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Abstract

This work proposes an analog implementation of gradient-based algorithm for compressive sensing signal
reconstruction. Compressive sensing has appeared as a promising technique for efficient acquisition and
reconstruction of sparse signals in many real-world applications. It starts from the assumption that sparse
signals can be exactly reconstructed using far less samples than in standard signal processing. In this paper,
we consider the gradient-based algorithm as the optimal choice that provides lower complexity and
competitive accuracy compared with existing methods. Since the efficient hardware implementations of
reconstruction algorithms are still an emerging topic, this work is focused on the design of hardware that
will provide fast parallel algorithm execution for real-time applications, overcoming the limitations imposed
by the large number of nested iterations during the signal reconstruction. The proposed implementation is
simple and fast, executing 400 iterations in 1 ms which is sufficient to obtain highly accurate reconstruction

results.
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1 Introduction

In conventional digital signal processing, the sam-
pling frequency needs to be at least the double of
the maximal signal frequency in order to be able to
get exact reconstruction of signals. Alternatively, in
compressive sensing (CS) framework, the signal can
be exactly recovered even when the number of avail-
able samples is considerably below the conventional
requirements [1-5]. Although certain conditions
should be fulfilled for efficient CS scenario, it turns
out that many signals in real applications are very
conducive to CS. The first requirement is related to
signal sparsity, which is generally achieved using
certain transform domain representation [4—6]. The
second one refers to incoherence between the
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measurement process and the sparsity basis. In other
words, a small set of linear measurements needs to
be acquired in a random manner [4]. Under these
conditions, the signal reconstruction is observed as a
problem of solving undetermined system of linear
equations. It is important to emphasize that the CS
has been efficiently combined with different time-
frequency approaches, either to define improved CS
methods based on the time-frequency dictionaries or
to define improved time-frequency representations
based on the CS reconstruction principles [7]. A
reliable instantaneous frequency estimation from a small
set of available samples can be achieved by applying the
signal reconstruction algorithms on the samples of the
local autocorrelation function [8]. Therefore, the
CS-based reconstruction methods bring several benefits to
time-frequency analysis.
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Solving the problem of signal reconstruction from
a small set of available samples can be a complex
and demanding task from both software and hard-
ware perspectives. The existing software solutions
[9-14] are mainly based on different iterative convex
optimization techniques or their greedy iterative
counterparts. These software implementations are
generally unsuitable for real-time applications, due
to the fact that the algorithms require a large num-
ber of iterations to achieve convergence. Moreover,
the intrinsic parallelism in the algorithm execution is
difficult to achieve in a mono-processor computing
system [15]. Therefore, in order to cope efficiently
with signal reconstruction problem in compressive
sensing, one needs a dedicated parallel hardware
implementation of reconstruction algorithm. The
hardware realization can be done using analog,
digital, or combined analog and digital devices.

In this paper, we propose an analog hardware
architecture of the gradient-based signal reconstruc-
tion algorithm [14, 16]. The chosen algorithm ex-
hibits optimal performance for different types of
signals. It belongs to a group of convex optimization
methods prominent for its accuracy and is computa-
tionally less demanding than the other methods from
this category. The proposed algorithm outperforms
the standard ones wused for the £;-norm-based
minimization problems in both the calculation time
and accuracy [16]. In huge contrast to greedy
methods, the gradient-based algorithm does not re-
quire the signal to be strictly sparse in a certain
transform domain, rendering it suitable for real-
world applications. Furthermore, it is well known the
computational burden of digital hardware implemen-
tation can be intensive, leading to long execution
time [17-19]. Hence, opting for analog implementa-
tion instead might bring considerable advantage in
terms of complexity and consequently, to reduced
execution time.

The paper is organized as follows. Theoretical
background on the compressive sensing and
gradient-based signal reconstruction algorithm is
given in Section 2. Section 2 presents the proposed
hardware solution, whose performance is discussed/
assessed in Section 3. The concluding remarks are
given in Section 4.

