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1  Introduction
1.1 � Background and significance

Video has become one of the most popular media because it can capture dynamic events 
and naturally attract human sight and hearing. Furthermore, the explosion of videos on 
the Internet has made efficiently and accurately searching for videos a significant chal-
lenge [1].

This paper focuses on the tasks of video-to-text and text-to-video retrieval. The task of 
video-to-text retrieval pays attention to finding the text candidate that best describes the 
video query among a collection of text candidates. Additionally, text-to-video retrieval 
means that given a query in the form of text modality, the aim is to search for the videos 
best described by the text query (See Fig. 1). In practice, a ranking list of all the video 
candidates is returned for each text query, and the video corresponding to the text query 
is ranked as high as possible.

Traditional methods [2–6] for the retrieval problem mainly focus on semantic concept 
search, where semantic concepts are pre-defined. However, since semantic concepts 
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are limited and unstructured, they cannot accurately search for different fine-grained 
contents and utilize temporal information. For example, “a dog chases a cat” and “a 
cat chases a dog” will have the same semantic concepts, while the order of objects in 
the caption is potentially significant. In addition, a query of “a black dog chases a white 
cat” is nearly impossible to obtain satisfied retrieval results for a semantic-based video 
retrieval method. Although the semantic-based method has certain interpretability, how 
to specify a set of relevant and detectable semantic concepts for video and text features 
remains unsolved.

To solve the limitations of semantic-based methods, researchers pay more attention 
to utilizing original sentences that contain rich contextual information than semantic 
concepts. At present, the main methods for text–video cross-modal retrieval map video 
and text into a common latent space, where the cross-modal similarity can be measured.

For video representations, a common method is to first extract frame features from the 
video through a pre-trained convolutional neural network (CNN) model and then com-
bine them by max pooling [7, 8], mean pooling [9, 10], recurrent neural network (RNN) 
[11, 12], NetVLAD [13], or self-attention mechanisms [14, 15].

For text representations, bag of words remains popular [16, 17], while deep networks 
are in increasing use. For each word of a sentence, a dense vector is first generated by 
multiplying its one-hot vector with a pre-trained word embedding matrix. Then, they 
are combined to generate a sentence-level representation by NetVLAD [8, 13], max 
pooling [7], Fisher Vector [18], RNN [9, 19], or graph convolutional network [15].

W2VV++ [20] leverages three text representations, including bag of words, word-
2vec, and gated recurrent unit (GRU), to form a high-dimensional sentence-level rep-
resentation. Nevertheless, W2VV++ only utilizes the meaning pooling strategy over 
video frames. Dong et al. [21, 22] utilize a multi-level encoding strategy to extract multi-
ple video representations and combine them as a final video representation.

Fig. 1  Illustration of text-to-video retrieval: given a text query, retrieve the corresponding video from the 
database
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Although common space learning methods give superior performance to semantic-
based methods, each dimension of the common latent space lacks interpretability. Com-
bining the advantages of the common latent space and the semantic concept space can 
improve the cross-modal retrieval performance and increase the interpretability of the 
model. Furthermore, unlike Dual Encoding [22], we measure multiple similarities in dif-
ferent latent spaces in addition to taking advantage of common latent space and seman-
tic concept space.

In this paper, we make the following contributions.

•	 We design a level-wise aligned mechanism to align representations between videos 
and sentences in different levels. Specifically, we first exploit multi-level encoders to 
extract global, local, temporal, and spatial–temporal information in videos and text, 
respectively. Then, they are mapped into four different latent spaces and one seman-
tic space.

•	 We combine the advantages of common latent space and semantic concept space to 
improve the cross-modal retrieval performance and increase the interpretability of 
our model. Specifically, we average four cross-modal similarities of different levels in 
four different latent spaces. Then, we combine it with the similarity in the semantic 
concept space.

•	 Extensive experiments are conducted on three widely used datasets including MSR-
VTT [23], VATEX [24], and TRECVID AVS 2016-2018 [25–27]. The experimental 
results of our approach give superior performance to the state-of-the-art approaches.

The rest of this paper is organized as follows. Some related work is introduced in 
Sect. 1.2. We present our proposed method and experimental setup in Sects. 2 and 3, 
respectively. Section 3.4 provides the experimental results. Finally, Sect. 4 concludes our 
work.

1.2 � Related work

This section reviews some previous work on language and video representations 
learning, and video–text retrieval, including semantic space learning and latent space 
learning.

