals to the MLG singular space (M-GST) for the 
analysis of underlying structures can be a useful alternative for M-GFT. More discus-
sions on physical meaning of MLG spectrum can be found in [16]. To better understand 
the property of MLG-based singular tensors, we graphically illustrate the distribution 
of singular values compared to a graph-based model in Fig.  3. As shown, the energy 
of MLG-based singular values is more concentrated in the first few dominant singular 

(11)σi = ||Si2=i||,
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vectors in low frequency when compared against graph-based singular values. This 
energy concentration indicates a more convenient and low degradation implementation 
of spectral clustering within our proposed M-GSP framework.

2.3 � MLG‑based supervised HSI classification

In this part, we introduce the HSI classification based on M-GSP feature extraction.

2.3.1 � Single‑resolution of MLG‑based HSI segmentation

We start with the single-resolution of the superpixels. In the superpixel-based classifica-
tion, superpixel resolutions affect the final performance: finer resolution could capture 
more details, whereas coarse resolution captures the global information more efficiently. 
To benefit from both fine and coarse resolutions, we introduce the MLG-based spec-
tral clustering on the fine resolution to regroup superpixels into a coarse resolution (the 
number of regrouped superpixels should still be larger than the number of classes) and 
use the regrouped features as classifier inputs. More specifically, we first implement 
MLG-based spectral clustering to cluster superpixels. We then combine the features of 
all pixels within the same cluster as the regrouped features. Finally, we update the fea-
tures of each pixel by the regrouped features of its cluster and input the new features for 
classification. Here, we apply SVM to classify the regrouped features. The concept of our 
single-resolution HSI segmentation (MLG-SRC) is illustrated by Fig.  4, and the major 
steps are described in Algorithm 2.

Fig. 3  Distribution of superpixel-wise singular values in HSI dataset

Fig. 4  Scheme of single-resolution segmentation



Page 11 of 25Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:92 	

The benefits of the proposed MLG-SRC include:

•	 Against a single resolution of coarse superpixels, the MLG-SRC implements an analysis 
step over a fine resolution and is capable of capturing detailed features. Against a sin-
gle resolution of fine superpixels, the MLG-SRC substantially reduces pixel number and 
enhances robustness of the feature inputs to the classifier. Too many superpixels may 
make the features less distinctive and over-segment the regions, whereas too few super-
pixels may lead to boundary ambiguity.

•	 Traditional graph-based superpixel segmentation only captures a single-layer structure. 
M-GSP regrouping could reveal additional feature information across the heterogene-
ous multi-band structures.

•	 In traditional superpixel segmentation, the distinct regions are usually labeled as dif-
ferent superpixels. However, in MLG-SRC, superpixels from different regions may be 
grouped to the same cluster. Thus, regrouped features can involve similar pixels that 
cover a large distance and potentially generate more features.

•	 MLG-SRC can be easily integrated with other feature extraction or selection algorithms. 
Dimension reduction techniques such as PCA and ICA can potentially improve the 
performance when applied on features and feature groups generated by MLG-SRC.

2.3.2 � Multi‑resolution of MLG‑based HSI segmentation

1) Multi-resolution structure:
Although MLG-based spectral clustering can regroup small superpixels into larger ones 

and to benefit from both fine and coarse resolutions in MLG-SRC, the initial resolution set-
ting of superpixels still affects final performance (Fig. 5). As Fig. 6 shows, different initial 
resolutions can lead to different levels of accuracy. It is practically difficult to determine the 
optimal initial number of superpixels.
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Here, we consider a multi-resolution structure of classification (MLG-MRC) shown as 
Fig. 5. In this framework, we examine several different initial resolutions of superpixels. 
MLG-SRC is applied to each initial resolution to regroup the superpixels with a same 
reduction ratio in group numbers, i.e., 70% of initial superpixels. Applying SVM to clas-
sifying the multiple regrouped superpixels, we fuse the results from different initial reso-
lutions in final segmentation. The algorithm is described in Algorithm 3. Although the 
multi-resolution structures have been considered in literature, MLG-MRC exhibits two 
major distinctions. First, we apply a novel MLG-based clustering algorithm to regroup 
the superpixels and generate new features for classification. Second, we provide several 
novel decision fusion strategies, based on both confidence score and graph structures to 
be discussed below.

