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Abstract 

Four xylanases of Cellulomonas flavigena were cloned, expressed in Escherichia coli and purified. Three enzymes 
(CFXyl1, CFXyl2, and CFXyl4) were from the GH10 family, while CFXyl3 was from the GH11 family. The enzymes pos‑
sessed moderate temperature stability and a neutral pH optimum. The enzymes were more stable at alkaline pH val‑
ues. CFXyl1 and CFXyl2 hydrolyzed xylan to form xylobiose, xylotriose, xylohexaose, xylopentaose, and xylose, which is 
typical for GH10. CFXyl3 (GH11) and CFXyl4 (GH10) formed the same xylooligosaccharides, but xylose was formed in 
small amounts. The xylanases made efficient saccharification of rye, wheat and oat, common components of animal 
feed, which indicates their high biotechnological potential.
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Introduction
Hemicelluloses are polysaccharides which, along with cel-
lulose and lignin, are the main polymer components of a 
plant cell wall. According to sugars, polysaccharide mono-
mers, hemicelluloses are divided into xyloglucans, xylans, 
mannans, glucomannans, arabinoxylans, and β-glucans 
(Scheller and Ulvskov 2010). The most common hemicel-
lulose is xylan. This polysaccharide consists of the β-(1-4) 
linked xylose backbone with a small amount of β-(1-3) 
branches, often with O-acetyl groups (Ebringerova and 
Heinze 2000). Xylan occurs among terrestrial plants and 
green algae. Xylan as a carbon source can be utilized by 
many bacteria and fungi. To destroy xylan, microorganisms 
produce several enzymes. The main role in the destruction 
of xylan is played by xylanase (endo-1,4-β-xylanase, E.C. 
3.2.1.8), which catalyzes the random hydrolysis of xylan 
to xylooligosaccharides. Another enzyme, β-xylosidase 
(xylan-1,4-β-xylosidase, E.C. 3.2.1.37), completes the 

process of decomposition by releasing xylose residues 
from the nonreducing ends of xylooligosaccharides. The 
side chains and acyl groups of the xylan are cleaved by 
two enzymes: glucuronidase (α-glucosiduronase, E.C. 
3.2.1.139) and acetylxylan esterase (E.C. 3.1.1.72) (Subra-
maniyan and Prema 2002). According to the classification 
of hydrolases, which is based on the similarity of their pri-
mary structures and is described in Carbohydrate-Active 
Enzyme (CAZy) database (http://www.cazy.org), xylanases 
belong to different glycoside hydrolase (GH) families. The 
xylanases of GH10 and GH11 families have been studied 
most comprehensively (Motta et  al. 2013). Xylanases of 
GH10 have a molecular weight of around 40–60 kDa and 
exhibit catalytic versatility: they act not only on xylan but 
also on arabinoxylan. Xylanases of GH11 possess a lower 
molecular weight and act only on xylan. Producers of 
GH10 and GH11 xylanases are widespread among fungi 
and bacteria (Subramaniyan and Prema 2002). Xylanases 
are actively used in practice to improve the properties 
of animal feed, in the baking industry, and for bleaching 
paper pulp (Harris and Ramalingam 2010; Beg et al. 2001). 
Due to practical importance of the enzyme, a search for 
new efficient producers of xylanases is carried.

Open Access

*Correspondence:  ssl204@rambler.ru 
1 G.K. Skryabin Institute of Biochemistry and Physiology 
of Microorganisms, Russian Academy of Sciences (IBPM RAS), 5 Prospekt 
Nauki, Pushchino, Moscow Region 142290, Russia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://www.cazy.org
http://crossmark.crossref.org/dialog/?doi=10.1186/s13568-016-0308-7&domain=pdf


Page 2 of 8Lisov et al. AMB Expr  (2017) 7:5 

Cellulomonas flavigena is a Gram-positive bacte-
rium, which possesses high cellulolytic and xylolytic 
activities. For the decomposition of polysaccharides, 
the bacterium produces a large number of hydrolases 
(Sánchez-Herrera et  al. 2007). Some hydrolases from 
C. flavigena, including xylanases, were obtained in a 
purified state, and their biochemical properties and 
biotechnological potential were studied (Pérez-Avalos 
et al. 2008; Amaya-Delgado et al. 2010). Therefore, this 
bacterium might be a promising source of xylanases. 
This was confirmed by the data of the C. flavigena 
genome sequence, where 14 genes potentially encod-
ing xylanases were found (Abt et  al. 2010). The pres-
ence of the whole genome sequence also facilitates 
genetic manipulations with this bacterium. The article 
describes the production of recombinant xylanases of 
C. flavigena and the study of their properties and bio-
technological potential.

