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Abstract

The vast amount of videos on the Internet makes efficient and accurate text-video
retrieval tasks increasingly important. The current methods leverage a high-dimen-
sional space to align video and text for these tasks. However, a high-dimensional space
cannot fully use different levels of information in videos and text. In this paper, we

put forward a method called level-wise aligned dual networks (LADNs) for text—video
retrieval. LADN uses four common latent spaces to improve the performance of text—
video retrieval and utilizes the semantic concept space to increase the interpretability
of the model. Specifically, LADN first extracts different levels of information, including
global, local, temporal, and spatial-temporal information, from videos and text. Then,
they are mapped into four different latent spaces and one semantic space. Finally,
LADN aligns different levels of information in various spaces. Extensive experiments
conducted on three widely used datasets, including MSR-VTT, VATEX, and TRECVID AVS
2016-2018, demonstrate that our proposed approach is superior to several state-of-
the-art text-video retrieval approaches.

Keywords: Text-video retrieval, Level-wise aligned mechanism, Semantic space,
Latent space

1 Introduction

1.1 Background and significance

Video has become one of the most popular media because it can capture dynamic events
and naturally attract human sight and hearing. Furthermore, the explosion of videos on
the Internet has made efficiently and accurately searching for videos a significant chal-
lenge [1].

This paper focuses on the tasks of video-to-text and text-to-video retrieval. The task of
video-to-text retrieval pays attention to finding the text candidate that best describes the
video query among a collection of text candidates. Additionally, text-to-video retrieval
means that given a query in the form of text modality, the aim is to search for the videos
best described by the text query (See Fig. 1). In practice, a ranking list of all the video
candidates is returned for each text query, and the video corresponding to the text query
is ranked as high as possible.

Traditional methods [2-6] for the retrieval problem mainly focus on semantic concept
search, where semantic concepts are pre-defined. However, since semantic concepts
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Fig. 1 lllustration of text-to-video retrieval: given a text query, retrieve the corresponding video from the
database

are limited and unstructured, they cannot accurately search for different fine-grained
contents and utilize temporal information. For example, “a dog chases a cat” and “a
cat chases a dog” will have the same semantic concepts, while the order of objects in
the caption is potentially significant. In addition, a query of “a black dog chases a white
cat” is nearly impossible to obtain satisfied retrieval results for a semantic-based video
retrieval method. Although the semantic-based method has certain interpretability, how
to specify a set of relevant and detectable semantic concepts for video and text features
remains unsolved.

To solve the limitations of semantic-based methods, researchers pay more attention
to utilizing original sentences that contain rich contextual information than semantic
concepts. At present, the main methods for text—video cross-modal retrieval map video
and text into a common latent space, where the cross-modal similarity can be measured.

For video representations, a common method is to first extract frame features from the
video through a pre-trained convolutional neural network (CNN) model and then com-
bine them by max pooling [7, 8], mean pooling [9, 10], recurrent neural network (RNN)
[11, 12], NetVLAD [13], or self-attention mechanisms [14, 15].

For text representations, bag of words remains popular [16, 17], while deep networks
are in increasing use. For each word of a sentence, a dense vector is first generated by
multiplying its one-hot vector with a pre-trained word embedding matrix. Then, they
are combined to generate a sentence-level representation by NetVLAD [8, 13], max
pooling [7], Fisher Vector [18], RNN [9, 19], or graph convolutional network [15].

W2VV++ [20] leverages three text representations, including bag of words, word-
2vec, and gated recurrent unit (GRU), to form a high-dimensional sentence-level rep-
resentation. Nevertheless, W2VV++ only utilizes the meaning pooling strategy over
video frames. Dong et al. [21, 22] utilize a multi-level encoding strategy to extract multi-
ple video representations and combine them as a final video representation.
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Although common space learning methods give superior performance to semantic-
based methods, each dimension of the common latent space lacks interpretability. Com-
bining the advantages of the common latent space and the semantic concept space can
improve the cross-modal retrieval performance and increase the interpretability of the
model. Furthermore, unlike Dual Encoding [22], we measure multiple similarities in dif-
ferent latent spaces in addition to taking advantage of common latent space and seman-
tic concept space.

In this paper, we make the following contributions.

+ We design a level-wise aligned mechanism to align representations between videos
and sentences in different levels. Specifically, we first exploit multi-level encoders to
extract global, local, temporal, and spatial-temporal information in videos and text,
respectively. Then, they are mapped into four different latent spaces and one seman-
tic space.

+ We combine the advantages of common latent space and semantic concept space to
improve the cross-modal retrieval performance and increase the interpretability of
our model. Specifically, we average four cross-modal similarities of different levels in
four different latent spaces. Then, we combine it with the similarity in the semantic
concept space.

+ Extensive experiments are conducted on three widely used datasets including MSR-
VTT [23], VATEX [24], and TRECVID AVS 2016-2018 [25-27]. The experimental
results of our approach give superior performance to the state-of-the-art approaches.

The rest of this paper is organized as follows. Some related work is introduced in
Sect. 1.2. We present our proposed method and experimental setup in Sects. 2 and 3,
respectively. Section 3.4 provides the experimental results. Finally, Sect. 4 concludes our

work.

1.2 Related work
This section reviews some previous work on language and video representations
learning, and video—text retrieval, including semantic space learning and latent space

learning.

1.2.1 Language representations

Bag of words [28] and word2vec [29] are earlier work on text representations, which can-
not capture the contextual information in a sentence. Long short-term memory network
(LSTM) [30] is one of the first deep models to overcome this shortcoming. Recently, the
transformer architecture [31] has given impressive performance in sentence represen-
tations by leveraging a self-attention mechanism, where every word in a sentence can
focus on all other words. The transformer architecture consists of alternately stacked
self-attention layers and fully connected layers, which form the basis of the popular lan-
guage architecture BERT [32]. Burns et al. [33] leverage different word embeddings and
language networks (LSTM, BERT, etc.) to analyze their performance in text—video tasks.
They believe that the performance of the pre-trained and frozen BERT architecture is
relatively poor than that of an average embedding architecture or the LSTM.
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1.2.2 Video representations

A common method to extract video representations is to extract each keyframe repre-
sentation by some pre-trained CNN models and then combine them by max pooling
or mean pooling. However, these ways cannot attend the temporal information in the
video. In order to incorporate spatial and temporal representations from still frames and
motion between frames, Simonyan et al. [34] leverage a two-stream model to perform
action recognition in videos. Besides, I3D [35] utilizes a two-stream inflated 3D Con-
vNet to better attend the temporal information in a video. Xie et al. [36] proposed an
alternative approach, which replaces 3D convolutions with spatial convolutions in 2D
and temporal convolution in 1D.