2 Compressive sensing—theory and
reconstruction method

Compressive sensing framework emerged from the
efforts to decrease the amount of data sensed in the
modern applications [5], and consequently to de-
crease the needs for resources such as storage cap-
acity, number of sensors, and consumption. The set
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of measured data in traditional approach is usually
referred to as full dataset, while the data in CS sce-
narios are called incomplete dataset. The data sam-
ples in the traditional sampling approach are
equidistant and uniformly sampled, while in the CS,
the data should be sampled randomly to achieve a
high incoherence of the dataset. If the measurement
process is modeled by a certain measurement matrix
@, then the measured dataset y of length M can be
described as [2]:

y=0x (1)

where x represents the full dataset of length N, and
the measurement matrix is of size M x N, with M
< < N. In practical scenarios, the CS dataset ¥y and
the measurement matrix ® are known, and we de-
sire to reconstruct the full dataset x of length N.
However, the system of equations in (1) is underde-
termined since M < < N. Thus, in order to tackle
the problem, one resorts to the assumption that the
signal x is sparse when represented in certain trans-
form basis:

X=Wx (2)

where X is a transform domain representation of
full signal dataset and W is the transform matrix,
ie.,

Wi(l)  Wa(1) Wi (1)
W — W (2) W2(2) WN(Z) (3)
Wi(N) Ws(N) Wx(N)

where W; are the basis functions. Depending on
the signal, the basic functions could belong to
discrete Fourier transform (DFT), discrete Hermite
transform (DHT), discrete wavelet transform (DWT),
discrete cosine transform (DCT), etc. For the sake of
simplicity, we can write W as the coefficients’
matrix:

win W WN1
w w w,

W — 12 22 N2 ( 4)
WIN WaN WNN

Sparsity means that the vector X has only K out
of N nonzero (or significant) elements, while K < <
N and K < M. The system of linear equations
becomes:

y=OW X (5)

The reconstructed signal X can be obtained as a spars-
est solution of the following optimization problem [7]:
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minimize|| X||, subject to y=®@W X (6)

where ||X||; denotes /;-norm. Generally, the /-
norm is used to measure the signal sparsity, but in
practical implementations, using the [,-norm can
lead to an NP problem; hence, the /;-norm is used
instead.

There are few types of algorithms that can be ap-
plied for solving this problem and the most com-
monly used are the convex optimization algorithms
and the greedy algorithms [9, 10]. In general, the
greedy solutions are simpler, but less reliable.
Convex optimization algorithms are more reliable
and accurate in general and guaranteed convergence,
but their solutions comes at the cost of computa-
tional complexity and large number of nested itera-
tions [4, 9]. In this paper, we consider the gradient-
based convex optimization algorithm as a representa-
tive of the convex optimization group allowing sim-
pler implementation compared with other common
solutions.

2.1 Gradient-based signal reconstruction algorithm
Assume that the missing samples positions are de-
fined by the set N, ={ny, ny, ..nxy_p}. Now the
measurement vector is extended to the length of
full dataset such that we embed zeros on the posi-
tions of missing samples, i.e., y(n)=0, forneN,,.
The gradient-based approach starts from some ini-
tial values of unavailable samples (initial state)
which are changed through the iterations in a way
to constantly improve the concentration in sparsity
domain. In general, it does not require the signal to
be strictly sparse in certain transform domain,
which is an advantage over other methods. In par-
ticular, the missing samples in the signal domain
can be considered as zero values. In each iteration,
the missing samples are changed for +A and for
—-A. Then, for both changes, the concentration is
measured as /;-norm of the transform domain vec-
tors X* (for +A change) and X~ (for -A change),
while the gradient is determined using their differ-
ence. Finally, the gradient is used to update the
values of missing samples. Here, it is important to
note that each sample is observed separately and a
single iteration is terminated when all samples are
processed.