2) Decision fusion:
Majority voting (MV) [48] is a widely used fusion scheme for different resolutions. In 

this method, the label l of a specific pixel is determined by

Fig. 5  Scheme of MLG-based supervised HSI classification

Fig. 6  Accuracy of MLG-SRC over different initial resolutions
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where C is the number of distinct resolutions, lj is the label of the pixel in resolution j, 
wj is the voting strength, and δ(lj) = 1 if lj = i ; otherwise, δ(lj) = 0 . Note that a basic 
majority voting based on equal strength wj = C−1 applies the same strength to different 
resolutions which would ignore their differences. To improve decision fusion, we intro-
duce several novel strategies for the decision fusion.

•	 Validation Accuracy (VA): One intuitive way to design decision strength is based 
on validation accuracy. If the validation accuracy of a certain resolution is larger, 
it might also have better performance in the test data. Thus, we can assign larger 
weights to the resolution with better validation accuracy. Here, we can apply the vali-
dation accuracy directly as the weighting strength wj for resolution j to fuse the deci-
sion according to Eq. (12).

•	 Decision Value (DV): As one alternative, the decision probability for each class of 
pixels can be used as the weight. In multi-class SVM, the predicted label is deter-
mined according to the decision value p ∈ R

C , where C is the number of classes [49]. 
If the decision value is larger, it means that SVM has higher classification confidence. 
Thus, decision values can also describe the confidence levels of classification results. 
Let pij be the decision value of pixel i in jth resolution. We set the weight of lij to 

 Unlike validation accuracy which is the same for all pixels in each resolution, this 
weight based on decision value may vary even for pixels at the same resolution.

•	 Graph Total Variation (TV): Graph-based metrics can serve as weights. For a robust 
setup of superpixels, signals should be smooth and exhibit stable underlying graph 
structure. To this end, we introduce graph-based total variation to measure smooth-
ness. Given a superpixel segmentation j of a HSI with N superpixels and K spectral 
frames, we regenerate the features of each superpixel by averaging all pixels within. 
We then construct a single-layer graph based on Gaussian distance to measure 
similarity between different superpixels. Defining a Laplacian matrix by L = D− A 
where D is the degree matrix and A is the adjacency matrix, the total variation [7] of 
the feature signal sp ∈ R

N for the pth band frame over L is 

 where �max is the largest eigenvalue of L . Total variation describes the propaga-
tion differences between two steps. A smaller total variation indicates a more 
smooth signal. With K frames in total, final smoothness for resolution j is defined as 
SMj =

1
K

∑

p TVp . Since we prefer a larger weight for the smooth signal, the final 
weight of the resolution j is defined as 

(12)l = arg maxi

C
∑

j=1

wj · δ(lj),

(13)wij = max
k

pij(k).

(14)TVp = ||sp −
1

|�max|
Lsp||

2
2,

(15)wj = e−SMj .
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•	 Von Neumann Entropy (VN): The stability of the underlying graph structure can also 
indicate the confidence level of a specific superpixel resolution. In quantum theory 
[50], a pure state leads to a zero Von Neumann entropy. The entropy is larger if there 
are more mixed states in the system. Similarly, in our HSI analysis, since we prefer a 
stable system or a pure state on the underlying graph, the weight should be larger if 
the Von Neumann entropy is smaller. Here, we introduce the Von Neumann entropy 
to evaluate the graph stability [50]. Similar to total variation, a Laplacian matrix L 
can be defined with adjacency matrix A = (apq) for the jth resolution. First, define 
c = 1/(

∑

p,q apq) and rescale the Laplacian matrix 

 We can define the weight for the jth resolution as 

 based on the Von Neumann entropy 

Note that, here we provided several possible alternatives for the weights of decision 
fusion. The performances of the various proposed fusion strategies will be presented in 
Sect. 3.

