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Principles of fluid management 
and stewardship in septic shock: it is time 
to consider the four D’s and the four phases 
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Abstract 

In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major 
therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous 
fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, 
intravenous fluids have many other uses including maintenance and replacement of total body water and electro‑
lytes, as carriers for medications and for parenteral nutrition. In this paradigm‑shifting review, we discuss different fluid 
management strategies including early adequate goal‑directed fluid management, late conservative fluid manage‑
ment and late goal‑directed fluid removal. In addition, we expand on the concept of the “four D’s” of fluid therapy, 
namely drug, dosing, duration and de‑escalation. During the treatment of patients with septic shock, four phases 
of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the 
resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions 
are “When to start intravenous fluids?”, “When to stop intravenous fluids?”, “When to start de‑resuscitation or active 
fluid removal?” and finally “When to stop de‑resuscitation?” In analogy to the way we handle antibiotics in critically ill 
patients, it is time for fluid stewardship.
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Replacement, Goal‑directed therapy, Monitoring, Fluid responsiveness, Passive leg raising
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Background
In patients with septic shock, hemodynamic stabiliza-
tion using intravenous fluids remains a major therapeutic 
challenge as numerous questions remain regarding the 
type, dose and timing of fluid administration. In these 
patients, fluids play an important role beyond hemody-
namic stabilization and resuscitation. Intravenous fluids 
should be prescribed as any other drug we give to our 
patients: we should take into account the indications and 

contraindications for different types of fluids [2–8]. We 
should only prescribe fluids when they are clearly indi-
cated and should balance the risk of not administering 
enough with the increasingly apparent risks of too much 
fluid.

In this review, we will expand on the concept of the 
“four D’s” of fluid therapy (drug, duration, dosing and 
de-escalation). We will also focus on the recent concept 
defining four different phases in the time course of sep-
tic shock (resuscitation, optimization, stabilization and 
evacuation). Each phase requires a different therapeu-
tic attitude regarding fluid administration. Taking into 
account both of these concepts in combination with 
other suggested ideas may promote more rational fluid 
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administration aimed at avoiding both too little and too 
much. In analogy to the way we handle antibiotic usage in 
the critically ill, it is now time for fluid stewardship.

The risk of fluid overload
Treating a patient with septic shock inevitably results in 
some degree of salt and water overload. First and fore-
most, this is the result of the initial fluid resuscitation 
with the aim of restoring intravascular volume, increas-
ing cardiac output, augmenting oxygen delivery and 
improving tissue oxygenation. Salt and water overload 
can also result from the administration of large volumes 
of fluid as drug diluents, artificial nutrition and mainte-
nance fluids. The capillary leak that is inherent to sepsis 
promotes the extravasation of large amounts of fluid, 
inducing relative central hypovolemia that often requires 
further fluid administration, despite interstitial oedema. 
Capillary leak represents the maladaptive, often exces-
sive, and undesirable loss of fluid and electrolytes with 
or without protein into the interstitium that generates 
anasarca and end-organ oedema causing organ dysfunc-
tion and eventually failure [9]. Fluid overload should be 
avoided in this setting.

indications and contraindications should be carefully con-
sidered when choosing their type, their dose, the timing of 
their administration and the timing for their removal. In 
parallel, a reasoned fluid strategy requires that we do not 
consider septic shock as a single “one size fits all” disease, 
but rather that it is made of different phases, each imply-
ing a different therapeutic attitude [16].

The four D’s of fluid therapy
When prescribing fluids in patients with septic shock, we 
must take into account their composition and their phar-
mocodynamic and pharmacokinetic properties. In prac-
tice, we should consider the “four D’s” of fluid therapy: 
drug, dosing, duration and de-escalation (Table  1) [5]. 
Many clinicians already use these four D’s for the pre-
scription of antibiotics (Table 1).

Drug
We should consider the different compounds: crystal-
loids versus colloids, synthetic versus blood derived, bal-
anced versus unbalanced, intravenous versus oral. The 
osmolality, tonicity, pH, electrolyte composition (chlo-
ride, sodium, potassium, etc.) and levels of other meta-
bolically active compounds (lactate, acetate, malate, etc.) 
are all equally important. Clinical factors (underlying 
conditions, kidney or liver failure, presence of capillary 
leak, acid–base equilibrium, albumin levels, fluid bal-
ance, etc.) must all be taken into account when choosing 
the type and amount of fluid for a given patient at a given 
time. Moreover, the type of fluid is different depending 
on the reason why they are administered. There are only 
four indications for fluid administration, namely resus-
citation, maintenance, replacement and nutrition, or a 
combination.

Fig. 1 The vicious cycle of septic shock resuscitation. Adapted from 
Peeters et al. with permission [96]. IAH: intra‑abdominal hypertension

Fluid overload
As often described in paediatric populations, the per-
centage of fluid accumulation is calculated by dividing 
the cumulative fluid balance in litres by the patient’s 
baseline body weight and multiplying by 100%. Fluid 
overload at any stage is defined by a cut-off value of 
10% of fluid accumulation, as this is associated with 
worse outcomes [14, 76, 88].