Materials and methods
Cultivation of microorganism, cloning, recombinant 
expression and purification of xylanases
The strain C. flavigena Ac-1137 was obtained from the 
All-Russian Collection of Microorganisms (VKM, http://
vkm.ru). The strain was grown on a medium containing 
(g/l of tap water): peptone 5.0; yeast extract 3.0; KH2PO4 
0.2; glucose 5.0; pH 7.2. The genomic DNA was purified 
from biomass using the Genomic DNA Purification Kit 
(Fermentas). Primers for PCR (Table 1) were constructed 
based on the GH10 and GH11 endo-1,4-β–xylanase 
sequences from the genome of C. flavigena DSM 20109 
(NCBI Reference Sequence of Genome: NC_014151.1). 
The DNA fragments encoding xylanases were ampli-
fied by the PCR technique with primers. PCR, clon-
ing, expression and purification of the proteins were 
performed as previously described (Lisov et  al. 2014). 
Q5 DNA-polymerase (NEB) was used for the xylanases 
genes amplification.

The presence of a signal peptide was determined using 
the SignalP 4.0 service (http://www.cbs.dtu.dk/services/
SignalP/). The presence of conserved domains was deter-
mined using the InterPro Scan (http://www.ebi.ac.uk/
Tools/pfa/iprscan/) and BLAST (http://blast.ncbi.nlm.
nih.gov/Blast.cgi) software.

Enzyme characterization
The xylanase activity was assayed by measuring the 
amount of reducing sugars produced from beechwood 
xylan (Sigma) by the ferricyanide method (Friedemann 
et al. 1962) using xylose as the standard. The reaction mix-
ture consisted of 1% xylan in 75 mM of universal buffer, pH 
7.0. Typically, the reaction mixture consisted of 20 μl of the 
enzyme and 300 μl of the xylan solution. The mixture was 
incubated at 40 °C for 10 min. One unit of xylanase activity 
was defined as the amount of enzyme that forms reducing 
groups corresponding to 1 μmol of xylose in 1 min under 
the above conditions. Reactions with other substrates 
were done in the same conditions, but with replacement 
of xylan by 1% CM-cellolose or microcrystalline cellulose 
or barley β-glucan. The protein concentration was deter-
mined using the molar absorption coefficient at 280  nm 
calculated from the protein sequence.

Characterization of properties of xylanases was per-
formed as previously described (Lisov et al. 2014).

The molecular weight of purified proteins was deter-
mined by SDS-PAGE using 12% gel according to Lae-
mmly (1970). The standard proteins were as follows: 
beta-galactosidase (116  kDa), bovine serum albumin 
(66  kDa), ovalbumin (45  kDa), lactate dehydrogenase 
(35  kDa), REase Bsp98I (25  kDa), beta-lactoglobulin 
(18.4 kDa), and lysozyme (14.4 kDa).

Enzymatic hydrolysis of beechwood xylan 
and saccharification experiments
The hydrolysis of beechwood xylan was performed in 
75  mM Britton–Robinson buffer, pH 7.0, at 40  °C with 