3 � Results and discussions
We now test the performance of the proposed unsupervised segmentation and super-
vised HSI classification approaches in several well-known datasets to demonstrate the 
efficacy of M-GSP in HSI analysis. We also comparatively test the performance of vari-
ous different fusion decisions.

3.1 � Dataset

We test the performances of the proposed methods based on four public HSI datasets 
accessible from website1. The first HSI is Indian Pines (IndianP) scene originally gath-
ered by AVIRIS sensors over an agricultural field. The second HSI dataset is the Uni-
versity of Pavia (PaviaU) acquired by ROSIS sensor. Note that some of the samples in 
PaviaU contain no information and have to be discarded before analysis. Two other HSIs 
used in the experiments are the Salinas Scene (Salinas) and Salinas-A Scene (SalinasA) 
datasets, which were collected by the 224-band AVIRIS sensor over Salinas Valley, Cali-
fornia, and exhibit high spatial resolution. For each dataset, we have groundtruth classes 
for part of samples.

For these HSIs, Table 1 provides vital statistics and we provide visual illustration of the 
geometric plots in Figs. 7 and 8. Note that, Fig. 8 treats the unlabeled groundtruth sam-
ples as backgrounds with the same class label. Interested readers can find more informa-
tion on the HSI datasets at the website1.

(16)LG = c · (D− A),

(17)wj = e−hj .

(18)hj = −Tr[LG log2 LG].

1  http://​www.​ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​ral_​Remote_​Sensi​ng_​Scenes

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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3.2 � Unsupervised HSI segmentation

In this part, we first test the performance of unsupervised HSI segmentation. Although our 
proposed MLG-based method is amenable to various sophisticated clustering approaches, 
we find it easier to demonstrate it by using a basic spectral clustering scheme. Here, we 
mainly use comparison of basic methods, such as k-means clustering and GSP-based spec-
tral clustering, to demonstrate the power of M-GSP in processing the HSI datasets.

To validate the performance of different methods, we consider two experimental set-
ups. In the first scenario, we carry out unsupervised segmentation on all data samples 
and evaluate the overall visualization results of labeled samples. In the second stage, we 
process all data samples but focus on detecting boundaries (edges) of each cluster, in 
terms of both visualization results and numerical accuracy.

For fair comparison, we segment the HSI into N superpixels first before applying 
respective clustering algorithms thereupon. For the GSP-based method, we construct 
the graph W ∈ R

N×N using Gaussian distance

where si denotes the feature of ith superpixel. The threshold τ is set to the statistical 
mean of all pairwise distances among superpixels, and σ is tunable according to specific 
datasets. For M-GSP-based methods, we construct the multilayer graph with M = 10 

(19)Wij =

{

e
−

||si−sj ||
2
2

σ2 ,
∥

∥si − sj
∥

∥

2

2
≤ τ

0, otherwise

Table 1  Statistics of different HSI datasets

HSI Pixel size # of bands # of classes # of labeled 
samples 
(percentage)

Average of 
pixel # per class

Std of 
pixel # per 
class

IndianP 145× 145 200 16 10249 (48.75) 640.6 650.15

PaviaU 610× 340 103 9 42776 (20.62) 4752.9 5540.3

Salians 512× 217 204 16 54129 (48.72) 3383.1 2774.7

SaliansA 83× 86 204 9 5348 (74.92) 891.3 444.4

Fig. 7  Mean of HSI over spectral dimension

Fig. 8  Ground truth of class labels
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layers, and calculate the distance based on Eqs. (3) and (4). The parameter p in Eq. (4) is 
also set to the statistical mean of all pairwise intralayer feature distances, and q = 100 is 
used. We select the number of key spectra based on the largest gap of singular values. 
We summarize the results below.