Studies demonstrate an association between fluid over-
load, illustrated by the increase in the cumulative fluid 
balance, with worse patient centred outcomes [1] in criti-
cally ill patients with septic shock [10, 11] and/or acute 
respiratory distress syndrome [12]. Fluid administra-
tion potentially induces a vicious cycle, where interstitial 
oedema induces organ dysfunction that contributes to 
fluid accumulation (Fig.  1). Peripheral and generalized 
oedema is not only of cosmetic concern, as believed by 
some [13], but harmful to the patient as a whole as it can 
cause organ oedema and dysfunction [1, 14]. Figure  2 
details all the potential harmful consequences of fluid 
overload on different end-organ systems, with conse-
quential effects on patient morbidity and mortality. As 
such, fluid therapy can be considered a double-edged 
sword [1, 15].

Therefore, current treatment of septic shock should 
include every effort to reduce the cumulative fluid balance. 
We must always bear in mind that fluids are drugs and 
oedema is akin to a drug overdose. Their characteristics, 
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Resuscitation fluids
Resuscitation fluids are given to correct an intravascular 
volume deficit in the case of absolute or relative hypov-
olemia. In theory, the choice between colloids and crys-
talloids should take into account the revised Starling 
equation and the glycocalyx model of transvascular fluid 
exchange [17]. When capillary pressure (or transen-
dothelial pressure difference) is low, as in hypovolemia 
or sepsis and especially septic shock, or during hypoten-
sion (after induction and anaesthesia), albumin or plasma 
substitutes have no advantage over crystalloid infusions, 
since they all remain intravascular. However, the glycoca-
lyx layer is a fragile structure and is disrupted by surgi-
cal trauma-induced systemic inflammation or sepsis, but 
also by rapid infusion of fluids (especially saline). Under 
these circumstances, transcapillary flow (albumin leakage 

and risk of tissue oedema) is increased, as is the risk to 
evolve to a state of global increased permeability syn-
drome (GIPS) [17].

Fig. 2 Potential consequences of fluid overload on end‑organ function. Adapted from Malbrain et al. with permission [1, 2]. APP: abdominal perfu‑
sion pressure, IAP: intra‑abdominal pressure, IAH: intra‑abdominal hypertension, ACS: abdominal compartment syndrome, CARS: cardio‑abdominal‑
renal syndrome, CO: cardiac output, CPP: cerebral perfusion pressure, CS: compartment syndrome, CVP: central venous pressure, GEDVI: global 
enddiastolic volume index, GEF: global ejection fraction, GFR; glomerular filtration rate, ICG‑PDR: indocyaninegreen plasma disappearance rate, ICH: 
intracranial hypertension, ICP: intracranial pressure, ICS: intracranial compartment syndrome, IOP: intra‑ocular pressure, MAP: mean arterial pressure, 
OCS: ocular compartment syndrome, PAOP: pulmonary artery occlusion pressure, pHi: gastric tonometry, RVR: renal vascular resistance, SV: stroke 
volume

Global increased permeability syndrome
Some patients will not transgress to the “flow” phase 
spontaneously and will remain in a persistent state of 
global increased permeability syndrome and ongoing 
fluid accumulation [9]. The global increased permea-
bility syndrome can hence be defined as fluid overload 
in combination with new onset organ failure. This is 
referred to as “the third hit of shock” [41].

Because of their potential risk, hydroxyethyl starches 
are contraindicated in case of septic shock, burns, 
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patients with acute or chronic kidney injury or in case of 
oliguria not responsive to fluids (within 6 h) [18]. In other 
circumstances (post-operative phase, trauma and haem-
orrhagic shock), starches may still be able to be used as 
resuscitation fluids, although this remains controversial. 
Recently, the Coordination Group for Mutual Recogni-
tion and Decentralised Procedures-Human (CMDh) 
has endorsed the European Medicine’s Agency PRAC 
(Pharmacovigilance Risk Assessment Committee) rec-
ommendation to suspend the marketing authorisations 
of hydroxyethyl starch solutions for infusion across the 
European Union. This suspension is due to the fact that 
hydroxyethyl starch solutions have continued to be used 
in critically ill patients and patients with sepsis, despite 
the introduction in 2013 of restrictions on use in these 
patient populations in order to reduce the risk of kidney 
injury and death (http://www.ema.europ a.eu).

the association between fluid-induced chloride loading/
hyperchloremia and worse outcomes, probably due to 
an impact on renal function [22, 23]. In a recent clini-
cal study in human volunteers, a reduction in iatrogenic 
chloride loading was associated with a decreased inci-
dence of acute kidney injury [24]. Nevertheless, the SALT 
trial found no significant difference between both types 
of fluid [25]. Similarly, the recent SPLIT trial also failed to 
demonstrate a significant difference between saline and a 
balanced solution (Plasma-Lyte) in critically ill patients 
[26], although this study has been subject to a lot of criti-
cisms [21]. Recently, as follow-up on the SALT trial, the 
same authors published the SMART study results [25, 
27]. In this pragmatic, cluster-randomized, multiple-
crossover trial, the authors assigned 15,802 adults to 
receive saline (0.9% sodium chloride) or balanced crys-
talloids (lactated Ringer’s solution or Plasma-Lyte A) 
and they demonstrated that the use of balanced crystal-
loids resulted in a lower rate of the composite outcome of 
death from any cause, new renal replacement therapy, or 
persistent renal dysfunction than the use of saline [27]. In 
a companion study at the same institution, noncritically 
ill adults treated with intravenous fluids in the emergency 
department had similar numbers of hospital-free days 
between treatment with balanced crystalloids and treat-
ment with saline [28]. However, similar to the SMART 
trial, administration of balanced crystalloids resulted in 
less composite death, new renal replacement therapy or 
persistent renal dysfunction.