1.2.1 � Language representations

Bag of words [28] and word2vec [29] are earlier work on text representations, which can-
not capture the contextual information in a sentence. Long short-term memory network 
(LSTM) [30] is one of the first deep models to overcome this shortcoming. Recently, the 
transformer architecture [31] has given impressive performance in sentence represen-
tations by leveraging a self-attention mechanism, where every word in a sentence can 
focus on all other words. The transformer architecture consists of alternately stacked 
self-attention layers and fully connected layers, which form the basis of the popular lan-
guage architecture BERT [32]. Burns et al. [33] leverage different word embeddings and 
language networks (LSTM, BERT, etc.) to analyze their performance in text–video tasks. 
They believe that the performance of the pre-trained and frozen BERT architecture is 
relatively poor than that of an average embedding architecture or the LSTM.
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1.2.2 � Video representations

A common method to extract video representations is to extract each keyframe repre-
sentation by some pre-trained CNN models and then combine them by max pooling 
or mean pooling. However, these ways cannot attend the temporal information in the 
video. In order to incorporate spatial and temporal representations from still frames and 
motion between frames, Simonyan et al. [34] leverage a two-stream model to perform 
action recognition in videos. Besides, I3D [35] utilizes a two-stream inflated 3D Con-
vNet to better attend the temporal information in a video. Xie et al. [36] proposed an 
alternative approach, which replaces 3D convolutions with spatial convolutions in 2D 
and temporal convolution in 1D.

1.2.3 � Semantic space learning

[37, 38] create a concept vector for each test keyframe by concatenating 1000 ImageNet 
concepts and 345 TRECVID SIN concepts and translate a textual query to relevant pre-
defined concepts by a set of complex linguistic rules. [39] builds a much larger semantic 
concept bank containing over 50,000 concepts by utilizing a pre-trained CNN architec-
ture and support vector machines (SVMs). [40] recognizes ImageNet hierarchies to gain 
about 13k concepts and utilizes VideoStory [16] to generate semantic representations. 
Since semantic concepts are limited and unstructured, it is hard to represent the rich 
contextual information within both sentence and video. However, encoding video and 
sentences into concept vectors makes the model somewhat interpretable.

1.2.4 � Latent space learning

The methods based on common latent space first extract representations from video and 
sentence, respectively, and then project them into a latent space, where the cross-modal 
similarity can be directly calculated. For these methods, what matter are how to extract 
rich representations from video and sentence separately and measure the video–text 
similarity. Therefore, we review recent progress from these three aspects.

For video representations, a common method is to first extract frame representations 
from the video through some pre-trained CNN models and then combine them along 
the temporal dimension into a video-level representation by mean pooling [9, 10, 13, 41, 
42] or max pooling [7, 15, 18].

Yang et al. [14] first leverage GRU to explore the temporal relationship between video 
keyframes and then use a self-attention mechanism to capture the representation inter-
action among keyframes. Additionally, [7, 9, 13] leverage motion features extracted from 
the I3D model [35], and audio features generated by the audio CNN model [43] as part 
of the visual representations. Nevertheless, these methods still leverage max pooling, 
mean pooling, or NetVLAD to combine various features into a single feature vector per 
video.

For text representations, word2vec models are widely used, which are pre-trained 
on large-scale text corpora. Specifically, for each word of a sentence, a dense vector 
is first generated by multiplying its one-hot vector with a pre-trained word embed-
ding matrix. Then, they are combined by NetVLAD, max pooling, or Fisher Vector. 
Although they have achieved good performance, they cannot capture the sequential 
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information in a sentence. Recurrent neural networks (RNNs) are effective in employ-
ing sequential information. Moreover, variants of RNN, such as LSTM, bidirectional 
LSTM, GRU, and bidirectional GRU, are utilized in [9, 19, 44, 45], respectively. For 
example, in [9], the sentence representations are from the last hidden state of the 
GRU. [42] and [20] utilize three text representations, including BoW, word2vec, and 
GRU. However, these methods only leverage mean pooling to obtain the video repre-
sentation. HGR [15] utilizes a hierarchical decomposition of a sentence to explore the 
relationship between words, which requires the sentence to be well annotated with 
certain linguistic rules.

For video–text similarity learning, recent methods map video features and text fea-
tures into a common latent space where the text–video cross-modal similarity can 
be computed by cosine similarity and leverage various triplet ranking losses to train 
their models. In addition to the triplet ranking loss, reconstruction loss and contras-
tive loss are utilized to learn the latent space in [46]. Recently, an increasing num-
ber of methods learn several latent spaces instead of just learning one latent space. 
Mixture of embedding experts (MEE) [18] computes the final similarity by a weighted 
combination between sentence and multiple video latent spaces, one for each input 
including motion, appearance, face, or audio representation. HGR [15] assumes a 
hierarchical decomposition of the video and text and projects them into three spaces, 
including events, actions, and entities.

Unlike the existing methods that learn semantic concept space or common latent 
space, our approach simultaneously learns these two spaces, which takes advantage of 
the interpretability of semantic concept space and the high performance of common 
latent space. We separately represent video and text as four complementary represen-
tations, including global, temporal, local, and spatial–temporal representation, and 
learn one common latent space for each representation. Besides, we also map spatial–
temporal representation into a semantic space. Thus, our proposed method can align 
different levels of information in various spaces.