In the sequel, we provide a modified version of
the algorithm adapted for an efficient hardware
implementation avoiding complex functions and
calculations.
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Modified Algorithm

S

. Set y'(n) «y(n)
i<0
A <max |y(i) (n)|

p—

(Inputs)

[\

W

: Set y, (m)=y"(n),
(Block 1)

4: for j<-0to N-1do

5. if jeN,

6 X (k) « W{y" () + AS(n - j)}
7 X (k) « W{y"(m) - AS(n - j)}

; 1
s () eIl -Ix )

9: else g”(j)«0
10: end if

(Block 2) 11: end for

12: yi)  y®» _g®
<g(f71)g(i)>

R T

2

=Ll

(Block 3)

14: if f <cos(175°)
15: i«itl

16: go to 4

17: else

18: A« A/3

> |y, -y o
_ neN,,

19: 7 = —
> |y )
neNy,

20: end if

20757,

22: i«i+1
23: go to 2

24: end if
(Block 4)

25: return y" (n)

(Outputs)

The algorithm steps are combined within the blocks
according to the parallelization principle. The steps
within the same block can be implemented in parallel.



Orovi¢ et al. EURASIP Journal on Advances in Signal Processing

(2019) 2019:61

Page 4 of 11

o Updatey' BLOCK 2
@ Update gradient
- vector g ;
E -)IuPdateyp BLOCK 1
§ Yp g
5 U ] _
E Y osC_t1 osc_2 A
o Oscillator IT| Conesin
N START
JULUL =
ey U 0SC_4 ” 0sC_3
p I i
2 STO
- Update Tr Check Tr —_—_>—
£ Update g'
~ gl
| 4 — ~ o
BLOCK 4 _%F;c BLOCK 3
Check BETA BETA  Update BETA
Updatey
Fig. 1 The block scheme of the proposed analog architecture
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The steps from the succeeding block are performed after
the current block is processed. When the algorithm
comes close to the minimum of the sparsity measure,
the gradient changes direction for almost 180 degrees,
meaning that the step A needs to be decreased (line 18).
The precision of the result in this iterative algorithm is
estimated based on the change of the result in the last
iteration.

START I
0SC_1 I
T !

0sC_2 |1

'

T2

0SC. 3 i !

T3

0SC_4 :!
e CE i j T4 H
Tp Tp Tp Tp Tp
Fig. 2 Oscillator output signals (OSC_1, OSC_ 2, OSC_3, and OSC_4);
T1, T2, T3, and T4 are durations of active states of OSC_1, OSC_2,

OSC_3, and OSC_4 signals, respectively

3 Analog hardware implementation of modified
gradient-based algorithm

From the modified version of the algorithm, we can
identify following steps that need to be implemented
within analog hardware architecture:

a) Set the signal samples at the input of analog
architecture (line 0)

b) Set the digital signal identifying the positions of
available and missing samples at the input of the
architecture: positions of available samples are
marked by value “1” (high voltage) and missing
samples are marked by “0” (low voltage) values (line
0 in the modified algorithm).

¢) Set the value for the gradient step A as in line 2 in
the modified algorithm

d) Update the values of the gradient g for input
samples (lines 4 to 11 in the modified algorithm)

e) Update the values of the missing samples and 5
(lines 12 and 13 in the modified algorithm)

f) Check the condition for changing A (line 14 of the
modified algorithm):

— If the condition is not satisfied, repeat the steps d)
and e) (lines 4 to 13 in the modified algorithm)
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J
— If the condition is satisfied, A is decreased, for g) In parallel with changing the step A, check the
example, to A/3 (line 18 in the modified algorithm). stopping criterion. The stopping criterion T, is
It is noteworthy that in order to achieve high defined as the mean value of changes applied on the
precision, the step A should be decreased when missing samples using the previous value of
approaching the stationary oscillations zone. gradient step A (line 19: in the modified algorithm).

When the applied changes are less than the
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Fig. 4 Block 1: sample and hold circuits controlled by OSC_1, START, Fig. 5 Block 2 calculates and updates the vector of gradient
and Correc signals used to update y,, array samples (gradients)
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predefined minimum, the updated value of A has
no significant influence on the signal quality and
thus, the procedure should be stopped. In such a
case, the current values of input signal represent
the reconstruction result. If the stopping criterion is
not met, the procedure is repeated with new
updated value A.