Table 1  Primers used for PCR amplification of the xylanases genes

NCBI reference sequence Forward primer Reverse primer

WP_013115499.1 GGTACCGGATCCCAGAACGTCAGCAGC CTGCAGAAGCTTTCAGGAGCAGATGCC

WP_013115627.1 GTACCGGATCCGCTCCCGCTCACG CTGCAGAAGCTTTCACCCGACCTTCACG

WP_043598780.1 CGCGGATCCGCGGTCGCCGAGAC CCCAAGCTTTCACGACCTCGGCCTG

WP_013118747.1 CGCGGATCCACGTCCCCCACGCC CCCAAGCTTTTACTCGCCGGCCAGC

WP_013118731.1 CGCGGATCCGCGGGCAGCACGC CCCAAGCTTTCAGGAGGCCGTGCAG

WP_013117551.1 TACGGATCCGCGCCGGGCTGGTC CTGCAAGCTTTCAGCGCGGCCGCG

WP_013117277.1 TACGGATCCATGACCGCCCAGCCGATC CTGCAAGCTTTCATCGCGCGGCCACG

WP_013118238.1 TACGGATCCGCGGAGAGCACGCTCG CTGCAAGCTTCTACCGCTGCAGCGTCA

WP_043598750.1 TACGGATCCGCGGACCCCGTGAGC CTGCAAGCTTTCAGCGCCGCAGCAG

WP_052302667.1 TACGGTACCATGGTCGGGACGACCCTG CTGCAAGCTTTCAGCGCCAGACGACCA

http://vkm.ru
http://vkm.ru
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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the xylan concentration of 2% and the enzyme activity of 
2.5 U/ml. At definite intervals, samples were taken from 
the reaction mixture, and the reaction in the selected 
samples was stopped by boiling for 5  min. Samples an 
enzyme inactivated by 10-min boiling were incubated 
for 22  h and used as controls. The hydrolysis products 
were analyzed by TLC using an HPTLC Silica gel 60 
plate (Merck) and a butanol–acetic acid–diethyl ether–
water (9:6:3:1) eluting system. Then the plate was dried at 
105 °C and sprayed with a mixture containing 1% diphe-
nyl amine, 1% aniline, and 3% phosphoric acid in acetone. 
After spraying, the plate was kept at 120° for 10  min. 
Xylose was applied onto the plate as the standard. Other 
hydrolysis products (xylobiose—X2, xylotriose—X3, 
xylotetraose—X4, xylopentaose—X5, xylohexaose—X6) 
were eluted from the plate with methanol and identified 
by an LCQ Advantage MAX tandem mass spectrometer 
(Thermo Finnigan).

Wheat, oat, and rye were used for experiments with 
saccharification of xylan-containing materials. Experi-
ments were done as described previously (Lisov et  al. 
2014) except that the 75  mM universal buffer was used 
with pH optimum of the xylanases (i.e. pH 7.0 for CFXyl1 
and CFXyl3, and pH 7.5 for CFXyl2 and CFXyl4). The 
amount of reducing sugars formed was determined using 
the ferricyanide method.

Results
In the genome of C. flavigena, nine genes of GH10 xyla-
nase (NCBI Reference Sequences WP_013115627.1; 
WP_043598750.1; WP_052302667.1; WP_013118747.1; 
WP_013118731.1; WP_013117551.1; WP_043598780.1; 
WP_013117277.1; WP_013118238.1) and one 

gene of GH11 xylanase (NCBI Reference Sequence 
WP_013115499.1) were found. The genes encoding 
the xylanases were obtained by the PCR. PCR products 
of were cloned into pQE-30 vector. We failed to obtain 
the clones of three genes: of proteins WP_052302667.1, 
WP_043598750.1, and WP_013118238.1. The sequences 
of the other cloned genes were completely identical to 
those deposited in GenBank. After the transformation of 
E. coli with pQE-30 plasmid, the xylanase production was 
investigated. The genes of four proteins were expressed: 
WP_013118747.1, WP_013115627.1, WP_013115499.1, 
and WP_043598780.1, which were called CFXyl1, 
CFXyl2, CFXyl3, and CFXyl4, respectively (Fig.  1a–c). 
The sequences of CFXyl1, CFXyl2, CFXyl4 contained 
the GH10 domain, while CFXyl3 contained the GH11 
domain. The sequences of the proteins had the TAT sig-
nal peptide, indicating that they all are secreted proteins. 
The part of the CFXyl3 sequence from 257 to 343 amino 
acids is a carbohydrate-binding domain of the CBM2 
family, and the CFXyl2 sequence from 354 to 492 amino 
acids contains the Ricin B-like lectin domain, which has 
carbohydrate-recognizing properties (Boraston et  al. 
2004). So, this indicates that CFXyl2 and CFXyl3 possess 
the carbohydrate-binding activity.