Fig. 2  The framework of our proposed LADN method. LADN first utilizes multi-level encoders to extract 
global, temporal, local, and spatial–temporal information in videos and text. Then, they are mapped into four 
different latent spaces and a semantic space. Finally, LADN aligns different levels of information in various 
spaces
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2 � Methods
As illustrated in Fig. 2, we put forward an architecture, named level-wise aligned dual 
networks (LADNs), to improve the performance of text–video cross-modal retrieval.

2.1 � Video encoder

Following the setting in [22], we extract n frames at 0.5 second intervals from a video. 
For each frame, we utilize a pre-trained ImageNet CNN to extract deep represen-
tation. Therefore, the video is represented as a sequence of frame representations 
{v1, v2, ..., vn} , where vt denotes the representation of the t− th frame.

2.1.1 � Global‑aware encoder

Given a video, we take the average of all frame features as f (v)1  , which denotes a visual 
pattern repeatedly appearing in the video clip.

2.1.2 � Temporal‑aware encoder

We utilize a bidirectional gated recurrent units (BiGRU) [47] to extract temporal 
information from video frame features. The BiGRU consists of two GRU: One encodes 
frame features in a forward direction, and the other is backward. At a specific time 
step t, the hidden feature of the forward GRU is expressed as 

−→
ht  and the one of the 

backward GRU is expressed as 
←−
ht  . We obtain the BiGRU output by averaging 

−→
ht  and 

←−
ht  as h(v)t  . Then, the temporal-aware feature f (v)2  is obtained by averaging h(v)t  along the 
time dimension.

2.1.3 � Local‑aware encoder

The temporal-aware feature cannot extract the subtle difference between each frame. 
Therefore, we leverage 1D CNN [48] following BiGRU to extract local-aware patterns 
in the video. The output of BiGRU is represented as H (v) = h

(v)
1 , h

(v)
2 , . . . , h

(v)
n  , which 

is the input of 1D CNN. Conv1dk ,r denotes 1D convolutional module including r fil-
ters of size k. The activation function of 1D CNN is ReLU. Next, we utilize max pool-
ing to get a fixed length r. The above process can be expressed as follows,

We set k = 2, 3, 4, 5 to generate multi-scale local-aware representations and concatenate 
them as f (v)3 .

2.1.4 � Spatial–temporal encoder

f
(v)
1  , f (v)2  , and f (v)3  naturally extract global, temporal, and local information in video 

content, respectively. We assume the three patterns are complementary to each other, 
with some redundant information. Therefore, we concatenate the three patterns as 
f
(v)
4  , which captures spatial and temporal information in the video.

(1)c
(v)
k = max_pooling

(

ReLU
(

Conv1dk ,r

(

H (v)
)))

.
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2.2 � Text encoder

Similar to the encoding strategy for the video modality, the text modality also utilizes 
four different encoders to extract different information.

Given a sentence s of length m, we utilize classical bag-of-words features to represent 
it. Let f (s)1 = [w1,w2, ...,wm] denote the global feature of a sentence, where wm denotes 
the number of occurrences of the m− th word.

We leverage a word embedding matrix to convert each word from a one-hot vector 
into a dense vector. The matrix was initialized by a word2vec model [42] trained on Eng-
lish tags of 30 million Flickr images. Next, we can obtain a temporal-aware representa-
tion f (s)2  like that used by the temporal-aware encoder in the video.

Similar to the video counterpart, we use four 1D CNN modules with k = 2, 3, 4, 5 to 
generate multi-scale representations. Their outputs are concatenated as local-aware fea-
ture f (s)3 = [c

(s)
2 , c

(s)
3 , c

(s)
4 , c

(s)
5 ].

We concatenate f (s)1  , f (s)2  , and f (s)3  as f (s)4  , which means the spatial and temporal fea-
ture of a sentence s.

2.3 � Latent space learning

Given the video features f (v)1  , f (v)2  , f (v)3  , f (v)4  and the text features f (s)1  , f (s)2  , f (s)3  , f (s)4  in dif-
ferent levels, we transform them into four different latent spaces, respectively, as follows,

where x ∈ {v, s} , i = 1, 2, 3, 4 , Wi is the parameter of a fully connected layer, and bi is its 
bias item, and BN denotes a batch normalization layer. Then, we utilize cosine similarity 
sim_lati(v, s) to calculate the video–text similarity between φ(v)

i  and φ(s)
i .