The block scheme for the proposed analog architec-
ture is shown in Fig. 1.
The architecture is composed of the following segments:

— Input array holding the analog samples y,

— Input array e holding the indicators of available and
missing samples positions,

— Set A correction circuit,

— Four architecture blocks: Block 1, Block 2, Block 3,
and Block 4.

The proposed architecture blocks (Block 1, Block 2,
Block 3, and Block 4) have been driven by the output sig-
nals from the oscillator, namely OSC_1, OSC_2, OSC_3,
and OSC_4, respectively. The sequence of active states of
the oscillator’s signal controls the activation order of the
four architecture blocks. Before the START signal, all out-
puts are set to low voltage level. After activating START
signal, the oscillator’s output signals are shown in Fig. 2.
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Prior to activating the START signal, the values of in-
put signals y are loaded to the sample and hold ampli-
fiers, and e values are set. During the START impulse,
the initial value of A is set to the output of set A correc-
tion circuit, whose electrical diagram is shown in Fig. 3.
Let us briefly discuss the set A correction circuit. By ac-
tivating START signal, the capacitor C is loaded to the
approximately maximal absolute value of the input sig-
nal samples. It is the initial value of the A correction.

Further update of A is controlled by the Correc signal:
when Correc is high, A is changed to A/3 (as in line 18
in the modified algorithm).

The architecture Block 1 is used to temporarily store
values of y within the array y, (for the current value of
A), Fig. 4. Block 1 is active when OSC_1 (T1 impulse) is
high and either START or Correc signal is active. At the
beginning, during active state of START signal and first
T1 impulse, the initial value of array y is loaded into the
array y,. Further update of y, is controlled by active state
of OSC_1 signal and active state of the Correc signal. It
is important to note that y, values are updated each time
when a new correction value A is set to A/3. Therefore,
¥, represents the version of reconstructed signal at the
moment of applying a new A value. It is used later to
calculate T, (line 19 in the modified algorithm) as the
mean square error between y signal before and y signal
after applying current A correction value.

y(|1) Y(JA)I‘*A V(E‘l)

W11 . W1 Wy
y(l1) y(j)l+ A y({\l)

Wit/ \Wy W;

1 i)+ A y(N :
y(l) V(J)I" y(l ) ()
Wy, S K

(b3

Fig. 6 Circuit for the calculation of gradient sample at position j (g))

y(1) yi)-a  yN)

cemdee
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Fig. 7 Circuits for updating the input signal values y

The architecture Block 2 is active when OSC 2 (T2 im-
pulse) is high and it is used to update the values of the gradi-
ents g (for each missing sample position), as shown in Fig. 5.
Current values of y are placed in y’ (for the ith iteration y’ =
y? in the algorithm). The values of signal samples y are
loaded into the sample and hold amplifiers y'. Further, the
architecture Block 2 allows parallel computation of all gradi-
ent samples in g. A circuit used to calculate a single gradient
sample is shown in Fig. 6. It consists of amplifiers represent-
ing the transformation coefficients w;; belonging to the trans-
formation matrix W (defined in (5)), adders and absolute
value circuits. The calculation of a gradient sample g; requires
NN + 1) + 1 amplifiers, 2(N + 1) adders with N inputs, 2 N
absolute value circuits, 1 adder with two inputs, 1 invertor
circuit, and 2 switches. Note that the amplifiers drawn by the
dashed line (right side of Fig. 6) are not supposed to be im-
plemented in hardware. Namely, these amplifiers are shown
in Fig. 6 only to provide a clearer circuit illustration, but the
necessary values are already available at the output of the ap-
propriate amplifiers on the left side of Fig. 6. The switches in
Fig. 6 are controlled by the signal e containing the indicators
of available and missing samples. The switch SW1 needs to
be closed on the positions of missing samples and opened on
the positions of available samples (the gradients are calcu-
lated only for the missing samples positions), while the situ-
ation with SW2 is opposite. Hence, at the position of
available sample, the signal e(i) keeps the switch SW1 open,

while the signal e(i) closes the SW2 switch. At the position
of missing sample, the signal e(i) keeps the switch SW1

closed, while the signal e(i) opens the switch SW2.