3.2.1 � Visualization of HSI segmentation

By setting N = 500 for all tested HSIs, Figs.  9, 10, 11, 12 present the visualization 
results of the three HSI segmentations using different algorithm in comparison to the 
groundtruth data. These results show that, in general, the MLG-based spectral cluster-
ing (M-GSP) displays more stable segmentations than the single layer GSP-based spec-
tral clustering (GSP) as well as the k-means algorithm. Since it is harder to evaluate the 
details for too many classes, we can focus more on the exemplary Salinas A dataset. 
In particular, Fig.  8d shows six different groundtruth classes. However, both k-means 

Fig. 9  Segmented results of Salinas A

Fig. 10  Segmented results of Indian Pines

Fig. 11  Segmented results of Pavia University
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and GSP-based method failed to detect the class No.6, marked by orange in Fig. 9a and 
marked by yellow in Fig. 9b. Meanwhile, in Fig. 9c, the M-GSP method successfully iden-
tified all six classes and delivered results that are closer to groundtruth. Recall that, from 
Fig. 3, the MLG-based singular values are more concentrated, which provides the ben-
efits of robustness in spectral clustering. Results from “Indian Pines” and “Pavia Uni-
versity” also show similarly stronger performance for M-GSP. These results collectively 
demonstrate improved efficiency of M-GSP in unsupervised HSI segmentation.

3.2.2 � Boundary segmentation

Although unsupervised methods may generate meaningful segmentation different from 
groundtruth, we are still interested in how far the segmented results are from the true 
labels. Since it is inefficient to match all the clusters to the corresponding true labels, we 
focus on the boundaries of the segmentation. In the boundary detection, we set N = 100 
and define the accuracy as

where T is the number of pixels in the HSI, Li is the true labels of edges for the ith 
pixel, L̂i is the estimated labels, and 1(·) denotes the indicator function. The boundary 
results are visualized in Figs.  13, 14, 15. Since we consider the unlabeled samples in 
the clustering process, there can be more details for the HSIs than their correspond-
ing groundtruth, especially for Pavia University and Indian Pines. However, we can still 
derive some benefits of M-GSP in boundary detection. As Fig.  15 shows, M-GSP can 
generate clearer edges, obviously on the top half image, while GSP and k-means appear 
to over-segment. We also present the accuracy defined in Eq.  (20) as Table  2. These 
results show that M-GSP performs better than k-means and GSP. They demonstrate the 

(20)Acc =

T
∑

i=1

1(Li = L̂i)/T ,

Fig. 12  Segmented results of Salinas

Fig. 13  Boundaries in Indian Pines
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efficiency of MLG models in HSI analysis. Note that we do not claim M-GSP to be the 
best approaches for all scenarios. Without impractically requiring hindsight to fine-tune 
various parameters for each HSI dataset to generate “the best results,” M-GSP delivers 
consistently strong and stable segmentation results for various HSI datasets by relying 
on some basic guidelines for selecting parameters.

3.3 � Supervised HSI classification

We next test M-GSP in supervised HSI classification.

3.3.1 � Overall accuracy

Applying M-GSP-based spectral clustering as feature extraction of HSI, we compare 
the proposed algorithms with several well-known feature extraction algorithms, includ-
ing NPE [51], LP-NPE [52], LDA [53], LFDA [54], SPCA [39] and MSPCA [39]. For the 
proposed MLG-SRC and MLG-MRC, we regroup the superpixels to 70% of the origi-
nal superpixel number, before extracting features based on M-GSP. Here, we show the 
results of MLG-MRC according to different decision values (fusion weights). More anal-
ysis of different fusion strategies will be illustrated further in Sect. 3.3.2.

The overall accuracy under different numbers of training samples per class (TS/C) is 
shown in Table 3. In this experiment, parameters of multiple resolutions are tuned for 

Fig. 14  Boundaries in Pavia University

Fig. 15  Boundaries in Salinas

Table 2  Accuracy of segmentation boundaries

The best performances are marked in bold

Data k-means GSP M-GSP

IndianP 0.8257 0.8298 0.8441
Salinas 0.9208 0.9285 0.9409
PaviaU 0.9070 0.9088 0.9255
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different HSIs. From the test results, the proposed MLG-MRC exhibits a superior overall 
performance, especially for those scenarios with fewer classes.

3.3.2 � Analysis of different fusion strategies

Now, we analyze the performance of different fusion strategies. Since MSPCA [39] also 
fuses multiple resolutions of superpixels, we investigate our proposed fusion methods in 
combination with both MSPCA and MLG-MRC.