The improved triplet ranking loss is leveraged to make relevant video–text pairs closer 
than irrelevant pairs during the training phase. We define the bidirectional ranking loss 
for each level as follows,

where s+ and s− denote a positive sentence sample and a negative one for a video clip v, 
respectively. v+ and v− denote a positive video sample and a negative one for a sentence 
s, respectively. And m1 , m2 are the margin. In addition, the negative sample is the most 
similar yet negative for the anchor v or s. By taking the average of ranking losses in four 
different levels, the final loss in the latent space can be denoted as L_lat(v, s).

2.4 � Semantic space learning

Following the setting in [22], during the training phase, we put all the sentences in the 
training set together and count the number of occurrences of all semantic concepts. 
Next, we utilize the top 512 semantic concepts that appear most frequently as semantic 
categories. In order to transform f (v)4  and f (s)4  into a semantic space, we utilize the fol-
lowing method,

(2)φ
(x)
i = BN

(

W
(x)
i f

(x)
i + b

(x)
i

)

,

(3)
L_lat_ranki(v, s) =max

(

sim_lati(v, s
+)− sim_lati(v, s

−)+m1, 0
)

+max
(

sim_lati(s, v
+)− sim_lati(s, v

−)+m2, 0
)

,



Page 8 of 20Lin et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:58 

where x = {v, s} , i = 5 , and σ(·) means a sigmoid activation function which is utilized to 
output a multi-label classification probability vector. Given a video–sentence pair and 
their shared ground-truth semantic concept y, the binary cross-entropy (BCE) loss is 
formulated as

The BCE loss can improve the interpretability of the concept space but cannot improve 
the performance of video–text retrieval. Therefore, in order to measure the video–sen-
tence similarity in the semantic concept space, we formulate

We also leverage the improved triplet ranking loss in the semantic space as follows,

The final loss in the semantic space can be formulated as,

2.5 � Joint training of two spaces

By minimizing the sum of the latent-based loss and the semantic-based loss, we can 
train our LADN model as,

Therefore, our LADN model can leverage different levels of patterns to improve the 
ranking performance and is also interpretable.

2.6 � Measuring of video–text similarity

In the querying phase, we first obtain four similarities of different levels in four latent 
spaces and one similarity in the semantic space. By taking the average of four similari-
ties of different levels in four latent spaces, we can obtain the final latent-based similarity 
between a video v and a sentence s as sim_lat(v, s).

Then, min-max normalization is utilized to normalize sim_lat(v, s) and sim_lat(v, s) 
as ˜sim_lat(v, s) and ˜sim_sem(v, s) , respectively. Finally, we combine them in a weighted 
method as,

(4)ϕ(x) = σ

(

BN
(

W
(x)
i f

(x)
4 + b

(x)
i

))

,

(5)

L_sem_bce(v, s, y) =
1

512

512
∑

i=1

[

yilog
(

ϕ
(v)
i

)

+ (1− yi)log
(

1− ϕ
(v)
i

)]

+
1

512

512
∑

i=1

[

yilog
(

ϕ
(s)
i

)

+ (1− yi)log
(

1− ϕ
(s)
i

)]

.

(6)sim_sem(v, s) =

∑512
i=1 min(ϕ(v),ϕ(s))

∑512
i=1 max(ϕ(v),ϕ(s))

.

(7)
L_sem_rank(v, s) =max(sim_sem(v, s+)− sim_sem(v, s−)+m3, 0)

+max(sim_sem(s, v+)− sim_sem(s, v−)+m4, 0).

(8)L_sem(v, s, y) = L_sem_bce(v, s, y)+ L_sem_rank(v, s).

(9)minL_lat(v, s)+ L_sem(v, s, y).
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where γ is a weight to stride a balance between the latent space and the semantic space, 
ranging from 0 to 1.

3 � Experiments
3.1 � Dataset

The MSR-VTT dataset [23] consists of 10,000 web video clips, each with 20 natural sen-
tences. For this dataset, there are three different ways of the data partition. The original 
partition leverages 497 videos for validation, 2990 for testing, and 6513 for training. The 
second partition [18] leverages 1000 and 6656 videos for testing and training, respec-
tively. The third partition [19] leverages 1000 videos for testing and 7010 for training. 
For the last two partitions, 1000 videos are randomly selected following [22]. We refer to 
these three partitions as A, B, C, respectively.

The VATEX dataset [24] is a large-scale multilingual dataset for text–video retrieval. 
Each video contains 10 Chinese sentences and 10 English sentences. In our experiments, 
only the English sentences are utilized. According to [15], we utilize 25,991 videos for 
training, 1500 videos for validation, and 1500 videos for testing.

The TRECVID AVS (Ad hoc Video Search) task provides the largest test collection, the 
IACC.3 dataset, for zero-example video retrieval. The IACC.3 dataset, used in TRECVID 
AVS 2016–2018 tasks [25–27], contains 335,944 shots. Given an ad hoc query, the task 
is to return a ranked list of 1000 clips according to their likelihood of about the target 
query. In addition, TRECVID specifies 30 different queries each year.