The context-sensitive half-time of crystalloids and colloids 
may change and vary over time depending on the patient’s 
condition (Fig. 3). In fact, as long as crystalloids or colloids 
are infused, they will exert a similar volume expansion effect 
and their distribution and/or elimination and excretion will 
be slowed in case of shock, hypotension, sedation or general 
anaesthesia [29, 30]. This may explain why crystalloids have 
a much better short-term effect on the plasma volume than 
previously believed. Their efficiency (i.e. the plasma volume 
expansion divided by the infused volume) is 50–80% as long 
as infusion continues and even increases to 100% when the 
arterial pressure has dropped. Elimination is very slow dur-
ing surgery and amounts to only 10% of that recorded in 
conscious volunteers. Capillary refill further reduces the 
need for crystalloid fluid when bleeding occurs. These four 
factors (distribution–elimination–infusion–capillary refill) 
limit the need for large volumes of crystalloid fluid during 
surgery [30].

Maintenance fluids
Maintenance fluids are given, specifically, to cover the 
patient’s daily basal requirements of water, glucose and 
electrolytes. As such, they are intended to cover daily 
needs. The basic daily needs are water, in an amount of 

Septic shock phases
Septic shock starts with an ebb phase, which refers to 
the phase when the patient shows hyperdynamic shock 
with decreased systemic vascular resistance due to vas-
odilation, increased capillary permeability, and severe 
absolute or relative intravascular hypovolemia. The Sur-
viving Sepsis Campaign guidelines mandate the admin-
istration of IV fluids at a dose of 30 mL/kg given within 
the first 3 h, as a possible life-saving procedure in this 
phase, although there is no randomized controlled trial 
to support this statement [18]. The flow phase refers to 
the phase after initial stabilization where the patient will 
mobilize the excess fluid spontaneously. A classic exam-
ple is when a patient enters a polyuric phase recover-
ing from acute kidney injury. In this post-shock phase, 
the metabolic turnover is increased, the innate immune 
system is activated, and a hepatic acute-phase response 
is induced. This hypercatabolic metabolic state is char-
acterized by an increase in oxygen consumption and 
energy expenditure [95].

It is justified to use albumin as a resuscitation fluid in 
patients with hypoalbuminemia [18, 19]. Glucose should 
never be used in resuscitation fluid. Surprisingly, nor-
mal saline, which does not contain potassium, will result 
in a higher increase in potassium levels in patients with 
renal impairment compared to a balanced solution (lac-
tated Ringer’s) containing 5 mmol/L of potassium, owing 
to concomitant metabolic acidosis due to a decreased 
strong ion difference (SID) [20, 21].

(Ab)normal saline as resuscitation fluid should not be 
administered in large amounts as it carries the risk of 
hypernatremic hyperchloremic metabolic acidosis, acute 
kidney injury and death. The use of balanced solutions 
may avoid these complications. Recent evidence shows 

http://www.ema.europa.eu
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25–30  mL/kg of body weight, 1  mmol/kg potassium, 
1–1.5 mmol/kg sodium per day and glucose or dextrose 
5 or 10% 1.4–1.6 g/kg (to avoid starvation ketosis) [31].

Some specific maintenance solutions are commer-
cially available, but they are far from ideal. There is a lot 
of debate whether isotonic or hypotonic maintenance 
solutions should be used. Data in children showed that 
hypotonic solutions carry the risk of hyponatremia and 
neurologic complications [32, 33]. However, studies in 
adults are scarce and indicate that administration of iso-
tonic solutions will result in a more positive fluid balance 
as compared to hypotonic solutions [34]. This was con-
firmed in a recent pilot study in healthy volunteers show-
ing that isotonic solutions caused lower urine output, 
characterized by decreased aldosterone concentrations 
indicating (unintentional) volume expansion, than hypo-
tonic solutions. Despite their lower sodium and potas-
sium content, hypotonic fluids were not associated with 
hyponatremia or hypokalemia [24].

Replacement fluids
Replacement fluids are administered to correct fluid defi-
cits that cannot be compensated by oral intake. Such fluid 
deficits have a number of potential origins, like drains or 
stomata, fistulas, hyperthermia, open wounds, polyuria 
(salt-wasting nephropathy, cerebral salt wasting, osmotic 
diuresis or diabetes insipidus) [4].

Data on replacement fluids are also scarce. Several 
recent guidelines advise matching the amount and com-
position of fluid and electrolytes as closely as possible to 
the fluid that is being or has been lost [35, 36]. An over-
view of the composition of the different body fluids can 
be found in the NICE guidelines [35]. Replacement fluids 
are usually isotonic balanced solutions. In patients with 
fluid deficit due to a loss of chloride-rich gastric fluid, 
high-chloride solutions, like saline (0.9% NaCl), might be 
used as replacement fluid.

Nutrition fluids
Often overlooked, it is about time to consider parenteral 
nutrition as another source of intravenous fluids that may 
contribute to fluid overload. Likewise, nutritional therapy 
in the critically ill should be seen as “medication” help-
ing the healing process. As such, we might consider also 
the four D’s of nutritional therapy in analogy to how we 
deal with antibiotics and fluids [5]: drug (type of feed-
ing), dose (caloric and protein load), duration (when and 
how long) and de-escalation (stop enteral nutrition and/
or parenteral nutrition when oral intake improves) [37].