BETA

Sample
and hold

amplifier

Fig. 8 A circuits for updating parameter (3
A\
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The architecture Block 3 is active when OSC_3 signal
(T3 impulse) is high and it is used to obtain updated sig-
nal values y using gradient g and current signal values y’
from Block 2 () = y@ - ¢? in the algorithm). This
part of Block 3 is shown in Fig. 7. Another part of the
architecture Block 3 is responsible for updating value of
B (Fig. 8). The value of f is fed to the input of the circuit
that validates the condition for changing the step A.

The circuit in Fig. 8 consists of analog voltage
adders, multipliers, squaring and rooting circuits, div-
ision (multiplication) circuits, and sample and hold
amplifiers. It can be seen that the calculation of S re-
quires 3 adders with N inputs, N + 1 multiplier, 2 N
squaring circuits, two square-rooting circuit, and div-
ision circuit. Note that the array denoted by g’ holds
the gradient values from the previous iteration. Update
of values in g” array is done in Block 4.

The architecture Block 4 is active when OSC_4 sig-
nal (T4 impulse) is high and it is used to load current
values from g into g’. The circuits in Block 4 are fur-
ther used to check the parameter § and activate Correc
signal (Fig. 9a), update the value of T, (Fig. 9b), and
check whether the stopping criterion is met (Fig. 9c).
The circuit in Fig. 9b consists of the adders (N + 2),
multipliers, N inverters, 2 N squaring analog voltage
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circuits, and 1 division circuit. The circuit in Fig. 9 a
compares 8 and fSrep, and if B < Srer, the signal Correc
is activated as a trigger to update the value of A. The
active state of signal Correc allows us to check the
stopping criterion (Fig. 9¢). If the stopping criterion is
met, the STOP signal is activated. This causes deacti-
vation of all oscillator outputs and consequently all
switches in the hardware become open. In the case
where the stopping criterion is not met, RcCc time
constant is used to keep the high voltage of Correc sig-
nal for the next T1 period. It is used to enable update
of sample and hold amplifiers denoted by y,,.

The required components per block are shown in
Table 1 (only the main and most represented compo-
nents are listed, such as amplifiers, adders, and
multipliers).

4 Results and discussion

The simulation of the proposed hardware architec-
ture is done using the PSpice (OrCAD 16.6). For the
realization of multipliers, division circuit, squaring,
and square-rooting circuit the analog device AD734
is used. The circuit represents a precise four-
quadrant high-speed analog multiplier that is able to
perform all the abovementioned functions. For the

-

0SC_4 U A
y

y(1) y()

y(N)

Tr, € checking the stopping criterion T, < Tyef

Vo) v(1) %0 y() YN y(N)
| | | Tr
]! Correc
0SC_4 C—>-\o--- D P
g R
; Lorip e
) vee Trref [ U i
Rt
Rr2
)

Fig. 9 Circuits in block 4: a checking the condition 8 < Bger (if the condition is satisfied, Correc signal is activated), b updating the threshold value
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Table 1 The number of the most represented circuits required

Input signal circuits Block 1 Block 2 Block 3 Block 4 Total
Amplifiers N> + N? + 3N 2N N N> + N? + 6N
Adders 2N? + 4N N+3 N+ 2 2N +6N+5
Absolute value circuits 2N? 2N
Sample and hold amplifiers N N 2N 1 N 5N+1
Switches N+ 2 4N N+ 1 N+3 7N+6
Multipliers/divisions 3IN+4 2N+ 1 5N+5