1.2.3 Semantic space learning

[37, 38] create a concept vector for each test keyframe by concatenating 1000 ImageNet
concepts and 345 TRECVID SIN concepts and translate a textual query to relevant pre-
defined concepts by a set of complex linguistic rules. [39] builds a much larger semantic
concept bank containing over 50,000 concepts by utilizing a pre-trained CNN architec-
ture and support vector machines (SVMs). [40] recognizes ImageNet hierarchies to gain
about 13k concepts and utilizes VideoStory [16] to generate semantic representations.
Since semantic concepts are limited and unstructured, it is hard to represent the rich
contextual information within both sentence and video. However, encoding video and
sentences into concept vectors makes the model somewhat interpretable.

1.2.4 Latent space learning

The methods based on common latent space first extract representations from video and
sentence, respectively, and then project them into a latent space, where the cross-modal
similarity can be directly calculated. For these methods, what matter are how to extract
rich representations from video and sentence separately and measure the video—text
similarity. Therefore, we review recent progress from these three aspects.

For video representations, a common method is to first extract frame representations
from the video through some pre-trained CNN models and then combine them along
the temporal dimension into a video-level representation by mean pooling [9, 10, 13, 41,
42] or max pooling [7, 15, 18].

Yang et al. [14] first leverage GRU to explore the temporal relationship between video
keyframes and then use a self-attention mechanism to capture the representation inter-
action among keyframes. Additionally, [7, 9, 13] leverage motion features extracted from
the I3D model [35], and audio features generated by the audio CNN model [43] as part
of the visual representations. Nevertheless, these methods still leverage max pooling,
mean pooling, or NetVLAD to combine various features into a single feature vector per
video.

For text representations, word2vec models are widely used, which are pre-trained
on large-scale text corpora. Specifically, for each word of a sentence, a dense vector
is first generated by multiplying its one-hot vector with a pre-trained word embed-
ding matrix. Then, they are combined by NetVLAD, max pooling, or Fisher Vector.
Although they have achieved good performance, they cannot capture the sequential
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information in a sentence. Recurrent neural networks (RNN5s) are effective in employ-
ing sequential information. Moreover, variants of RNN, such as LSTM, bidirectional
LSTM, GRU, and bidirectional GRU, are utilized in [9, 19, 44, 45], respectively. For
example, in [9], the sentence representations are from the last hidden state of the
GRU. [42] and [20] utilize three text representations, including BoW, word2vec, and
GRU. However, these methods only leverage mean pooling to obtain the video repre-
sentation. HGR [15] utilizes a hierarchical decomposition of a sentence to explore the
relationship between words, which requires the sentence to be well annotated with
certain linguistic rules.

For video—text similarity learning, recent methods map video features and text fea-
tures into a common latent space where the text-video cross-modal similarity can
be computed by cosine similarity and leverage various triplet ranking losses to train
their models. In addition to the triplet ranking loss, reconstruction loss and contras-
tive loss are utilized to learn the latent space in [46]. Recently, an increasing num-
ber of methods learn several latent spaces instead of just learning one latent space.
Mixture of embedding experts (MEE) [18] computes the final similarity by a weighted
combination between sentence and multiple video latent spaces, one for each input
including motion, appearance, face, or audio representation. HGR [15] assumes a
hierarchical decomposition of the video and text and projects them into three spaces,
including events, actions, and entities.

Unlike the existing methods that learn semantic concept space or common latent
space, our approach simultaneously learns these two spaces, which takes advantage of
the interpretability of semantic concept space and the high performance of common
latent space. We separately represent video and text as four complementary represen-
tations, including global, temporal, local, and spatial-temporal representation, and
learn one common latent space for each representation. Besides, we also map spatial—
temporal representation into a semantic space. Thus, our proposed method can align

different levels of information in various spaces.
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Fig. 2 The framework of our proposed LADN method. LADN first utilizes multi-level encoders to extract
global, temporal, local, and spatial-temporal information in videos and text. Then, they are mapped into four
different latent spaces and a semantic space. Finally, LADN aligns different levels of information in various
spaces
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2 Methods
As illustrated in Fig. 2, we put forward an architecture, named level-wise aligned dual
networks (LADNS), to improve the performance of text—video cross-modal retrieval.

2.1 Video encoder

Following the setting in [22], we extract n frames at 0.5 second intervals from a video.
For each frame, we utilize a pre-trained ImageNet CNN to extract deep represen-
tation. Therefore, the video is represented as a sequence of frame representations
{v1, v, ..., v}, where v, denotes the representation of the t—th frame.

2.1.1 Global-aware encoder
Given a video, we take the average of all frame features as fl(v), which denotes a visual
pattern repeatedly appearing in the video clip.

2.1.2 Temporal-aware encoder

We utilize a bidirectional gated recurrent units (BiGRU) [47] to extract temporal
information from video frame features. The BiGRU consists of two GRU: One encodes
frame features in a forward direction, and the other is backward. At a specific time
step ¢, the hidden feature of ths_forward GRU is expressed as Z and the one _o)f the
backward GRU is expressed as /;. We obtain the BiGRU output by averaging /; and
E as hﬁ”. Then, the temporal-aware feature fz(v) is obtained by averaging hﬁ” along the

time dimension.