Combination of fluids
A combination of different types of fluids is often justi-
fied. For example, numerous combinations may be used 
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tion. Expansion of plasma volume (in mL) after intravenous infusion of 
2 L of Ringer’s acetate over 60 min in an adult patient (average weight 
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decrease in arterial pressure to 85% of baseline, (mixed line) and after 
bleeding during haemorrhagic shock with mean arterial pressure 
below 50 mmHg (dotted line) (see text for explanation). b Volume 
kinetic simulation. Expansion of plasma volume (in mL) is 100, 300 
and 1000 mL, respectively, after 60 min following intravenous infu‑
sion of 1 L of glucose 5% over 20 min in an adult patient (solid line), 
versus 1 L of crystalloid (dashed line), versus 1 L of colloid (dotted 
line) (see text for explanation). c Volume kinetic simulation. Expansion 
of plasma volume (in mL) after intravenous infusion of 500 mL of 
hydroxyethyl starch 130/0.4 (Volulyte, solid line) versus 1 L of Ringer’s 
acetate (dashed line) when administered in an adult patient (average 
weight 80 kg), over 30 min (red) versus 60 min (black), versus 180 min 
(blue). When administered rapidly and as long as infusion is ongoing, 
the volume expansion kinetics are similar between crystalloids and 
colloids, especially in case of shock, after induction and anaesthesia 
and during surgery (see text for explanation)
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in daily practice with regard to resuscitation fluids: 
blood and crystalloids (trauma), crystalloids early (post-
operative hypovolemia), albumin late (sepsis). Similarly, 
maintenance fluids are often a combination of enteral 
and parenteral nutrition, other glucose-containing solu-
tions, saline and/or balanced crystalloids to dissolve 
medications.

Duration
The longer the delay in fluid administration, the more 
microcirculatory hypoperfusion and subsequent organ 
damage related to ischaemia–reperfusion injury. In 
patients with sepsis [38], Murphy and colleagues com-
pared outcomes related to early adequate versus early 
conservative and late conservative versus late liberal 
fluid administration and found that the combination 
of early adequate and late conservative fluid manage-
ment carried the best prognosis [38] (Fig. 4). Combined 
data from other studies confirm that late conservative is 
maybe more important than early adequate fluid therapy 
[39–41].

Dosing
As Paracelsus nicely stated: “All things are poison, and 
nothing is without poison; only the dose permits some-
thing not to be poisonous” Like other drugs, it is the dose 
of fluids that make them poisonous. As stated before, the 
risk of excessive fluid overload is well established.

Similar to other drugs, choosing the right dose implies 
that we take into account the pharmacokinetics and 
pharmacodynamics of intravenous fluids (Table  1). 
Pharmacokinetics describes how the body affects a drug 
resulting in a particular plasma and effect site concentra-
tion [42]. Pharmacokinetics of intravenous fluids depends 
on distribution volume, osmolality, tonicity, oncoticity 
and kidney function. Eventually, the half-time depends 
on the type of fluid, but also on the patient’s condition 
and the clinical context (Table  2). When administering 
1 L of fluid only, 10% of glucose solution, versus 25–30% 
of an isotonic crystalloid solution, versus 100% of a col-
loid solution will remain intravascularly after 1  h, but 
as stated above the half-life is dependent on other con-
ditions (like infection, inflammation, sedation, surgery, 
anaesthesia, blood pressure) (Fig. 3) [29, 43].

Volume kinetics is an adaptation of pharmacokinetic 
theory that makes it possible to analyse and simulate 
the distribution and elimination of infusion fluids [29]. 
Applying this concept, it is possible, by simulation, to 
determine the infusion rate that is required to reach a 
predetermined plasma volume expansion. Volume kinet-
ics may also allow the quantification of changes in the 
distribution and elimination of fluids (and calculation of 

the half-life) that result from stress, hypovolemia, anaes-
thesia and surgery [43].

Pharmacodynamics relates the drug concentrations 
to its specific effect. For fluids, the Frank–Starling rela-
tionship between cardiac output and cardiac preload 
is the equivalent of the dose effect curve for standard 
medications. Because of the shape of the Frank–Star-
ling relationship, the response of cardiac output to the 
fluid-induced increase in cardiac preload is not constant 
[44]. The effective dose 50 (ED50), in pharmacology, is 
the dose or amount of drug that produces a therapeu-
tic response or desired effect in 50% of the subjects 
receiving it, whereas lethal dose 50 (LD50) will result in 
death of 50% of recipients. Translated to IV fluids, this 
would be the dose of fluid that induces, respectively, a 
therapeutic response or death in 50% of the patients. The 
problem is that the therapeutic response varies from one 
patient to another. Fluid administration can be toxic (or 
even lethal) at a high enough dose, as demonstrated in 
2007 when a California woman died of water intoxica-
tion (and hyponatremia) in a contest organized by a 
radio station (http://artic les.latim es.com/2007/jan/14/
local /me-water 14). The difference between toxicity 
and efficacy is dependent upon the particular patient 
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shock randomized to restrictive versus standard fluid therapy (CLAS‑
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intake > 50 mL/kg/first 12–24 h of ICU stay. EC: early conservative fluid 
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consecutive daily fluid balances within first week of ICU stay. LL: late 
liberal fluid management, defined as the absence of 2 consecutive 
negative daily fluid balances within first week of ICU stay
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and the specific condition of that patient, although the 
amount of fluids administered by a physician should 
fall into the predetermined therapeutic window. Unan-
swered questions remain: what is an effective dose of 
IV fluids? What is the exact desired therapeutic effect? 
What is the therapeutic window? In some patients, vol-
ume expansion increases the mean systemic filling pres-
sure (the backward pressure of venous return), but it 
increases the right atrial pressure (the forward pressure 
of venous return) to the same extent, such that venous 
return and, hence, cardiac output do not increase [45]. 
Hence, venous congestion and backward failure may 
even play a more important and currently underesti-
mated role [46]. The probability of the heart to “respond” 
to fluid by a significant increase in cardiac preload var-
ies along the shock time course, and thus, pharmacody-
namics of fluids must be regularly evaluated. At the very 
early phase, fluid responsiveness is constant. After the 
very initial fluid administration, only one half of patients 
with circulatory failure respond to an increase in cardiac  
output [47].