The use of pQE-30 enables one to produce N-terminal 
6His-tagged recombinant proteins. All recombinant pro-
teins were synthesized as mature proteins without the 
TAT signal peptide. To avoid the formation of inclusion 
bodies at the induction stage, the induction was carried 
out at low temperature and aeration, as well as low con-
centrations of IPTG. After a two-stage purification, the 
enzymes were obtained in an electrophoretically homo-
geneous state (Fig. 1e, f ) with yields of 66, 40.1, 50.5, and 
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Fig. 1  The electrophoretic study of the production of xylanases (a–d) and results of their purification (e–f). a CFXyl1: 1—with IPTG, 2—without 
IPTG; b CFXyl2: 1—without IPTG, 2 —with IPTG; c CFXyl3: 1—without IPTG, 2—with IPTG; d CFXyl4: 1—without IPTG, 2—with IPTG; e Purified 
enzymes: 1—CFXyl1; 2—CFXyl2; 3—CFXyl3. f Purified CFXyl4. M molecular weight markers
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45% for CFXyl1, CFXyl2, CFXyl3, and CFXyl4, accord-
ingly. The molecular weight was 44  kDa for CFXyl1, 
53  kDa for CFXyl2, 38  kDa for CFXyl3, and 73  kDa for 
CFXyl4, which is in good agreement with the molecu-
lar weights, calculated from the proteins sequences. The 
enzymes did not catalyze the hydrolysis of CM-cellu-
lose, microcrystalline cellulose, and barley β-glucan. All 
enzymes catalyzed the hydrolysis of xylan.

The pH optimum of the activity of xylanases was neu-
tral (7.0–7.5) (Fig.  2c, d). The xylanases were active in 
the pH range 4–10 and retained more than 50% of the 
activity at pH 5.0–9.0. The enzymes were more stable at 
slightly alkaline pH; as the pH was lowered, the enzyme 

stability decreased and at pH more than 11 stability was 
strongly reduced (Fig. 2a, b). The temperature optimum 
for the hydrolysis of xylan by CFXyl1 was 40  °C, while 
the optimum for CFXyl2, CFXyl3 and CFXyl4 was 50 °C 
(Fig. 2e, f ). CFXyl1 and CFXyl4 showed a lesser thermo-
stability than CFXyl3 and CFXyl2 (Fig. 3). The half-lives 
for CFXyl1 and CFXyl4 at 60 °C were 2.3 and 7 min, and 
at 70  °C the enzymes were inactivated rapidly. CFXyl3 
and CFXyl1 were active at 70  °C. The half-life time of 
CFXyl3 was 9.6 min at this temperature; thus, its stability 
was the highest among the four enzymes. 

Under the action of CFXyl1 and CFXyl2, the main prod-
ucts of xylan hydrolysis were xylobiose and xylopentaose 
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Fig. 2  Properties of CFXyl1–CFXyl4 xylanases. a, b pH stability of the xylanases; c, d pH optima of the xylanases; e, f temperature optimum. Dotted 
line CFXyl1; bold line CFXyl2; dashed line CFXyl3; solid line CFXyl4
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(Fig. 4a, b). CFXyl1 produced xylose as the main product, 
whereas CFXyl2 formed xylose to a lesser extent. In both 
cases, xylose appeared at the start of the reaction. Xylo-
triose and xylohexose were the minor products of hydrol-
ysis for both enzymes. In the case of CFXyl1, at the initial 
stage of the reaction, the formation of xylotetraose was 
observed, which disappeared during further hydrolysis. 
Xylotetraose also was the reaction product of CFXyl3; it 
also disappeared during the reaction (Fig. 4c). The main 
products of xylan hydrolysis by CFXyl3 were xylobi-
ose, xylotriose, xylopentaose, and xylohexaose. A small 
amount of xylose formed after several hours of reaction. 
The main products of xylan hydrolysis by CFXyl4 were 
xylobiose and xylopentaose; in addition, xylotriose and 
xylohexaose formed, though in much smaller amounts 
(Fig.  4d). Xylose, like CFXyl3, formed in small amounts 
after some hours of reaction.

The xylanases hydrolyzed polysaccharides of rye, 
wheat, and oats, which are the common animal feed 
ingredients. All xylanases significantly enhanced reduc-
ing sugar content compared to basal levels (control). The 
enzymes saccharified cereals with different efficiency. 
CFXyl3 showed the highest efficacy, while CFXyl4 was 
the least effective (Fig. 5). CFXyl1 and CFXyl2 hydrolyzed 
cereals with a lower efficiency than CFXyl3 but more effi-
ciently than CFXyl4. When CFXyl1 hydrolyzed oat and 

rye, the amount of reducing sugars was greater than that 
hydrolyzed by CFXyl2. CFXyl2 hydrolyzed wheat better 
than CFXyl1 (Fig. 5).