3.2 � Performance metrics

For the MSR-VTT dataset and Vatex dataset, R@k (k = 1, 5, 10, higher is better), Median 
rank (Med r, lower is better), and mean Average Precision (mAP, higher is better) are 
utilized to evaluate the performance of text–video cross-modal retrieval. R@k is the pro-
portion of at least one correct item found in the top-k retrieved results. Med r means the 
median rank of the first correct item in the retrieved results. We also report the sum of 
all recalls (SumR) to reflect the overall performance.

For the TRECVID AVS tasks on the IACC.3 dataset, we utilize the official performance 
metric, inferred average precision (infAP, higher is better). For overall performance, we 
average infAP scores over the queries.

3.3 � Experimental details

For VATEX, we utilize a 1,024-d I3D [35] representation to represent a video clip. As for 
the other datasets, we extract ResNeXt-101 [49] and ResNet-152 [50] representations 
for each frame. We concatenate these two representations to generate a 4,096-d CNN 
representation, which we call concatenated ResNeXt-ResNet. In addition, we average 
these two representations to generate a 2,048-d CNN representation, named average 
ResNeXt-ResNet.

Our proposed model is implemented using PyTorch. Taking MSR-VTT B [18], for 
example, we set all margins to 0.2, except for m2 which is set to 0.3 in Eq. (3). The fea-
ture dimension of the BiGRU hidden state is set to 1024. The weight γ is set to 0.6. The 

(10)sim(v, s) = γ · ˜sim_lat(v, s)+ (1− γ ) · ˜sim_sem(v, s),
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dimensions of four different latent spaces are all set to 1536. We utilize stochastic gradi-
ent descent with Adam [51] to train our model. The batch size is 128. We set the initial 
learning rate to 0.0001. The maximum number of epoch is 50. We leverage an early stop 
mechanism to adjust the training process.

3.4 � Experimental results

3.4.1 � Experiments on MSR‑VTT

We utilize the following twelve state-of-the-art methods for comparison.

•	 MEE [18] computes the final similarity by a weighted combination between sentence 
and four video latent spaces including appearance, motion, face, and audio.

•	 W2VV [42] leverages three text representations, including BoW, word2vec, and 
GRU, to represent a sentence.

•	 VSE++ [52] is a state-of-the-art method, which is widely utilized as the baseline for 
video–text retrieval. We replace its image feature with the feature obtained by mean 
pooling on frame-level features.

•	 Mithun et al. [9] learns two latent spaces for videos and text and leverages a weighted 
triplet ranking loss to train the model.

•	 W2VV++ [20] is an improved version of W2VV, which takes advantage of better 
text encoding strategies and an improved triplet ranking loss compared to W2VV.

•	 CE [13] merges multiple expert features of video by a collaborative gating mecha-
nism to represent a video.

•	 TCE [14] leverages a tree-based encoder to represent text, and a temporal attentive 
video encoder to represent videos.

•	 HGR [15] assumes a hierarchical decomposition of the video and text and projects 
them into three spaces including events, actions, and entities.

•	 JPoSE [8] decomposes captions into nouns and verbs and creates two latent spaces 
for them, respectively.

•	 JSFusion [19] utilizes a joint sequence fusion to combine text and video representa-
tions.

•	 Miech et al. [7] leverages gated embedding modules to project videos and text into a 
common latent space.

•	 Dual Encoding [22] uses multiple encoding strategies to represent text and video, 
respectively.

For fair comparison, we directly cite results from the original papers where available. 
However, video representations used in different papers vary. Therefore, we cite results 
from [22], which are implemented by leveraging the same concatenated ResNeXt-
ResNet representation as the video representation. In addition, we retrain the Dual 
Encoding [22] by utilizing the average ResNeXt-ResNet representation. We train our 
LADN model by using both the concatenated ResNeXt-ResNet representation and the 
average ResNeXt-ResNet representation.

Table 1 presents the retrieval performance of three different partitioning approaches 
in the MSR-VTT database. From Table 1, for all methods, their performance on the A 
partition is inferior to those on the B and C partition. Because A partition utilizes more 
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Table 1  Experimental results on MSR-VTT. We utilize three split methods as A [23], B [18], and C [19], 
respectively. Larger R@k, mAP, and lower Med R denote better performance