Fluid responsiveness
Fluid responsiveness indicates a condition in which a 
patient will respond to fluid administration by a sig-
nificant increase in stroke volume and/or cardiac out-
put or their surrogates. A threshold of 15% is most 
often used for this definition, as it is the least signifi-
cant change of measurements of the techniques that 
are often used to estimate cardiac output [80, 91]. 
Physiologically, fluid responsiveness means that car-
diac output depends on cardiac preload, i.e. the slope 
of the Frank–Starling relationship is steep. Many stud-
ies have shown that fluid responsiveness, which is a 
normal physiologic condition, exists in only half of the 
patients receiving a fluid challenge in intensive care 
units [47].

Table 2 Overview of half-life (T1/2) of Ringer’s, glucose 
and colloid solutions as reported in different studies. 
Adapted from Hahn R [43]

HES hydroxyethyl starch

Category Study population n Fluid studied T1/2 (min)

Volunteers Healthy adults 24 Glucose 2.5% 19

Healthy adults 9 Glucose 5% 13

Healthy adults 6 Ringer’s acetate 22–46

Healthy adults 8 dextran 70 175

Healthy adults 15 Plasma 197

Healthy adults 15 Albumin 5% 110

Healthy adults 20 HES 130/0.4 110

Dehydrated adults 20 Ringer’s acetate 76

Healthy children 14 Ringer’s lactate 30

Pregnancy Normal 8 Ringer’s acetate 71

Pre‑eclampsia 8 Ringer’s acetate 12

Before caesarean 
section

10 Ringer’s acetate 175

Surgery Before surgery 29 Ringer’s acetate 23

Before surgery 15 Ringer’s lactate 169

Thyroid 29 Ringer’s acetate 327–345

Laparoscopic cholecys‑
tectomy

12 Glucose 2.5% 492

Laparoscopic cholecys‑
tectomy

12 Ringer’s acetate 268

Gynaecological lapa‑
roscopy

20 Ringer’s lactate 346

Open abdominal 10 Ringer’s lactate 172

After hysterectomy 15 Glucose 2.5% 14

After laparoscopy 20 Ringer’s lactate 17

The adverse effects of fluids must also be considered 
in their pharmacodynamics. Depending on the degree 
of vascular permeability, the oedema resulting from fluid 
administration is highly variable. At the maximum, dis-
ruption of the capillary barrier leads to global increased 
permeability syndrome  (GIPS). This pharmacodynamic 
aspect is also very important in patients with acute res-
piratory distress syndrome (ARDS), as the effect of a 
given amount of fluid on the lung function basically 
depends on the pulmonary vascular permeability [48]. 
Therefore, even two litres of saline may induce severe res-
piratory deterioration in a patient with severe ARDS.

De‑escalation
As we will discuss below, the final step in fluid therapy is 
to consider withholding or withdrawing resuscitation flu-
ids when they are no longer required [1, 14, 15].

Like for antibiotics (Table 1), the duration of fluid ther-
apy must be as short as possible, and the volume must 
be tapered when shock is resolved. However, many cli-
nicians use certain triggers to start, but are unaware of 
triggers to stop fluid resuscitation, increasing the poten-
tial for fluid overload. As with duration of antibiotics, 
although there is no strong evidence, there is a trend 
towards shorter duration of intravenous fluids [39].

The four phases of fluid therapy
Not only are the characteristics of fluids important, but 
also the strategy for their administration. This strategy 
fundamentally changes along with the time course of 
septic shock. Recently a three-hit, or even four-hit model 
of septic shock was suggested trying to answer four 
basic questions, in which we can recognize four distinct 
dynamic phases of fluid therapy [40]: resuscitation, opti-
mization, stabilization and evacuation (de-resuscitation) 
(the acronym ROSE) (Table 3, Fig. 5). The four questions 
that will be discussed in the next section are “When to 
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start intravenous fluids?”, “When to stop intravenous 
fluids?”, “When to start de-resuscitation or active fluid 
removal?” and finally “When to stop de-resuscitation?”