Discussion
Bacteria of the genus Cellulomonas are of great interest, 
since they produce large amounts of enzymes important 
for biotechnology. Therefore, several genomes of Cellu-
lomonas were sequenced (Weiping Zhuang et  al. 2015). 
These bacteria are active producers of xylanases. A com-
parison of literature data on the properties of Cellulo-
monas xylanases with the data of this study showed that 
the xylanases of these bacteria are moderately thermally 
stable (Hekmat et  al. 2005; Chaudhary and Deobagkar 
1997; Amaya-Delgado et  al. 2010). The enzymes pos-
sess good stability at temperatures below 60  °C and are 
rapidly inactivated at 65–70 °C. As shown in the present 
article, some C. flavigena strains have xylanases with dif-
ferent thermostability. The optimum pH of their activ-
ity was close to neutral values, from 5.7 in C. fimi (Chen 
et  al. 2012) to 6.5 in C. flavigena (Amaya-Delgado et  al. 
2010; Santiago-Hernández et al. 2007). There are data on 
xylanase from C. fimi with a weakly acidic pH optimum, 
5.0 (Sunil Khanna and Gauri 1993). Xylanases were most 
stable at pH 8–10. But the pH optimum was neutral. 
Typically, the pH optimum correlates with pH stability, 
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although in many proteins such correlation was not 
observed, because pH optimum is most important for the 
adaptation of enzymes to the biophysical characteristics of 
the corresponding environment (Talley and Alexov 2010). 
The temperature optimum of Cellulomonas xylanases 
is within 50–60 °C, which is probably due to the moder-
ate thermostability of the enzymes. Xylanase Cflxyn11A 

of GH11 from C. flavigena was previously described 
(Amaya-Delgado et  al. 2010). In the present study, the 
only GH11 xylanase (CFXyl3) was found in the genome of 
C. flavigena, and its identity with Cflxyn11A was 66%. It is 
possible that there exists a difference between C. flavigena 
strains in the sequence of GH11 xylanases, or in some 
strains there may be more than one GH11 gene.

.
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Xylanases hydrolyze xylan to xylooligosaccharides. It 
is believed that the xylanases of GH11 and GH10 fami-
lies hydrolyze xylan with different specificity (Biely et al. 
1997). GH10 xylanases hydrolyze xylan to low-molec-
ular-weight products, and xylose is one of the main 
products of hydrolysis. GH11 xylanases cleave internal 
β-1,4-xylosidic bonds of polymeric xylan and are less 
active toward xylooligosaccharides. The basis for the 
difference in specificity is the structural features of the 
GH11 and GH10 families (Pollet et  al. 2010). Indeed, 
there is evidence for the correctness of this approach; 
differences in the products of xylan hydrolysis between 
GH11 and GH10 are known (Ustinov et al. 2008; Zhen-
hua Qiua et al. 2010). The xylanases of C. flavigena corre-
spond to this regularity: the products of xylan hydrolysis 
by CFXyl1 and CFXyl2 were of low molecular weight, 
including xylose, while the CFXyl3 formed very small 
amounts of xylose In contrast to majority of GH10 fam-
ily members, CFXyl4 xylanase, like GH11 xylanases, pro-
duced very small amounts of xylose. Probably, not all 
GH10 xylanases form xylose as the main hydrolysis prod-
uct of xylan, and some members of the GH10 family are 
structurally similar to GH11 xylanases. GH10 xylanases 
that did not form xylose were described previously (Wae-
onukul et al. 2009; Zhang et al. 2010).

Xylanases are actively used to improve the nutritional 
quality of animal feed. They increase the productivity 
of monogastric animals (He et  al. 2010; Pirgozliev et  al. 
2010). CFXyl1–CFXyl4 hydrolyzed grains with differ-
ent efficiency, which may be due to the effect of xylanase 
inhibitors on xylanases. The inhibitors are widely distrib-
uted among the cereals (Gebruers et  al. 2010). It is also 
possible that the difference is associated with the effect 
of lignin contained in cereals, which is known to have an 
inhibitory effect on xylanases (Berlin et  al. 2006). Nev-
ertheless, CFXyl1–CFXyl4 efficiently hydrolyzed sub-
strates, indicating their high potential for improving the 
properties of animal feed. CFXyl3 revealed the greatest 

activity. It is more suitable for the use in biotechnology 
than the others, taking the higher thermal stability and 
neutral pH optimum of this enzyme into account.
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