We fuse the results from 9 resolutions, i.e., Ni ∈ [25, 35, 50, 70, 100, 140, 200, 280, 400] , 
for all comparative methods. The test accuracy is shown in Table 4. As shown, our pro-
posed weight approaches lead to significant improvement over the basic majority voting 
(VT) for MSPCA. Compared to SVM-based weights, the graph-based weights are bet-
ter for MSPCA since additional geometric information is considered. For MLG-MRC, 
the proposed weights show a slight improvement, which suggests that MLG-MRC is 
less sensitive to different decision strengths. To better understand the effect of different 

Table 3  Overall accuracy of different HSI segmentation

The best performances are marked in bold

 Data  TS/C  NPE  LPNPE  LDA  LFDA  SPCA  MSPCA  MLG-SRC  MLG-MRC

 IndianP  5  0.5368  0.6725  0.5995  0.5962  0.7734  0.7868  0.7432  0.7936
 10  0.7049  0.7645  0.6930  0.6491  0.8576  0.8712  0.8604  0.8773
 20  0.7987  0.8351  0.7656  0.7401  0.9390  0.9569  0.9226  0.9545

 PaviaU  5  0.6835  0.7612  0.7243  0.7467  0.7439  0.7849  0.7561  0.8236
 10  0.8063  0.8255  0.8124  0.7895  0.8342  0.9167  0.8398  0.8896

 20  0.8569  0.8856  0.8500  0.8698  0.8938  0.9537  0.8697  0.9432

 Salinas  5  0.8486  0.9209  0.8903  0.8883  0.9442  0.9500  0.9499  0.9588
 10  0.8899  0.9452  0.9146  0.8277  0.9678  0.9815  0.9614  0.9863
 20  0.9069  0.9589  0.9372  0.9356  0.9837  0.9904  0.9840  0.9915

Table 4  Performance of different fusion strategies

The best performances are marked in bold

TS/C MV VA DV VN TV

Indian Pines

MS- PCA 5 0.6663 0.7241 0.7334 0.7263 0.7265

10 0.7476 0.7778 0.7829 0.7661 0.7661

MLG- MRC 5 0.7164 0.7338 0.7260 0.7271 0.7295

10 0.8220 0.8253 0.8253 0.7886 0.7823

Pavia University

MS- PCA 5 0.7078 0.7440 0.7317 0.7798 0.7712

10 0.8447 0.8541 0.8553 0.8588 0.8500

MLG- MRC 5 0.8162 0.8140 0.8240 0.7977 0.8085

10 0.8549 0.8586 0.8605 0.8459 0.8435

Salinas

MS- PCA 5 0.8521 0.9256 0.9349 0.9655 0.9634

10 0.9662 0.9774 0.9718 0.9789 0.9765

MLG- MRC 5 0.9469 0.9456 0.9485 0.9844 0.9622

10 0.9872 0.9874 0.9873 0.9857 0.9942
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weights, we also present decision strengths over different numbers of superpixels in 
Fig. 16. In Fig. 16a, b, the graph-based weights favor low resolution to form baselines and 
use high resolutions to interpolate details. Thus, for HSIs with larger area of segmented 
groups, such as Salinas, the graph-based weights generate superior performances. Using 
SVM-based weights, we find no consistent trend among different superpixels, and the 
results vary for different datasets. Since the MLG-based methods have already incorpo-
rated the underlying geometric structures, they continue to display robust results even 
when using SVM-based weights.

3.3.3 � Robustness in noisy datasets

We further evaluate the robustness of proposed methods in noisy environment. More 
specifically, we consider two types of noise models: (1) pixel-dependent noise where 
pixel noise variance depending on corresponding pixel data value; and (2) non-pixel 
dependent noise where noise variance is defined by mean of all pixel values. These two 
different noise models describe two different practical sensing noises. We also test both 
uniform noise and Gaussian noise. From the test performances shown in Table  5, we 
find the newly proposed MLG-based methods to be less sensitive to various types of 
sample noises.