First phase: Resuscitation
After the first hit which can be sepsis, but also burns, pan-
creatitis or trauma, the patient will enter the “ebb” phase 
of shock. This life-threatening phase of severe circula-
tory shock can occur within minutes and is characterized 
by a strong vasodilation leading to a low mean arterial 
pressure and microcirculatory impairment (Table  3). It 
may be accompanied by high (hyperdynamic circulatory 
shock as seen in sepsis, burns, severe acute pancreatitis, 
liver cirrhosis, thiamine deficiency, etc.) or low cardiac 
output (e.g. septic shock with severe hypovolemia or sep-
tic shock with sepsis-induced cardiomyopathy).

At this initial phase, usually during the first 3–6  h 
after the initiation of therapy, fluid resuscitation is com-
monly administered according to an early, adequate, 
goal-directed, fluid management strategy. The modali-
ties of fluid administration at this early phase have been 
a matter of great debate. In the study by Rivers et al. [49], 
a protocol-based fluid management called early goal-
directed therapy (EGDT) was associated with a signifi-
cant reduction in mortality compared to standard care. 
Since this publication, similar outcome benefits have 
been reported in over 70 observational and randomized 
controlled studies comprising over 70,000 patients [50]. 
As a result, EGDT was incorporated as a “resuscitation 
bundle” into the first 6 h of sepsis management adopted 
by the Surviving Sepsis Campaign. As such, it has been 
disseminated internationally as the standard of care 
for early sepsis management. Recently, a trio of trials 
(ProCESS [51], ARISE [52] and ProMISe [53]), while 
reporting an all-time low sepsis mortality, showed no 
improvement in outcomes with EGDT, questioning the 
need and pointing towards the potential dangers of pro-
tocolized care for patients with severe and septic shock 
[54, 55]. A recent study employing a combined Bayesian 
and frequentist methodological approach to evaluate 12 
randomized trials and 31 observational studies found 
that EGDT was potentially harmful in the patients with 
the highest disease severity [56]. In addition, although 
conducted in sub-Saharan Africa, three recent trials have 
demonstrated worse outcomes when administering fluid 
boluses for resuscitation in patients with septic shock 
[57–59]. What remains from the EGDT debate is that the 
rapidity of fluid administration and of the achievement of 
hemodynamic goals for initial resuscitation is important, 
even though this aspect has also recently been called into 
question [60].

In fact, rather than infusing a predefined given amount 
of fluid, the goal should be individualized for every 

patient, based on the evaluation of the need for fluids and 
on the patient’s premorbid conditions [16, 55, 61–64]. 
In this phase, on an individual basis for each patient, we 
try to find an answer to the first question: “When to start 
fluid therapy?”

At the very initial phase of septic shock, answering the 
question is easy: fluid administration will significantly 
increase cardiac output in almost all cases. Nevertheless, 
after the first boluses of fluid, the likelihood of preload 
unresponsiveness is high. Therefore, at this stage, fluid 
administration should be conditioned to the positivity of 
indices and tests predicting fluid responsiveness. How-
ever, it must be noted that the state of responsiveness can 
only be determined a posteriori (after the intervention 
with administration of fluid bolus) and when a hemody-
namic monitoring device is in place to estimate or cal-
culate cardiac output. Therefore, we advocate the use of 
specific tests to increase the a priori probability and like-
lihood for a favourable event/outcome, as fluid adminis-
tration should be limited to responders.

Fluid bolus
A fluid bolus is the rapid infusion of fluids over a 
short period of time. In clinical practice, a fluid bolus 
is usually given to correct hypovolemia, hypotension, 
inadequate blood flow or impaired microcirculatory 
perfusion. The volume of fluid bolus is heterogeneous 
among clinicians [68, 89], typically 500–1000 mL [68]. 
The minimal fluid volume that is able to increase the 
backward pressure of venous return is 4 mL/kg [90].

Several of these tests are available today [44]. Instead 
of using static markers of cardiac preload, which do not 
reliably predict fluid responsiveness, one should use 
dynamic indices to predict fluid responsiveness. The 
principle of these indices is to observe the effect on car-
diac output of changes in cardiac preload, either spon-
taneously induced during mechanical ventilation or 
provoked by some manoeuvres. If changes are larger 
than a given threshold, preload responsiveness is pre-
sent, and the positive response to fluid is likely. Fluid 
challenge, which has been described years ago [65], is a 
reliable test for fluid responsiveness, but, since it requires 
the irreversible administration of fluid, it contributes to 
excessive fluid administration. The passive leg raise test, 
which mimics fluid administration [66], has been exten-
sively studied and is now recommended by the Surviving 
Sepsis Campaign [18]. Other tests utilize the changes in 
cardiac preload induced by mechanical ventilation. The 
respiratory changes of pulse pressure and stroke volume, 
or of the diameter of the venae cava are limited because 
they cannot be used in many circumstances in critically 
ill patients [44]. The end-expiratory occlusion test is easy 
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to perform in patients under mechanical ventilation who 
can tolerate 15-s respiratory holds [67]. However, a cog-
nitive dissonance exists between the fact that most fluid 
boluses are given to treat hypotension (in 59% of cases in 
the FENICE trial), while fluid responsiveness can only be 
defined post-factum by a change in cardiac output [68]. 
Furthermore, not all that glitters is gold when it comes 
to predicting fluid responsiveness and some patients may 
even exhibit an increase in blood pressure with a con-
comitant decrease in cardiac output after passive leg rais-
ing, while others may show the opposite. This relates to 
the baseline and changing compliance of the aorta over 
time [69].

administration will increase cardiac output. It avoids 
unnecessary fluid administration and contributes to 
reducing the cumulative fluid balance. It also allows 
one to undertake fluid removal as it informs that such 
removal will not result in a hemodynamic impairment 
[44]. Prediction of fluid responsiveness is based on 
dynamic tests and indices, which observe the effect 
on cardiac output of changes in cardiac preload, either 
spontaneously induced during mechanical ventilation 
or provoked by some manoeuvres [44]. The threshold 
to define fluid responsiveness depends on the change 
in cardiac preload induced by the test (e.g. 15% for 
fluid challenge, 10% for the PLR test, 5% for the end-
expiratory occlusion test).