Method Split Text-to-Video Retrieval Video-to-Text Retrieval SumR

R@1 R@5 R@10 Med R mAP R@1 R@5 R@10 Med R mAP

Mithun et al.∗ [9] A [23] 7 20.9 29.7 38 - 12.5 32.1 42.4 16 - 144.6

TCE∗ [14] 7.7 22.5 32.1 30 - - - - - - -

HGR∗ [15] 9.2 26.2 36.5 24 - 15 36.7 48.8 11 - 172.4

CE∗ [13] 10 29 41.2 16 - 15.6 40.9 55.2 8.3 - 191.9

W2VV [42] 1.1 4.7 8.1 236 3.7 17 37.9 49.1 11 7.6 117.9

MEE [18] 6.8 20.7 31.1 28 14.7 13.4 32 44 14 6.6 148

CE [13] 7.9 23.6 34.6 23 16.5 11 31.9 46.1 13 6.8 155.1

VSE++ [52] 8.7 24.3 34.1 28 16.9 15.6 36.6 48.6 11 7.4 167.9

TCE [14] 9.3 27.3 38.6 19 18.7 15.1 36.8 50.2 10 8 177.3

W2VV++ [20] 11.1 29.6 40.5 18 20.6 17.5 40.2 52.5 9 8.5 191.4

HGR [15] 11.1 30.5 42.1 16 20.8 18.7 44.3 57.6 7 9.9 204.4

Dual Encoding [22] 11.6 30.3 41.3 17 21.2 22.5 47.1 58.9 7 10.5 211.7

LADN 12.9 33.6 45.3 14 23.3 22.2 47.4 60.3 6 11.5 221.7

Dual Encoding⋆ [22] 12.1 31.4 42.9 16 22.0 21.3 45.6 58.1 7 10.4 211.3

LADN⋆ 13.1 33.9 45.4 14 23.4 23.0 48.1 60.5 6 11.5 224.0

JPoSE∗ [8] B [18] 14.3 38.1 53 9 - 16.4 41.3 54.4 8.7 - 217.5

MEE∗ [18] 16.8 41 54.4 9 - - - - - - -

TCE∗ [14] 17.1 39.9 53.7 9 - - - - - - -

CE∗ [13] 18.2 46 60.7 7 - 18 46 60.3 6.5 - 249.2

W2VV [42] 2.7 12.5 17.3 83 7.9 17.3 42 53.5 9 29.3 145.3

MEE [18] 15.7 39 52.3 9 27.1 15.3 41.9 54.5 8 28.1 218.7

VSE++ [52] 17 40.9 52 10 16.9 18.1 40.4 52.1 9 29.2 220.5

CE [13] 17.8 42.8 56.1 8 30.3 17.4 42.9 56.1 8 29.8 233.1

TCE [14] 17 44.7 58.3 7 30 15.1 43.3 58.2 7 28.3 236.6

W2VV++ [20] 21.7 48.6 60.9 6 34.4 18.6 46.4 59.1 6 31.7 255.3

HGR [15] 22.9 50.2 63.6 5 35.9 20 48.3 60.9 6 33.2 265.9

Dual Encoding [22] 23 50.6 62.5 5 36.1 25.1 52.1 64.6 5 37.7 277.9

LADN 25.5 52.9 66.9 5 38.6 25.3 55.2 66.7 4 39.3 292.5

Dual Encoding⋆ [22] 23.1 51.2 62.6 5 35.9 24.1 52.2 63.6 5 37.18 276.8

LADN⋆ 26.6 55.5 66.9 4 39.9 26.9 55.0 67.4 4 40.1 298.3

JSFusion∗ [19] 10.2 31.2 43.2 13 - - - - - - -

TCE∗ [14] 16.1 38 51.5 10 - - - - - - -

Miech et al.∗ [7] 14.9 40.2 52.8 9 - - - - - - -

CE∗ [13] 20.9 48.8 62.4 6 - 20.6 50.3 64 5.3 - 267

W2VV [42] 1.9 9.9 15.2 79 6.8 17.3 39.3 50.2 10 27.8 133.8

VSE++ [52] 16 38.5 50.9 10 27.4 16.2 39.3 51.2 10 27.4 212.1

MEE [18] 14.6 38.4 52.4 9 26.1 15.2 40.9 53.8 9 27.9 215.3

W2VV++ [20] 19 45 58.7 7 31.8 16.9 42.7 54.6 8 29 236.9

CE [13] 17.2 46.2 58.5 7 30.3 15.8 44.9 59.2 7 30.4 241.8

TCE [14] 17.8 46 58.3 7 31.1 18.9 43.5 58.8 7 31.4 243.3

HGR [15] C [19] 21.7 47.4 61.1 6 34 20.4 47.9 60.6 6 33.4 259.1

Dual Encoding [22] 21.1 48.7 60.2 6 33.6 21.7 49.4 61.6 6 34.7 262.7

LADN 24.4 52 63.4 5 37.4 23.6 50.8 62.8 5 36.6 277.0

Dual Encoding⋆ [22] 21.9 48.1 61.5 6 34.5 22.3 48 61.6 6 34.6 263.4

LADN⋆ 24.6 52.5 64.0 5 37.5 22.5 53.0 65.1 5 36.3 281.7

* denotes results directly cited from the original papers, * denotes numbers obtained by training given the average ResNeXt-