2.1.3 Local-aware encoder

The temporal-aware feature cannot extract the subtle difference between each frame.
Therefore, we leverage 1D CNN [48] following BiGRU to extract local-aware patterns
in the video. The output of BiGRU is represented as HY = {hgv), hg)), cel, ﬁ,v) }, which

is the input of 1D CNN. Convldy , denotes 1D convolutional module including r fil-
ters of size k. The activation function of 1D CNN is ReLU. Next, we utilize max pool-
ing to get a fixed length r. The above process can be expressed as follows,

c}(v) = max_pooling <ReLU (Convldk,r (H (")) ) ) . (1)

We set k = 2, 3,4, 5 to generate multi-scale local-aware representations and concatenate
them as fg(v).

2.1.4 Spatial-temporal encoder

fl(v), fz(v), and f3(v) naturally extract global, temporal, and local information in video

content, respectively. We assume the three patterns are complementary to each other,

with some redundant information. Therefore, we concatenate the three patterns as
4(") , which captures spatial and temporal information in the video.
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2.2 Text encoder
Similar to the encoding strategy for the video modality, the text modality also utilizes
four different encoders to extract different information.

Given a sentence s of length m, we utilize classical bag-of-words features to represent
it. Let fl(s) = [w1, wa, ..., Wi ] denote the global feature of a sentence, where w,, denotes
the number of occurrences of the m—th word.

We leverage a word embedding matrix to convert each word from a one-hot vector
into a dense vector. The matrix was initialized by a word2vec model [42] trained on Eng-
lish tags of 30 million Flickr images. Next, we can obtain a temporal-aware representa-
tion fz(s) like that used by the temporal-aware encoder in the video.

Similar to the video counterpart, we use four 1D CNN modules with k = 2,3,4,5 to
generate multi-scale representations. Their outputs are concatenated as local-aware fea-
ture f3(s) = [cgs), cés), c/(f), cés)].

We concatenate fl(s), f2(s), and fg(s) as 4(S), which means the spatial and temporal fea-
ture of a sentence s.

2.3 Latent space learning
Given the video features fl(v), Z(V), fg(v), 4(‘/) and the text features fl(s), Z(S), 3(3), f4(s) in dif-
ferent levels, we transform them into four different latent spaces, respectively, as follows,

o1 = BN(W %+ 1), )

where x € {v,s},i = 1,2,3,4, W; is the parameter of a fully connected layer, and b; is its
bias item, and BN denotes a batch normalization layer. Then, we utilize cosine similarity
sim_lat;(v, s) to calculate the video—text similarity between ¢>i(v) and gbi(s).

The improved triplet ranking loss is leveraged to make relevant video—text pairs closer
than irrelevant pairs during the training phase. We define the bidirectional ranking loss
for each level as follows,

L _lat_rank;(v,s) = max (sim_lati(v, sT) — sim_lat;(v,s7) + m1y, 0)

+ max (sim_lat,- (s,vT) — sim_lat;(s, v") + ma, 0), @)
where s and s~ denote a positive sentence sample and a negative one for a video clip v,
respectively. v and v~ denote a positive video sample and a negative one for a sentence
s, respectively. And m, my are the margin. In addition, the negative sample is the most
similar yet negative for the anchor v or s. By taking the average of ranking losses in four
different levels, the final loss in the latent space can be denoted as £_lat(v, s).

2.4 Semantic space learning

Following the setting in [22], during the training phase, we put all the sentences in the
training set together and count the number of occurrences of all semantic concepts.
Next, we utilize the top 512 semantic concepts that appear most frequently as semantic
categories. In order to transform f4(v) and f4(s) into a semantic space, we utilize the fol-
lowing method,
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0 =0 (BN(W2LS +57)), @

where x = {v, s}, i = 5, and o (-) means a sigmoid activation function which is utilized to
output a multi-label classification probability vector. Given a video—sentence pair and
their shared ground-truth semantic concept y, the binary cross-entropy (BCE) loss is
formulated as

512

L_sem_bce(v,s, y) =$ Z [yl,log((pi(v)) +a —ylv)log(l B (pi(v))}
i=1

512 (5)

+ 5% S {yilog (gol.(s)) + (1 —yi)log(l - wfs))}-
i=1

The BCE loss can improve the interpretability of the concept space but cannot improve
the performance of video—text retrieval. Therefore, in order to measure the video—sen-
tence similarity in the semantic concept space, we formulate

512 s (GRNE)
sim_sem(v,s) = 521 min(¢ 7 ¢"") . (6)
i=1 max(p™, 9©)
We also leverage the improved triplet ranking loss in the semantic space as follows,
L£_sem_rank(v,s) = max(sim_sem(v,sT) — sim_sem(v,s™) + ms, 0) @)
+ max(sim_sem(s, v") — sim_sem(s, v") + 14, 0).
The final loss in the semantic space can be formulated as,
L_sem(v,s,y) = L_sem_bce(v,s,y) + L_sem_rank(v, s). (8)

2.5 Joint training of two spaces
By minimizing the sum of the latent-based loss and the semantic-based loss, we can
train our LADN model as,

min £_lat(v,s) + L_sem(v, s, y). 9)

Therefore, our LADN model can leverage different levels of patterns to improve the
ranking performance and is also interpretable.

2.6 Measuring of video-text similarity
In the querying phase, we first obtain four similarities of different levels in four latent
spaces and one similarity in the semantic space. By taking the average of four similari-
ties of different levels in four latent spaces, we can obtain the final latent-based similarity
between a video v and a sentence s as sim_lat(v, s).

Then, min-max normalization is utilized to normalize sim_lat(v, s) and sim_lat(v, s)
as sim~_lat(v, s) and sim_sem(, s), respectively. Finally, we combine them in a weighted
method as,
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sim(v,s) =y - sim~_lat(V, )+ A —y)- sim_sem(v, s), (10)

where y is a weight to stride a balance between the latent space and the semantic space,
ranging from O to 1.

3 Experiments

3.1 Dataset

The MSR-VTT dataset [23] consists of 10,000 web video clips, each with 20 natural sen-
tences. For this dataset, there are three different ways of the data partition. The original
partition leverages 497 videos for validation, 2990 for testing, and 6513 for training. The
second partition [18] leverages 1000 and 6656 videos for testing and training, respec-
tively. The third partition [19] leverages 1000 videos for testing and 7010 for training.
For the last two partitions, 1000 videos are randomly selected following [22]. We refer to
these three partitions as A, B, C, respectively.