3.3.4 � Complexity

In practice, the M-GSP analysis usually consists of two parts: 1) calculation of the MLG 
spectra; and 2) implementation of algorithms with the calculated spectra for specific 
tasks. In this section, we evaluate the complexity of M-GSP analysis compared with tra-
ditional graph-based methods and signal processing approaches.

•	 Graph Construction and Spectrum Calculation: We compare the complexity of spec-
tra calculation for M-GSP with several typical graph models for multilayer feature 

Fig. 16  Decision strengths over different numbers of superpixels
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extraction. Suppose we have an HSI with M clustered bands and N superpixels. The 
first step is to calculate the graph spectra for interlayer connections (cross-band) and 
intralayer connections (spatial), respectively. For the single-layer graph model, one 
method (2-Way GSP [15]) is to consider all spectrum bands with the same graph 
structure, and each superpixel has the same cross-band interactions. Note that 
the bands are treated as nodes for cross-band interactions in this model. Now, the 
HSI can be represented by one M ×M matrix for cross-band interactions and one 
N × N  matrix for spatial connections. Eigen-decomposition is then implemented 
for these two matrices, respectively. However, such model assumes the same graph 
structure for all bands which is unable to represent different spatial connections 
for different bands. To compensate, one can also construct individual graphs for 
each band (Individual Graphs). If one also considers the same cross-band connec-
tions as 2-way GSP, the HSI can be represented by M N × N  matrices for spatial 
connections and one M ×M matrix for cross-band interactions. Moreover, if dif-
ferent cross-band connections are considered for different superpixels (Complex 
Individual Graphs), the HSI could be represented by M N × N  matrices for spatial 
connections and N M ×M matrices for cross-band connections. Here, we only pro-
vide comparison with several typical models, leaving further comparison to future 
works. In M-GSP, we allow different intra-layer connections for each layer, and flex-
ible interlayer interactions. No matter how the interactions are defined, HSI is always 
represented by one M × N ×M × N  tensor. The structures of interactions are rep-
resented by the entry values, and the identification of layers/nodes is reflected by 
the index of each entry in the tensor. We then use HOSVD to obtain all the spectra. 
To compare the complexity, we test different models in the Pavia University dataset 
and set M = 10 . We test the model by using Matlab programs on a desktop (Intel 

Table 5  Overall accuracy in noisy environment

The best performances are marked in bold

(Uniform/Gaussian) Indian Pines Salinas

TS/C Noise level MPCA MLG-MRC MSPCA MLG-MRC

Setup 1

5 5% 0.7140/0.7012 0.7377/0.7493 0.8592/0.8670 0.9231/0.9159
10% 0.7110/0.6702 0.7135/0.7276 0.8341/0.8421 0.8956/0.9023
15% 0.6868/0.6507 0.7133/0.7215 0.8107/0.8215 0.8815/0.8975

5 10 5% 0.7613/0.7753 0.8033/0.8056 0.9509/0.9647 0.9632/0.9684
10% 0.7522/0.7498 0.7788/0.7984 0.9408/0.9431 0.9445/0.9491
15% 0.7317/0.7382 0.7544/0.7845 0.9381/0.9368 0.9421/0.9317

Setup 2

5 5 5% 0.6839/0.6740 0.7023/0.6898 0.8591/0.8679 0.9240/0.9050
10% 0.6640/0.6501 0.6764/0.6647 0.8471/0.8512 0.9045/0.8878
15% 0.6413/0.6247 0.6687/0.6427 0.8317/0.8421 0.8915/0.8775

5 10 5% 0.7579/0.7408 0.8022/0.7810 0.9682/0.9621 0.9735/0.9633
10% 0.7409/0.7333 0.7800/0.7762 0.9521/0.9450 0.9547/0.9532
15% 0.7208/0.7235 0.7695/0.7584 0.9437/0.9416 0.9305/0.9241
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Xeon CPU @ 3.50GHz, 32 GB RAM), where eigen-decomposition is implemented 
for single-layer graphs, and HOSVD in the tensor toolbox2 is used for M-GSP. The 
runtime of spectra calculation with graph construction under different N is shown 
as Table 6. Since 2-way GSP neglects the different structures for different layers and 
superpixels, it requires the least complexity but provides less information. It is unable 
to represent the heterogeneous graph structures for different bands. If different inter-
layer and intralayer connections are considered, M-GSP has similar or slightly better 
complexity than graph-based models. Moreover, we only need to use one tensor to 
represent the HSI, which indicates that M-GSP provides a more general representa-
tion for different HSIs and MLGs.