ResNet representation, and the others are obtained by training given the concatenated ResNeXt-ResNet representation
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candidate videos/sentences during retrieving phase than other partitions. Our model 
LADN can gain the best performance by utilizing the same concatenated video features. 
In addition, the performance of Dual Encoding [22] has hardly changed by utilizing dif-
ferent video representations. However, LADN can significantly improve the retrieval 
performance by utilizing the average ResNeXt-ResNet representation. Moreover, the 
model utilizing the average ResNeXt-ResNet representation can reduce the trainable 
parameters compared to the model utilizing the concatenated ResNeXt-ResNet repre-
sentation. Therefore, we utilize the average ResNeXt-ResNet representation as the input 
of LADN in the following experiments.

Compared with the SumR of Dual Encoding using the concatenated ResNeXt-ResNet 
representation, the ones of our method LADN using the average ResNeXt-ResNet rep-
resentation can improve 5.81%, 7.34%, and 7.23% on MSR-VTT A, B, and C partition, 
respectively. Dual Encoding only maps spatial–temporal representation into a latent 
space. However, our proposed method LADN not only performs the same operation, 
but also projects global, temporal, and local representations into another three differ-
ent latent spaces. Furthermore, LADN takes the average of four similarities in these four 
latent spaces to help improve the retrieval performance.

Table  2 presents the model complexity of Dual Encoding and our method LADN. 
Compared with Dual Encoding, our method LADN needs more computational com-
plexity. This is because LADN utilizes four different latent spaces, while Dual Encod-
ing only leverages one latent space. When LADN projects representations into another 
three latent spaces, it needs more computational complexity. However, the text–video 
retrieval performance of LADN is better than the one of Dual Encoding.

Figures 3, 4, and 5 show the text-to-video retrieval results of our method LADN and 
Dual Encoding on the MSR-VTT B partition [18]. In Fig. 3, LADN can rank the corre-
sponding results in the 1st place, but Dual Encoding fails, which proves the superiority 
of our method LADN. Figures 4 and 5 are still problematic to LADN and Dual Encoding. 
For the results in Fig. 4, although these two methods can get the right concept “paper,” 
they cannot find the intrinsic relationship between the sentence and the corresponding 
video. The possible reason for this is that the dataset contains only a small number of 
videos about “typewriter.” For the results in Fig. 5, although the top 1 retrieved result 
is incorrect, its semantic is consistent with the semantic of the ground truth for our 
method LADN and Dual Encoding.

3.4.2 � Experiments on VATEX

For the VATEX dataset, we compare our method LADN with W2VV, VSE++, CE, 
W2VV++, HGR, and Dual Encoding. Table  3 summarizes the performance. W2VV, 

Table 2  Model complexity of Dual Encoding and our model LADN

Model Model complexity

Parameters (M) FLOPs (G)

Dual Encoding 65.7 1.08

LADN 109.4 1.46
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VSE++, and W2VV++ project video and text into a common latent space. However, 
our method LADN maps four different levels of video and text representations into four 
latent spaces. By utilizing different levels of information, LADN can perform better than 
its counterparts.

3.4.3 � Experiments on TRECVID AVS 2016‑2018

We cite top 3 results on TRECVID AVS tasks for each year, including [53, 55, 57] in 
2016, [39, 40, 58] in 2017, [54, 56, 59] in 2018. Additionally, we cite results from [16, 
60], and [37]. Other results are cited from [22]. Table 4 shows the experimental results, 
where the overall performance is the average score over three years. Our proposed 
method LADN gives the best performance, which demonstrates that LADN can effec-
tively perform large-scale video retrieval by text query.

3.4.4 � Ablation study

We design several variants of LADN to verify the effectiveness of each of its compo-
nents. We construct the LADN(w/o g, t, l alignments) variant by removing global, tem-
poral, and local alignments. The LADN(w/o semantic space) variant is built by removing 
the semantic space. We construct the LADN(w/ g, t, l semantic space) variant by map-
ping global, temporal, and local information into three semantic spaces, respectively. 
We remove the alignments in the global, local, temporal, and spatial–temporal spaces 
to construct LADN(w/o g alignment), LADN(w/o l alignment), LADN(w/o t alignment), 
and LADN(w/o s_t alignment), respectively. Table 5 presents the experimental results on 
MSR-VTT B partition [18]. Compared with LADN, LADN(w/o g, t, l alignments) gains 
the worst performance. This result proves the effectiveness of the level-wise aligned 
mechanism. Because LADN can make full use of global, temporal, and local informa-
tion to further improve the text–video retrieval performance. By comparing LADN 
and LADN(w/o semantic space), we conclude that the semantic space plays a vital role 
in improving retrieval performance. Compared with LADN, although LADN(w/ g, l, t 
semantic spaces) utilizes more semantic spaces, it cannot further improve the retrieval 
performance. The lack of alignment in any of the four spaces, including global, temporal, 
local, or spatial–temporal spaces, will result in poor performance. It demonstrates that 
these four latent spaces are complementary to each other.