The VATEX dataset [24] is a large-scale multilingual dataset for text—video retrieval.
Each video contains 10 Chinese sentences and 10 English sentences. In our experiments,
only the English sentences are utilized. According to [15], we utilize 25,991 videos for
training, 1500 videos for validation, and 1500 videos for testing.

The TRECVID AVS (Ad hoc Video Search) task provides the largest test collection, the
IACC.3 dataset, for zero-example video retrieval. The IACC.3 dataset, used in TRECVID
AVS 2016-2018 tasks [25-27], contains 335,944 shots. Given an ad hoc query, the task
is to return a ranked list of 1000 clips according to their likelihood of about the target
query. In addition, TRECVID specifies 30 different queries each year.

3.2 Performance metrics
For the MSR-VTT dataset and Vatex dataset, R@k (k = 1, 5, 10, higher is better), Median
rank (Med r, lower is better), and mean Average Precision (mAP, higher is better) are
utilized to evaluate the performance of text—video cross-modal retrieval. R@k is the pro-
portion of at least one correct item found in the top-k retrieved results. Med r means the
median rank of the first correct item in the retrieved results. We also report the sum of
all recalls (SumR) to reflect the overall performance.

For the TRECVID AVS tasks on the IACC.3 dataset, we utilize the official performance
metric, inferred average precision (infAP, higher is better). For overall performance, we
average infAP scores over the queries.

3.3 Experimental details
For VATEX, we utilize a 1,024-d 13D [35] representation to represent a video clip. As for
the other datasets, we extract ResNeXt-101 [49] and ResNet-152 [50] representations
for each frame. We concatenate these two representations to generate a 4,096-d CNN
representation, which we call concatenated ResNeXt-ResNet. In addition, we average
these two representations to generate a 2,048-d CNN representation, named average
ResNeXt-ResNet.

Our proposed model is implemented using PyTorch. Taking MSR-VTT B [18], for
example, we set all margins to 0.2, except for my which is set to 0.3 in Eq. (3). The fea-
ture dimension of the BiGRU hidden state is set to 1024. The weight y is set to 0.6. The
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dimensions of four different latent spaces are all set to 1536. We utilize stochastic gradi-
ent descent with Adam [51] to train our model. The batch size is 128. We set the initial
learning rate to 0.0001. The maximum number of epoch is 50. We leverage an early stop
mechanism to adjust the training process.

3.4 Experimental results
3.4.1 Experiments on MSR-VTT
We utilize the following twelve state-of-the-art methods for comparison.

+ MEE [18] computes the final similarity by a weighted combination between sentence
and four video latent spaces including appearance, motion, face, and audio.

« W2VV [42] leverages three text representations, including BoW, word2vec, and
GRU, to represent a sentence.

+ VSE++ [52] is a state-of-the-art method, which is widely utilized as the baseline for
video—text retrieval. We replace its image feature with the feature obtained by mean
pooling on frame-level features.

+ Mithun et al. [9] learns two latent spaces for videos and text and leverages a weighted
triplet ranking loss to train the model.

o W2VV++ [20] is an improved version of W2VV, which takes advantage of better
text encoding strategies and an improved triplet ranking loss compared to W2VV.

+ CE [13] merges multiple expert features of video by a collaborative gating mecha-
nism to represent a video.

+ TCE [14] leverages a tree-based encoder to represent text, and a temporal attentive
video encoder to represent videos.

« HGR [15] assumes a hierarchical decomposition of the video and text and projects
them into three spaces including events, actions, and entities.

« JPoSE [8] decomposes captions into nouns and verbs and creates two latent spaces
for them, respectively.

« JSFusion [19] utilizes a joint sequence fusion to combine text and video representa-
tions.

+ Miech et al. [7] leverages gated embedding modules to project videos and text into a
common latent space.

+ Dual Encoding [22] uses multiple encoding strategies to represent text and video,
respectively.

For fair comparison, we directly cite results from the original papers where available.
However, video representations used in different papers vary. Therefore, we cite results
from [22], which are implemented by leveraging the same concatenated ResNeXt-
ResNet representation as the video representation. In addition, we retrain the Dual
Encoding [22] by utilizing the average ResNeXt-ResNet representation. We train our
LADN model by using both the concatenated ResNeXt-ResNet representation and the
average ResNeXt-ResNet representation.

Table 1 presents the retrieval performance of three different partitioning approaches
in the MSR-VTT database. From Table 1, for all methods, their performance on the A
partition is inferior to those on the B and C partition. Because A partition utilizes more

Page 10 of 20
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Table 1 Experimental results on MSR-VTT. We utilize three split methods as A [23], B [18], and C [19],
respectively. Larger R@k, mAP, and lower Med R denote better performance