realization of amplifiers (inverters), adders and abso-
lute value circuits, we employed the ultra-high-speed
operational amplifier LT1191. For the analog voltage
comparison, we employed the circuit LT1394 (com-
parator) [20] (with settling time 7ns). The circuit
provides the complementary outputs and allows the
zero-crossing detection. The sample and hold cir-
cuits AD783 are used for storing the voltage values.
Furthermore, in the simulation, we used the analog
switches MAX4645 [21] and diodes 1 N4448 [22].
The simulation has shown that the required duration
for the oscillator outputs are T1 ~ 320 ns, T2 = 740
ns, T3 = 650 ns, and T4 ~ 610 ns. The time between
the impulses (Tp) is required to turn off the analog
switches used in the proposed hardware. The turn off
time for switches MAX4645 is up to Tp = 40ns.
Hence, the minimal duration for one algorithm
iteration is T1 + T2 + T3 + T4 + 4Tp = 248 us =
2.5 pus. The total calculation time for the reconstruc-
tion of an input signal depends on the number of iter-
ations. The proposed solution allows up to 400
iterations within 1 ms, and it is interesting to mention

that most of the signals in real applications can be
completely accurately reconstructed within a few hun-
dreds of iterations [16].

Another advantage of the proposed hardware solution
is the robustness on hardware imperfection. The used
components generate a very small error. The main
source of errors is the circuit AD734. However, it con-
tributes in error with typical 0.1% of the full scale or
0.25 in full temperature range from — 40 to + 85 °C. Our
simulations have shown that the maximal introduced
error can cause only a few additional iterations to
achieve a high precision reconstruction performance,
which is negligible in terms of time and processing
costs.

4.1 Example

In order to provide an illustration of signal reconstruc-
tion results, let us observe the experimental synthetic
signal that is sparse in the Hermite transform domain.
The original signal contains 64 samples, but only 26
samples are available on the random positions within
the signal, while 38 samples are missing and should be

5 5
0 TT )ﬁ }J - I %‘1 TJ)L T j 0 A . X x xx
-5 -5
0 20 40 60 0 20 40 60
a) b)
5 6
4
0
2
. . e
0 20 40 60 0 20 40 60
c) d)
Fig. 10 a 26 (out of 64) available samples of synthetic signal, b original (full length) signal with marked available samples, ¢ reconstructed (full
length) signal, d Hermite transform of the reconstructed signal
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Lfﬁ
0 1 3
-100
-100
-200 tx
c) 0 10 20 30 40 d) 0 10 20 30 40
Fig. 11 a 20 available samples (out of 50) of QRS signal, b original QRS signal (full-length signal consisting of 50 samples) with available samples
marked in red, ¢ reconstructed (full length) QRS signal, d Hermite transform of the reconstructed signal

reconstructed. The available samples are shown in
Fig. 10a. The original signal with missing samples marked
in red color is shown in Fig. 10b. The reconstructed signal
is shown in Fig. 10c. The sparse Hermite transform after
the reconstruction is shown in Fig. 10d. The achieved
mean square error is of order 10~ which can be con-
sidered negligible in the case of observed signal. Thus, the
reconstruction result is highly accurate.

In real-world applications, the same concept can be
applied for the reconstruction of QRS complexes (as
shown in Fig. 11) in ECG signals, or ultra-wide band
(UWB) signals in communications, that are also sparse
in the Hermite transform basis. In the case of other
communications signals (e.g., FHDSS), the Fourier trans-
form basis would be more appropriate for achieving
sparse signal representation. Finally, without loss of gen-
erality, this approach can be applied in the same way by
using any other transform basis as long as it allows
sparse representation of the specific observed signal.
Therefore, the proposed hardware implementation is
very amenable to various practical applications, for in-
stance in communications, radars and remote sensing,
biomedicine, etc.

5 Conclusion

In this work, we presented an analog hardware archi-
tecture for gradient-based algorithm for sparse signal
reconstruction. The algorithm is suitable for different
types of signals and therefore is suitable for real-time
implementation which opens a wide range of applica-
tions, including time-frequency signal analysis and
instantaneous frequency estimation. The proposed

analog design allows fast processing and low-
complexity realization, executing significant number
of algorithm iterations in short-time intervals (at the
order of 1ms), which is highly satisfactory for real-
time applications.

Abbreviations

CS: Compressive sensing; DFT: Discrete Fourier transform; DHT: Discrete
Hermite transform; DWT: Discrete wavelet transform; DCT: Discrete cosine
transform
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