Table 3  Experimental results on VATEX

Method Text-to-Video Video-to-Text SumR

R@1 R@5 R@10 R@1 R@5 R@10

W2VV [42] 14.6 36.3 46.1 39.6 69.5 79.4 285.5

VSE++ [52] 31.3 65.8 76.4 42.9 73.9 83.6 373.9

CE [13] 31.1 68.7 80.2 41.3 71 82.3 374.6

W2VV++ [20] 32 68.2 78.8 41.8 75.1 84.3 380.2

HGR [15] 35.1 73.5 83.5 - - - -

Dual Encoding [22] 36.8 73.6 83.7 46.8 75.7 85.1 401.7

LADN 37.4 75.5 84.8 51.1 78.1 86.1 413.0
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4 � Conclusion
This paper proposes a method named level-wise aligned dual networks (LADN) for 
text–video retrieval. LADN first utilizes multi-level encoders to extract global, local, 
temporal, and spatial–temporal information in videos and sentences. Then, they are 
mapped into four different latent spaces and one semantic space. Finally, LADN com-
bines the similarities of four latent spaces and one semantic concept space to improve 
cross-modal retrieval performance and increase interpretability. Extensive experiments 
conducted on three widely used datasets, including MSR-VTT, VATEX, and TRECVID 

Fig. 3  The text-to-video retrieval results of our LADN method and Dual Encoding on the MSR-VTT B partition 
[18]. The top 4 ranked videos are shown for each query, where the ground truth is marked with a red box, 
and the others are marked with a green box. The last column is the predicted concepts corresponding to the 
second column
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Fig. 4  The text-to-video retrieval results of our LADN and Dual Encoding on the MSR-VTT B partition [18]. The 
top 3 ranked videos and the ground truth are shown for each query. Additionally, the ground truth is marked 
with a red box, and the others are marked with a green box. The last column is the predicted concepts 
corresponding to the second column
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Fig. 5  The text-to-video retrieval results of our LADN method and Dual Encoding on the MSR-VTT B partition 
[18]. The top 4 ranked videos are shown for each query, where the ground truth is marked with a red box, 
and the others are marked with a green box. The last column is the predicted concepts corresponding to the 
second column
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AVS 2016-2018, demonstrate that our proposed approach is superior to several state-of-
the-art text–video retrieval approaches.
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Table 4  Experimental results on TRECVID AVS 2016, 2017, and 2018

TRECVID edition

2016 2017 2018 OVERALL

Top 3 TRECVID finalists

Rank 1 5.4 [53] 20.6 [40] 12.1 [54] –

Rank 2 5.1 [55] 15.9 [39] 8.7 [56] –

Rank 3 4 [57] 12 [58] 8.2 [59] –

Literature methods

VideoStory [16, 60] 8.7 15 – –

Markatopoulou et al. [37] 6.4 – – –

CE [13] 7.4 14.5 8.6 10.2

VSE++ [52] 13.5 16.3 10.6 13.5

W2VV [42] 14.9 19.8 10.3 15

W2VV++ [20] 15.1 21.3 10.6 15.7

Dual Encoding [22] 15.2 23.1 12.1 16.8

LADN 15.3 24.1 12.6 17.3

Table 5  Ablation Experiments on MSR-VTT B partition [18]. w/ and w/o mean with and without, 
respectively. g, t, l, s_t denote global, temporal, local, spatial–temporal, respectively

LADN variants Text-to-Video retrieval Video-to-Text retrieval SumR

R@1 R@5 R@10 Med R mAP R@1 R@5 R@10 Med R mAP

original LADN 26.6 55.5 66.9 4 39.9 26.9 55.0 67.4 4 40.1 298.3
w/o g, t, l alignments 24.2 52.6 61.2 5 37.0 25.3 52.3 62.9 5 38.1 278.5

w/o semantic space 25.3 53.8 64.3 5 38.2 27.0 52.8 64.3 5 39.5 287.5

w/ g, t, l semantic spaces 26.2 54.2 66.6 5 39.0 26.4 54.5 66.4 4 39.8 294.3

w/o g alignment 25.1 55.6 66.3 4 38.9 25.3 54.8 67.0 4 39.4 294.1

w/o l alignment 24.9 53.1 64.6 5 38.1 25.5 54.7 65.8 5 39.1 288.6

w/o t alignment 25.6 56.2 66.4 4 39.2 26.4 54.8 66.6 4 39.9 296.0

w/o s_t alignment 25.9 53.3 66.2 5 38.9 26.0 55.1 66.2 4 39.7 292.7
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