Method Split  Text-to-Video Retrieval Video-to-Text Retrieval SumR

R@1 R@5 R@10 MedR mAP R@1 R@5 R@10 MedR mAP

Mithun et al.* [9] Af23] 7 209 297 38 - 125 321 424 16 - 144.6
TCE* [14] 7.7 225 321 30 - - - - - - -
HGR* [15] 9.2 262 365 24 - 15 367 488 11 - 1724
CE*[13] 10 29 412 16 - 156 409 552 83 - 1919
W2VV [42] 11 4.7 8.1 236 37 17 379 491 11 76 1179
MEE [18] 6.8 207 311 28 147 134 32 44 14 6.6 148
CE[13] 79 236 346 23 165 11 319 461 13 6.8 155.1
VSE4++[52] 87 243 341 28 169 156 366 486 " 74 167.9
TCE[14] 93 273 386 19 187 151 368 502 10 8 1773
W2W++[20] 1.1 296 405 18 206 175 402 525 9 85 1914
HGR[15] 111 305 421 16 208 187 443 576 7 9.9 2044
Dual Encoding [22] 116 303 413 17 212 225 471 589 7 105 2117
LADN 129 336 453 14 233 222 474 603 6 115 2217
Dual Encoding™ [22] 121 314 429 16 220 213 456 581 7 104 2113
LADN* 131 339 454 14 234 230 481 605 6 115 2240
JPOSE* [8] B[18] 143 381 53 9 - 164 413 544 87 - 2175
MEE* [18] 168 41 544 9 - - - - - - -
TCE* [14] 171 399 537 9 - - - - - - -
CE*[13] 182 46 60.7 7 - 18 46 60.3 6.5 - 2492
W2V [42] 2.7 125 173 83 79 173 42 535 9 293 1453
MEE [18] 157 39 523 9 27.1 153 419 545 8 28.1 218.7
VSE++[52] 17 409 52 10 169 181 404 521 9 292 2205
CE[13] 178 428  56.1 8 303 174 429 561 8 298 2331
TCE[14] 17 44.7 583 7 30 151 433 582 7 283 2366
W2W++[20] 217 486 609 6 344 186 464 59. 6 317 2553
HGR[15] 229 502 636 5 359 20 483 609 6 332 2659
Dual Encoding [22] 23 506 625 5 36.1 251 521 646 5 377 2779
LADN 255 529 669 5 386 253 552 667 4 393 2925
Dual Encoding™ [22] 231 512 626 5 359 241 522 636 5 3718 2768
LADN* 266 555 669 4 399 269 550 674 4 40.1 2983
JSFusion™ [19] 102 312 432 13 - - - - - - -
TCE* [14] 161 38 515 10 - - - - - - -
Miech etal.* [7] 149 402 528 9 - - - - - - -
CE*[13] 209 488 624 6 - 206 503 o4 53 - 267
W2V [42] 1.9 99 15.2 79 6.8 173 393 502 10 27.8 1338
VSE++[52] 16 385 509 10 274 162 393 512 10 274 2121
MEE [18] 146 384 524 9 26.1 152 409 538 9 279 2153
W2W++ [20] 19 45 587 7 318 169 427 546 8 29 236.9
CE13] 172 462 585 7 303 158 449 592 7 304 2418
TCE[14] 178 46 583 7 311 189 435 588 7 314 2433
HGR[15] cna 217 474 611 6 34 204 479 606 6 334 2591
Dual Encoding [22] 211 487 602 6 336 217 494 616 6 347 2627
LADN 244 52 634 5 374 236 508 628 5 366 2770
Dual Encoding™ [22] 219 481 615 6 345 223 48 61.6 6 346 2634
LADN* 246 525 640 5 375 225 530 651 5 363 2817

* denotes results directly cited from the original papers, * denotes numbers obtained by training given the average ResNeXt-

ResNet representation, and the others are obtained by training given the concatenated ResNeXt-ResNet representation
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Table 2 Model complexity of Dual Encoding and our model LADN

Model Model complexity

Parameters (M) FLOPs (G)
Dual Encoding 65.7 1.08
LADN 1094 1.46

candidate videos/sentences during retrieving phase than other partitions. Our model
LADN can gain the best performance by utilizing the same concatenated video features.
In addition, the performance of Dual Encoding [22] has hardly changed by utilizing dif-
ferent video representations. However, LADN can significantly improve the retrieval
performance by utilizing the average ResNeXt-ResNet representation. Moreover, the
model utilizing the average ResNeXt-ResNet representation can reduce the trainable
parameters compared to the model utilizing the concatenated ResNeXt-ResNet repre-
sentation. Therefore, we utilize the average ResNeXt-ResNet representation as the input
of LADN in the following experiments.

Compared with the SumR of Dual Encoding using the concatenated ResNeXt-ResNet
representation, the ones of our method LADN using the average ResNeXt-ResNet rep-
resentation can improve 5.81%, 7.34%, and 7.23% on MSR-VTT A, B, and C partition,
respectively. Dual Encoding only maps spatial-temporal representation into a latent
space. However, our proposed method LADN not only performs the same operation,
but also projects global, temporal, and local representations into another three differ-
ent latent spaces. Furthermore, LADN takes the average of four similarities in these four
latent spaces to help improve the retrieval performance.

Table 2 presents the model complexity of Dual Encoding and our method LADN.
Compared with Dual Encoding, our method LADN needs more computational com-
plexity. This is because LADN utilizes four different latent spaces, while Dual Encod-
ing only leverages one latent space. When LADN projects representations into another
three latent spaces, it needs more computational complexity. However, the text—video
retrieval performance of LADN is better than the one of Dual Encoding.

Figures 3, 4, and 5 show the text-to-video retrieval results of our method LADN and
Dual Encoding on the MSR-VTT B partition [18]. In Fig. 3, LADN can rank the corre-
sponding results in the 1st place, but Dual Encoding fails, which proves the superiority
of our method LADN. Figures 4 and 5 are still problematic to LADN and Dual Encoding.
For the results in Fig. 4, although these two methods can get the right concept “paper,’
they cannot find the intrinsic relationship between the sentence and the corresponding
video. The possible reason for this is that the dataset contains only a small number of
videos about “typewriter” For the results in Fig. 5, although the top 1 retrieved result
is incorrect, its semantic is consistent with the semantic of the ground truth for our
method LADN and Dual Encoding.

3.4.2 Experiments on VATEX
For the VATEX dataset, we compare our method LADN with W2VV, VSE++, CE,
W2VV++, HGR, and Dual Encoding. Table 3 summarizes the performance. W2VV,
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Table 3 Experimental results on VATEX

Method Text-to-Video Video-to-Text SumR
Re1 R@5 R@10 R@1 R@5 R@10

W2VWV [42] 14.6 36.3 46.1 39.6 69.5 794 285.5

VSE++ [52] 313 65.8 764 429 739 83.6 3739

CE13] 311 68.7 80.2 413 71 823 3746

W2W++ [20] 32 68.2 788 418 75.1 84.3 380.2

HGR [15] 35.1 735 835 - - - -

Dual Encoding [22] 36.8 73.6 83.7 46.8 75.7 85.1 401.7

LADN 374 755 84.8 51.1 781 86.1 413.0

VSE++, and W2VV++ project video and text into a common latent space. However,
our method LADN maps four different levels of video and text representations into four
latent spaces. By utilizing different levels of information, LADN can perform better than

its counterparts.