Fluid challenge
A fluid challenge is a dynamic test to assess fluid 
responsiveness by giving a fluid bolus and simulta-
neously monitoring the hemodynamic effect (e.g. the 
evolution of barometric or volumetric preload indi-
ces). A fluid challenge is therefore also a fluid bolus, 
which means that it tests the response to treatment 
by administering the treatment itself up to the level 
where the treatment has no longer a response. This 
is why repeated fluid challenges may potentially lead 
to fluid overload. Recently, it has been shown that in 
clinical practice there is a marked variability in how 
fluid challenge tests are performed [68].

Fig. 5 The different fluid phases during shock. Adapted from Mal‑
brain et al. with permission [1]. a Graph showing the four‑hit model 
of shock with ebb and flow phases and evolution of patients’ cumula‑
tive fluid volume status over time during the five distinct phases of 
resuscitation: resuscitation (1), optimization (2), stabilization (3) and 
evacuation (4) (ROSE), followed by a possible risk of Hypoperfusion 
(5) in case of too aggressive de‑resuscitation. See text for explanation. 
b Graph illustrating the four‑hit model of shock corresponding to 
the impact on end‑organ function in relation to the fluid status. On 
admission patients are hypovolemic (1), followed by normovolemia 
(2) after fluid resuscitation, and fluid overload (3), again followed by a 
phase going to normovolemia with de‑resuscitation (4) and hypov‑
olemia with risk of hypoperfusion (5). In case of hypovolemia (phases 
1 and 5),  O2 cannot get into the tissues because of convective prob‑
lems, in case of hypervolemia (phase 3)  O2 cannot get into the tissue 
because of diffusion problems related to interstitial and pulmonary 
oedema, gut oedema (ileus and abdominal hypertension). See text 
for explanation

Prediction of fluid responsiveness
This is a process that consists of predicting before 
fluid administration whether or not subsequent fluid 

Second phase: Optimization
The second hit occurs within hours and refers to ischae-
mia and reperfusion (Table 3). At this phase, fluid accu-
mulation reflects the severity of illness and might be 
considered a “biomarker” for it [70]. The greater the fluid 
requirement, the sicker the patient and the more likely 
organ failure (e.g. acute kidney injury) may occur [71, 72].

In this phase, we must try to find an answer to the sec-
ond question: “When to stop fluid therapy?” avoiding 
fluid overload. Indices of fluid responsiveness are again 
of utmost importance, since fluid administration should 
be stopped when these indices become negative [73]. 
Second, the clinical context must be taken into account. 
Obviously, more fluid is needed in septic shock from 
peritonitis than from pneumonia. Third, the decision 
to refrain from fluid administration should be based on 
indices that indicate the risk of excessive fluid adminis-
tration. The presence of lung impairment is the condi-
tion that is most likely to be associated with the worst 
consequences of fluid overload. To estimate the pulmo-
nary risk of further fluid infusion, one may consider the 
pulmonary artery occlusion pressure measured with the 
Swan–Ganz catheter. Nonetheless, this does not take 
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into account the degree of lung permeability, which is 
a key factor in the mechanisms of pulmonary oedema 
formation [48]. Extravascular lung water measured by 
transpulmonary thermodilution, as well as the pulmo-
nary vascular permeability index which is inferred from 
it, might reflect the pulmonary risk of fluid infusion more 
directly [40, 48, 74]. Intra-abdominal hypertension is also 
a potential consequence of too much fluid administration 
[40]. The intra-abdominal pressure should be cautiously 
monitored in patients at risk [75].

associated with a higher mortality rate in septic patients 
[11, 77], clinicians should also be aware of the hidden 
obligatory fluid intake, as it may contribute more than a 
litre daily [78].

Passive leg raising test
This test predicting fluid responsiveness consists of 
moving a patient from the semi-recumbent position 
to a position where the legs are lifted at 45° and the 
trunk is horizontal. The transfer of venous blood from 
the inferior limbs and the splanchnic compartment 
towards the cardiac cavities mimics the increase in 
cardiac preload induced by fluid infusion [66]. In gen-
eral, the threshold to define fluid responsiveness with 
the passive leg raising test is a 10% increase in stroke 
volume and/or cardiac output.

End‑expiratory occlusion test
This is a test of fluid responsiveness that consists of 
stopping mechanical ventilation at end expiration for 
15  s and measuring the resultant changes in cardiac 
output [92–94]. The test increases cardiac preload 
by stopping the cyclic impediment of venous return 
that occurs at each insufflation of the ventilator. An 
increase in cardiac output above the threshold of 5% 
indicates preload/fluid responsiveness [92–94]. When 
the test is performed with echocardiography, it is bet-
ter to add the effects of an end-inspiratory occlusion, 
because the diagnostic threshold of changes in stroke 
volume is more compatible with precision of echocar-
diography [67].