•	 Implementation of M-GSP Algorithms: Since our proposed M-GSP processing can 
be flexibly integrated with other dimension reduction methods to reduce complex-
ity, we find it unnecessary to provide evaluation of computation complexity for vari-
ous setups. In general, the original MLG-MRC has a similar runtime as MSPCA. For 
example, under the same settings of multi-resolutions as Sect. 3.3.1 in Indian Pines 
HSI with tuning parameters of SVM among 15 sets, the runtimes for MLG-MRC 
and MSPCA are 28.21 seconds and 25.37 seconds, respectively. These and other tests 
indicate similar computation complexity for methods based on M-GSP and PCA.

3.3.5 � Impact of regrouping ratio

To provide a better interpretation of M-GSP regrouping, we measure the performance 
under different regrouping ratio. We compare with SPCA and MPCA as an example, 
where TS/C = 5 . The majority voting is applied for multi-resolution methods. We do 
not regroup the features of SPCA and MPCA via M-GSP. The results are shown as Table. 
7. From the results, we proposed methods have better performance when the ratio is 
above 30%. When the ratio is too small, some resolutions may have few clusters which 

Table 6  Running time of graph construction + spectra calculation (Seconds)

# of matrices/
tensors

N=100 N=500 N=1000

M-GSP 1 0.082 2.319 13.94

2-Way GSP 2 0.007 0.122 0.509

Individual Graphs (GSP) M+1 0.117 2.405 11.62

Complex Individual Graphs (GSP) M+N 0.118 2.412 12.57

Table 7  Performance under different regrouping ratio

Regrouping ratio 0.8 0.7 0.6 0.5 0.4 0.3 0.2

MLG-SRC 0.7107 0.7806 0.7857 0.7275 0.6427 0.6831 0.5716

MLG-MRC 0.8018 0.8419 0.8044 0.7916 0.7475 0.5522 0.4218

SPCA 0.6985

MPCA 0.6990

2  https://www.tensortoolbox.org/
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reduce the accuracy of classification. In general, the ratio can be set around 60% to 
achieve a robust performance.

4 � Conclusions
This work introduces M-GSP in hyperspectral imaging processing. To capture heteroge-
neous underlying structures within different but highly correlated spectrum frames in 
hyperspectral images (HSIs), we propose to represent HSIs via multilayer graphs. Analyz-
ing singular spectra of adjacency tensor for the multilayer graph, we first develop a MLG-
based spectral clustering for unsupervised HSI segmentation. Leveraging features extracted 
with M-GSP, we propose two algorithms for supervised HSI classification. We also consider 
several novel decision fusion strategies for multiple resolution superpixel analysis. Our 
experimental results demonstrate the robustness and efficiency of the proposed methods, 
successfully showcasing the power of M-GSP in HSI analysis.

Future direction Advances in tensor algebra and multilayer graph theory present more 
opportunities to explore M-GSP and its applications in hyperspectral imaging. One inter-
esting topic is the construction of multilayer graphs efficiently for HSIs. In this work, we 
provide an easy-to-implement multilayer graph construction based on Gaussian distance, 
to explore the power of M-GSP. More efficient multilayer graph construction could lead to 
further performance gains. Potential approaches include those based on feature similari-
ties and graph spectral properties [55]. Another promising direction is the use of M-GSP 
transformation and spectral filters in HSI analysis. More analytical tools, such as multilayer 
graph filter banks and sampling theory, can be introduced for HSI processing, including 
the extraction of HSI’s underlying spatial-frequency relationship. Other interesting future 
directions include the development of MLG convolutional networks and the integration of 
M-GSP with deep neural networks.
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