3.4.3 Experiments on TRECVID AVS 2016-2018

We cite top 3 results on TRECVID AVS tasks for each year, including [53, 55, 57] in
2016, [39, 40, 58] in 2017, [54, 56, 59] in 2018. Additionally, we cite results from [16,
60], and [37]. Other results are cited from [22]. Table 4 shows the experimental results,
where the overall performance is the average score over three years. Our proposed
method LADN gives the best performance, which demonstrates that LADN can effec-
tively perform large-scale video retrieval by text query.

3.4.4 Ablation study

We design several variants of LADN to verify the effectiveness of each of its compo-
nents. We construct the LADN(w/o g, t, | alignments) variant by removing global, tem-
poral, and local alignments. The LADN(w/o semantic space) variant is built by removing
the semantic space. We construct the LADN(w/ g, t, | semantic space) variant by map-
ping global, temporal, and local information into three semantic spaces, respectively.
We remove the alignments in the global, local, temporal, and spatial-temporal spaces
to construct LADN(w/o g alignment), LADN(w/o | alignment), LADN(w/o t alignment),
and LADN(w/o s_t alignment), respectively. Table 5 presents the experimental results on
MSR-VTT B partition [18]. Compared with LADN, LADN(w/o g, t, ] alignments) gains
the worst performance. This result proves the effectiveness of the level-wise aligned
mechanism. Because LADN can make full use of global, temporal, and local informa-
tion to further improve the text—video retrieval performance. By comparing LADN
and LADN(w/o semantic space), we conclude that the semantic space plays a vital role
in improving retrieval performance. Compared with LADN, although LADN(w/ g, ], t
semantic spaces) utilizes more semantic spaces, it cannot further improve the retrieval
performance. The lack of alignment in any of the four spaces, including global, temporal,
local, or spatial-temporal spaces, will result in poor performance. It demonstrates that

these four latent spaces are complementary to each other.
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Results of LADN
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Fig. 3 The text-to-video retrieval results of our LADN method and Dual Encoding on the MSR-VTT B partition
[18]. The top 4 ranked videos are shown for each query, where the ground truth is marked with a red box,
and the others are marked with a green box. The last column is the predicted concepts corresponding to the
second column

4 Conclusion

This paper proposes a method named level-wise aligned dual networks (LADN) for
text—video retrieval. LADN first utilizes multi-level encoders to extract global, local,
temporal, and spatial-temporal information in videos and sentences. Then, they are
mapped into four different latent spaces and one semantic space. Finally, LADN com-
bines the similarities of four latent spaces and one semantic concept space to improve
cross-modal retrieval performance and increase interpretability. Extensive experiments
conducted on three widely used datasets, including MSR-VTT, VATEX, and TRECVID
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Fig. 4 The text-to-video retrieval results of our LADN and Dual Encoding on the MSR-VTT B partition [18]. The
top 3 ranked videos and the ground truth are shown for each query. Additionally, the ground truth is marked
with a red box, and the others are marked with a green box. The last column is the predicted concepts
corresponding to the second column
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Table 4 Experimental results on TRECVID AVS 2016, 2017, and 2018

TRECVID edition

2016 2017 2018 OVERALL
Top 3 TRECVID finalists
Rank 1 541[53] 20.6 [40] 12.1 [54] -
Rank 2 5.1 [55] 159 [39] 8.7 [56] -
Rank 3 4[57] 12 [58] 8.2 [59] -
Literature methods
VideoStory [16, 60] 8.7 15 - -
Markatopoulou et al. [37] 64 - - -
CE13] 74 145 8.6 10.2
VSE++ [52] 135 16.3 10.6 135
W2WV [42] 14.9 19.8 10.3 15
W2VV++ [20] 15.1 213 106 15.7
Dual Encoding [22] 15.2 23.1 12.1 16.8
LADN 153 24.1 126 17.3

Table 5 Ablation Experiments on MSR-VTT B partition [18]. w/ and w/o mean with and without,
respectively. g, t, |, s_t denote global, temporal, local, spatial-temporal, respectively

LADN variants Text-to-Video retrieval Video-to-Text retrieval SumR

R@1 R@5 R@10 MedR mAP R@1 R@5 R@10 MedR mAP

original LADN 266 555 669 4 399 269 550 674 4 40.1  298.3
w/0 g, t, I alignments 242 526 612 5 370 253 523 629 5 381 2785
w/0 semantic space 253 538 643 5 382 270 528 643 5 395 2875
w/ g, t, | semantic spaces 262 542 666 5 390 264 545 664 4 398 2943
w/o g alignment 251 556 663 4 389 253 548 670 4 394 2941

w/o | alignment 249 531 646 5 381 255 547 658 5 39.1 2886
w/o t alignment 256 562 664 4 392 264 548 666 4 399 2960
w/o s_t alignment 259 533 662 5 389 260 551 662 4 397 2927

AVS 2016-2018, demonstrate that our proposed approach is superior to several state-of-
the-art text—video retrieval approaches.

Abbreviations

CNN Convolutional neural network
RNN Recurrent neural network

GRU Gated recurrent unit

LSTM Long short-term memory network
SVMs Support vector machines

BiGRU Bidirectional gated recurrent units
BCE Binary cross-entropy

infAP Inferred average precision

Acknowledgements
We thank the National Natural Science Foundation of China and the Fundamental Research Foundation of Shenzhen for
their support.

Author contributions
QL, WC, and ZH designed the research. QL conducted the experiments and wrote this manuscript. All authors read and
approved the final manuscript.

Page 17 of 20



Lin et al. EURASIP Journal on Advances in Signal Processing ~ (2022) 2022:58 Page 18 of 20

Funding
Funding was supported by the National Natural Science Foundation of China under Grants 61771322, 61871186, and
61971290 and the Fundamental Research Foundation of Shenzhen under Grant JCYJ20190808160815125.