Third phase: Stabilization
With successful treatment, stabilization should follow 
the optimization phase (homoeostasis), evolving over 
the next few days (Table 3). It is distinguished from the 
prior two by the absence of shock or the imminent threat 
of shock. As previously described, the focus is now on 
organ support and this phase reflects the point at which a 
patient is in a stable steady state [1, 76] (Table 3).

Fluid therapy is now only needed for ongoing main-
tenance in the setting of normal fluid losses (i.e. renal, 
gastrointestinal, insensible) and replacement fluids if the 
patient is experiencing ongoing losses because of unre-
solved pathologic conditions [1, 76]. Since persistence 
of a positive daily fluid balance over time is strongly 

Fluid balance
Daily fluid balance is the sum of all fluid intakes and 
outputs over 24  h, and the cumulative fluid balance 
is the sum of daily fluid balances over a set period of 
time [76, 87]. Intakes include resuscitation, but also 
maintenance fluids. Outputs include urine, ultrafil-
tration fluids, third space or gastrointestinal losses 
and should ideally also include insensible losses, even 
though they are difficult to quantify.

Maintenance fluids should be used only to cover daily 
needs, and their prescription should take these other 
sources of fluids and electrolytes into account. There-
fore, when a patient already receives daily needs of water, 
glucose and electrolytes via other means (enteral or par-
enteral nutrition, medication solutions, etc.), specific 
intravenous maintenance fluids should be stopped.

Fourth phase: Evacuation
After the second hit, the patient may either further 
recover, entering the “flow” phase with spontaneous 
evacuation of the excess fluids that have been adminis-
trated previously, or, as is the case in many critically ill 
patients, the patient remains in a “no-flow” state followed 
by a third hit, usually resulting from global increased per-
meability syndrome with ongoing fluid accumulation due 
to capillary leak [17, 79]. In any case, the patient enters a 
phase of “de-resuscitation” (Table 3). This term was first 
suggested in 2012 [41] and finally coined in 2014 [1]. It 
specifically refers to late goal-directed fluid removal and 
late conservative fluid management.

Late goal-directed fluid removal involves aggressive and 
active fluid removal using diuretics and renal replace-
ment therapy with net ultrafiltration. It is characterized 
by the discontinuation of invasive therapies and a tran-
sition to a negative fluid balance [40]. Late conservative 
fluid management describes a moderate fluid manage-
ment strategy following the initial treatment in order to 
avoid (or reverse) fluid overload. Recent studies showed 
that two consecutive days of negative fluid balance within 
the first week of the intensive care unit stay is a strong 
and independent predictor of survival [1].

In this de-resuscitation phase, we try to find an 
answer to the third and fourth question: “When to start 
fluid removal?” and “When to stop fluid removal?” in 
order to find the balance between the benefits (reduc-
tion in second and third space fluid accumulation 
and tissue oedema) and risk (hypoperfusion) of fluid 
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removal. To answer these questions, testing preload 
responsiveness may still be useful. Indeed, if no preload 
responsiveness is detected, it is reasonable to assume 
that fluid removal will not induce a reduction in car-
diac output [80]. On the opposite, positive indices of 
preload responsiveness might indicate the limit of 
fluid removal and could even be a target to reach when 
removing fluids.

Obviously, the risk at this phase is to be too aggressive 
with fluid removal and to induce hypovolemia, which 
may trigger a “fourth hit” for hemodynamic deteriora-
tion and hypoperfusion (Fig. 5). If fluid is needed at this 
phase, the use of albumin seems to have positive effects 
on vessel wall integrity facilitates achieving a negative 
fluid balance in hypoalbuminemia and may be less likely 
to cause nephrotoxicity [81].

This four-phase approach should be better charac-
terized by some epidemiological studies. Its prognos-
tic impact might be significant, because it may lead to a 
reduction in the cumulative fluid balance, which by itself 
is clearly associated with poor prognosis (Fig. 4). Similar 
principles have also been suggested by others, confirming 
the need for a multicenter prospective clinical trial with a 
biphasic fluid therapy approach, starting with initial early 
adequate goal-directed treatment followed by late con-
servative fluid management in those patients not trans-
gressing spontaneously from the ebb to the flow phase 
[14, 15, 70, 76, 82–86]. The RADAR (Role of Active De-
resuscitation After Resuscitation) trial may help to find 
such answers (http://www.hra.nhs.uk/news/resea rch-
summa ries/radar -icu/).

Conclusions
There are only four major indications for fluid adminis-
tration in the critically ill: resuscitation, maintenance, 
replacement and nutrition (enteral or parenteral). In this 
review, a conceptual framework is presented looking at 
fluids as drugs by taking into account the four D’s (drug 
selection, dose, duration and de-escalation) and the four 
phases of fluid therapy within the ROSE concept (resus-
citation, optimization, stabilization and evacuation). The 
four hits model is presented herein. This will provide 
answers to the four basic questions surrounding fluid 
therapy: (1) When to start IV fluids? (2) When to stop 
fluid administration? (3) When to start fluid removal and 
finally (4) When to stop fluid removal? In analogy to the 
way we deal with antibiotics in critically ill patients, it is 
time for fluid stewardship.
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