Availability of data and materials
Please contact the authors for data requests.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 25 September 2021 Accepted: 5 June 2022
Published online: 07 July 2022

References

1. L-Q Zhang, L-Y. Huang, X-I. Duan, Video person reidentification based on neural ordinary differential equations and
graph convolution network (2021)

2. J.Dalton, J. Allan, P. Mirajkar, Zero-shot video retrieval using content and concepts, in Proceedings of the 22nd ACM
International Conference on Information and Knowledge Management, (2013), pp. 1857-1860

3. L. Jiang, D. Meng, T. Mitamura, A.G. Hauptmann, Easy samples first: Self-paced reranking for zero-example multime-
dia search, in Proceedings of the 22nd ACM International Conference on Multimedia, (2014), pp. 547-556

4. A.Habibian, T. Mensink, C.G. Snoek, Composite concept discovery for zero-shot video event detection, in Proceed-
ings of International Conference on Multimedia Retrieval, (2014), pp. 17-24

5. S.Wu, S. Bondugula, F. Luisier, X. Zhuang, P. Natarajan, Zero-shot event detection using multi-modal fusion of weakly
supervised concepts, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp.
2665-2672

6. X.Chang, Y.Yang, A. Hauptmann, E.P. Xing, Y-L. Yu, Semantic concept discovery for large-scale zero-shot event
detection, in Twenty-fourth International Joint Conference on Artificial Intelligence (2015)

7. A Miech, D. Zhukov, J-B. Alayrac, M. Tapaswi, |. Laptev, J. Sivic, Howto100m: learning a text-video embedding by
watching hundred million narrated video clips, in Proceedings of the IEEE/CVF International Conference on Computer
Vision, (2019), pp. 2630-2640

8. M.Wray, D. Larlus, G. Csurka, D. Damen, Fine-grained action retrieval through multiple parts-of-speech embeddings,
in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), pp. 450-459

9. N.C. Mithun, J. Li, . Metze, AK. Roy-Chowdhury, Learning joint embedding with multimodal cues for cross-modal
video-text retrieval, in Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, (2018), pp.
19-27

10. M. Otani, Y. Nakashima, E. Rahtu, J. Heikkild, N. Yokoya, Learning joint representations of videos and sentences with
web image search, in European Conference on Computer Vision, (Springer, 2016), pp. 651-667

11. A.Torabi, N. Tandon, L. Sigal, Learning language-visual embedding for movie understanding with natural-language.
arXiv preprint arXiv:1609.08124 (2016)

12. J.Dong, S. Huang, D. Xu, D. Tao, DI-61-86 at trecvid 2017: video-to-text description, in TRECVID (2017)

13. Y.Ly, S. Albanie, A. Nagrani, A. Zisserman, Use what you have: Video retrieval using representations from collabora-
tive experts. arXiv preprint arXiv:1907.13487 (2019)

14. X.Yang, J. Dong, Y. Cao, X. Wang, M. Wang, T--S. Chua, Tree-augmented cross-modal encoding for complex-query
video retrieval, in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, (2020), pp. 1339-1348

15. S.Chen,Y. Zhao, Q. Jin, Q. Wu, Fine-grained video-text retrieval with hierarchical graph reasoning, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), pp. 10638-10647

16. A.Habibian, T. Mensink, C.G. Snoek, Video2vec embeddings recognize events when examples are scarce. [EEE Trans.
Pattern Anal. Mach. Intell. 39(10), 2089-2103 (2016)

17. M. Kratochvil, P. Vesely, F. Mejzlik, J. Loko¢, Som-hunter: video browsing with relevance-to-som feedback loop, in
International Conference on Multimedia Modeling, (Springer, 2020), pp. 790-795

18. A.Miech, I. Laptev, J. Sivic, Learning a text-video embedding from incomplete and heterogeneous data. arXiv pre-
print arXiv:1804.02516 (2018)

19. Y.Yu, J.Kim, G. Kim, A joint sequence fusion model for video question answering and retrieval, in Proceedings of the
European Conference on Computer Vision (ECCV), (2018), pp. 471-487

20. X.Li,C. Xy, G.Yang, Z. Chen, J.Dong, W2vv++ fully deep learning for ad-hoc video search, in Proceedings of the 27th
ACM International Conference on Multimedia, (2019), pp. 1786-1794

21. J.Dong, X. Li, C. Xy, S. Ji, Y. He, G. Yang, X. Wang, Dual encoding for zero-example video retrieval, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), pp. 9346-9355

22. J.Dong, X. Li, C. Xy, X. Yang, G. Yang, X. Wang, M. Wang, Dual encoding for video retrieval by text. IEEE Trans. Pattern
Anal. Mach. Intell. (2021)

23. J.Xu,T. Mei, T.Yao, Y. Rui, Msr-vtt: A large video description dataset for bridging video and language, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, (2016), pp. 5288-5296

24. X.Wang, J.Wu, J. Chen, L. Li, Y-F. Wang, W.Y. Wang, Vatex: a large-scale, high-quality multilingual dataset for video-
and-language research, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), pp.
4581-4591


http://arxiv.org/abs/1609.08124
http://arxiv.org/abs/1907.13487
http://arxiv.org/abs/1804.02516

Lin et al. EURASIP Journal on Advances in Signal Processing ~ (2022) 2022:58 Page 19 of 20

25.

26.

27.

28.

29.

30.
31

32.

33

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

57.

58.

G. Awad, J. Fiscus, D. Joy, M. Michel, A. Smeaton, W. Kraaij, M. Eskevich, R. Aly, R. Ordelman, M. Ritter, Trecvid 2016:
evaluating video search, video event detection, localization, and hyperlinking, in TREC Video Retrieval Evaluation
(TRECVID) (2016)

G. Awad, A. Butt, J. Fiscus, D. Joy, A. Delgado, W. Mcclinton, M. Michel, A. Smeaton, Graham, Y. W. Kraaij, Trecvid 2017:
evaluating ad-hoc and instance video search, events detection, video captioning, and hyperlinking, in TREC Video
Retrieval Evaluation (TRECVID) (2017)

G. Awad, A. Butt, K. Curtis, Y. Lee, J. Fiscus, A. Godil, D. Joy, A. Delgado, A. Smeaton, Y. Graham, Trecvid 2018: bench-
marking video activity detection, video captioning and matching, video storytelling linking and video search, in
Proceedings of TRECVID 2018 (2018)

Y. Zhang, R. Jin, Z-H. Zhou, Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybern.
1(1-4), 43-52 (2010)

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013)

S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735-1780 (1997)

A. Waswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, . Polosukhin, Attention is all you need, in
NIPS (2017)

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805 (2018)

A.Burns, R.Tan, K. Saenko, S. Sclaroff, B.A. Plummer, Language features matter: effective language representations
for vision-language tasks, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), pp.
7474-7483

K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:
1406.2199 (2014)

J. Carreira, A. Zisserman, Quo vadis, action recognition? A new model and the kinetics dataset, in Proceedings of the
|EEE Conference on Computer Vision and Pattern Recognition, (2017), pp. 6299-6308

S. Xie, C. Sun, J. Huang, Z. Tu, K. Murphy, Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in
video classification, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), pp. 305-321

F. Markatopoulou, D. Galanopoulos, . Patras, V. Mezaris, Iti-certh participation in trecvid 2016. (2016)

F. Markatopoulou, D. Galanopoulos, V. Mezaris, |. Patras, Query and keyframe representations for ad-hoc video
search, in Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, (2017), pp. 407-411

K. Ueki, K. Hirakawa, K. Kikuchi, T. Ogawa, T. Kobayashi, Waseda_meisei at trecvid 2017: Ad-hoc video search, in
TRECVID Workshop (2017)

C.G. Snoek, X. Li, C. Xu, D.C. Koelma, University of amsterdam and renmin university at trecvid 2017: searching video,
detecting events and describing video, in TRECVID Workshop (2017)

D. Shao, Y. Xiong, Y. Zhao, Q. Huang, Y. Qiao, D. Lin, Find and focus: retrieve and localize video events with natural
language queries, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), pp. 200-216

J.Dong, X. Li, CG. Snoek, Predicting visual features from text for image and video caption retrieval. IEEE Trans. Mul-
timed. 20(12), 3377-3388 (2018)

SHershey, S. Chaudhuri, D.P. Ellis, J.F. Gemmeke, A. Jansen, R.C. Moore, M. Plakal, D. Platt, R.A. Saurous, B. Seybold, Cnn
architectures for large-scale audio classification, in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (icassp),(2017), pp. 131-135. IEEE

Y. Yu, H. Ko, J. Choi, G. Kim, End-to-end concept word detection for video captioning, retrieval, and question answer-
ing, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), pp. 3165-3173

Y. Song, M. Soleymani, Polysemous visual-semantic embedding for cross-modal retrieval, in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, (2019), pp. 1979-1988

B. Zhang, H. Hu, F. Sha, Cross-modal and hierarchical modeling of video and text, in Proceedings of the European
Conference on Computer Vision (ECCV), (2018), pp. 374-390

K. Cho, B.Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase represen-
tations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

Y. Kim, Convolutional neural networks for sentence classification, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics (2014)

S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, (2017) pp. 1492-1500

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, (2016), pp. 770-778

D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

F. Fartash, D. Fleet, J. Kiros, S. Fidler, Vse++: improved visual semantic embeddings, in British Machine Vision Confer-
ence, (2018), pp. 935-943

D-D. Le, S. Phan, V.-T. Nguyen, B. Renoust, TA. Nguyen, V.-N. Hoang, T.D. Ngo, M.-T. Tran, Y. Watanabe, M. Klinkigt, Nii-
hitachi-uit at trecvid 2016, in TRECVID (2016)

X. Li, J. Dong, C. Xu, J. Cao, X. Wang, G. Yang, Renmin university of china and zhejiang gongshang university at
trecvid 2018: deep cross-modal embeddings for video-text retrieval, in TRECVID (2018)

M. Foteini, M. Anastasia, G. Damianos, M. Theodoros, K. Vagia, |. Anastasia, S. Symeonidis, Iti-certh participation in
trecvid 2016, in TRECVID 2016 Workshop (2016)

P-Y.Huang, J. Liang, V. Vaibhav, X. Chang, A. Hauptmann, Informedia@ trecvid 2018: Ad-hoc video search with
discrete and continuous representations, in TRECVID Proceedings, vol. 70. (2018)

J.Liang, J. Chen, P Huang, X. Li, L. Jiang, Z. Lan, P. Pan, H. Fan, Q. Jin, J. Sun, Informedia@ trecvid 2016, in TRECVID
(2016)

PA.Nguyen, Q. Li, Z-Q. Cheng, Y-J. Lu, H. Zhang, X. Wu, C-W. Ngo, Vireo@ trecvid 2017: video-to-text, ad-hoc video
search, and video hyperlinking, in TRECVID (2017)


http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.6980

Lin et al. EURASIP Journal on Advances in Signal Processing ~ (2022) 2022:58 Page 20 of 20

59. M. Bastan, X. Shi, J. Gu, Z. Heng, C. Zhuo, D. Sng, A.C. Kot, Ntu rose lab at trecvid 2018: Ad-hoc video search and
video to text, in TRECVID (2018)
60. D.Koelma, C. Snoek, Query understanding is key for zero-example video search, in TRECVID Workshop (2017)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Level-wise aligned dual networks for text–video retrieval
	Abstract 
	1 Introduction
	1.1 Background and significance
	1.2 Related work
	1.2.1 Language representations
	1.2.2 Video representations
	1.2.3 Semantic space learning
	1.2.4 Latent space learning


	2 Methods
	2.1 Video encoder
	2.1.1 Global-aware encoder
	2.1.2 Temporal-aware encoder
	2.1.3 Local-aware encoder
	2.1.4 Spatial–temporal encoder

	2.2 Text encoder
	2.3 Latent space learning
	2.4 Semantic space learning
	2.5 Joint training of two spaces
	2.6 Measuring of video–text similarity

	3 Experiments
	3.1 Dataset
	3.2 Performance metrics
	3.3 Experimental details
	3.4 Experimental results
	3.4.1 Experiments on MSR-VTT
	3.4.2 Experiments on VATEX
	3.4.3 Experiments on TRECVID AVS 2016-2018
	3.4.4 Ablation study


	4 Conclusion
	Acknowledgements
	References


