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Abstract
Our ultimate goal is a topology optimization for a permanent-magnet (PM) machine,
while including material uncertainties. The uncertainties in the output data are, e.g.,
due to measurement errors in the non-/linear material laws. In the resulting stochastic
forward problem, these uncertainties are stochastically modeled by random fields.
The solution of the underlying PDE, which describes magnetostatics, is represented
using the generalized polynomial chaos expansion. As crucial ingredient we exploit
the stochastic collocation method (SCM). Eventually, this leads to a
random-dependent bi-objective cost functional, which is comprised of the
expectation and the variance. Subject to the optimization of the PM machine are the
shapes of the rotor poles, which are described by zero-level sets. Thus, the
optimization will be done by redistributing the iron and magnet material over the
design domain, which allows to attain an innovative low cogging torque design of an
electric machine. For this purpose, the gradient directions are evaluated by using the
continuous design sensitivity analysis in conjunction with the SCM. In the end, our
numerical result for the optimization of a two-dimensional model demonstrates that
the proposed approach is robust and effective.

Keywords: robust low cogging torque design; topology and shape optimization;
random partial differential equation; stochastic collocation method; level set method;
continuous design sensitivity analysis; weighted average method; trade-off method

1 Introduction
Due to high performance, high efficiency and high power density, permanent-magnet
(PM) machines are becoming more and more popular [–]. Consequently, these devices
are currently broadly used in applications as robotics, hybrid vehicles, computer periph-
erals and so on, see, e.g., [–]. However, the PM machines suffer by construction from a
considerable level of mechanical vibration and acoustic noise. More precisely, the interac-
tion of the air-gap harmonics (stator slot driven) and the magnetomotive force harmonics
(magnet driven) produces a high cogging torque (CT). On the other hand, the torque rip-
ple is primarily provoked by the CT and higher harmonics of back-electromotive force
(EMF). Also the magnetic saturation in the stator and the rotor cores [] as well as the
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controller-induced parasitic torque ripples [] might further disturb the electromagnetic
torque [].

From this perspective, especially the mitigation of the torque fluctuations is a key issue
for the design of a PM machine because its result may simultaneously affect the machine
performance. Especially, in the context of the deterministic/stochastic topology optimiza-
tion of a PM machine, the consideration of more than one competing objective into a
cost functional seems to be still a challenging problem [, ]. More specifically, when a
multi-objective approach is involved in the designing process, a certain trade-off between
conflicting criteria needs to be fulfilled. For this reason, often a Pareto front technique is
accepted as an alternative. Furthermore, under assumption that the Pareto front is con-
vex, it can be approximated by the weighted average method (WAM) or the ε-method
[–]. However, in practice it is rather hard to verify this assumption, especially when
nonlinear problems are considered. In such a situation, objective functions are approxi-
mated numerically, whereas a genetic or ant colony-based algorithm is recommended for
the identification of the global front Pareto [, ]. It should be also noticed that in some
cases, when a periodic functional may be applied, e.g., for a lumped model of electric ma-
chine [] or the periodicity of objectives is a result of the geometrical structure of electric
machines [], it is also possible to prove the convexity in a rigorous mathematical way.

Various methods for suppressing the CT have been proposed in the literature. For ex-
ample in [] the authors employed the auxiliary slots for this purpose. Some solutions
apply an appropriately chosen combination of slot/pole number [] or the optimized ra-
tio of pole arc to pole pinch [] in order to reduce the CT. Other efficient methods for
mitigating the CT involve shaping the rotor magnets and/or stator teeth [] including
redistribution of a PM and iron material within the domain of interest using topological
methods, as proposed in [, , –]. Moreover, the statistics-based approach such as the
Taguchi method [], or its generalization called the regression-based surface response
methods, are proposed in [, ], especially in industrial applications to reduce the noise
to signal ratio. To this last group, also techniques based on the perturbation method for
calculating the first and the second derivative may be included. Based on the sensitivity
information they intend to estimate deterministically the impact of the input variability on
output characteristics and in consequence on the result of optimization []. On the one
hand, this ’deterministic’ estimation of uncertainties is limits to the range of the perturba-
tion |δ| =  – %, see, e.g., [–]. On the other hand, the load related to the calculation
of the second derivative might be really large, especially when a cost functional involves a
standard deviation. Clearly, the advantage of this approach is the immediate availability of
a gradient which allows to carry out the strategy, whose aim is to reduce the influence of
the deterministic uncertainty onto the optimization result []. More recently, the efficient
approach, which benefits from both the perturbation technique and the stochastic-based
method has been developed [] to estimate the statistical moments.

In many engineering applications, a physical model is affected by a relatively large
amount of uncertainty in the input data including, e.g., the model coefficients, the ex-
citation term, initial/boundary conditions or the geometry of a model. For instance, in the
case of an electric machine, the source of the uncertainty has been schematically shown
in Figure . In this respect, in order to develop a reliable numerical simulation, it is nec-
essary to include uncertainty quantification due to the variations of input data []. This
differs significantly from the deterministic approach. Depending on the available data, the
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Figure 1 Exemplary sources of input uncertainty in a model of electric machine.

uncertainty can be represented in the mathematical model using the worse-case scenario
analysis, evidence theory, fuzzy set theory and probabilistic framework, see, e.g., [] and
references therein. For this reason, in this paper we deal with the non-intrusive approach,
namely a type of the spectral collocation method [], combined with the generalized
polynomial chaos [], to investigate the propagation of the uncertainty through a model
of electric machine. Additionally, this technique allows to straightforwardly include the
surface response model into the optimization flow [–].

The topology is a major contributor to the electromagnetic torque fluctuations. There-
fore in this paper, we address the topology optimization of a PM machine. Since the results
of the design procedure are highly influenced by unknown material characteristics [],
these uncertainties have to be taken into account in the course of a robust optimization.
Thus the soft ferromagnetic material should be modeled using uncertainty. In particular,
the relative permeability/reluctivity of the magnetic material needs an accurate model in
order to improve the accuracy of the magnetic flux density of permanent magnets (for cer-
tain applications [, ]). Therefore, in our optimization model, we take the reluctivity
as uncertain.

In our case of the topology optimization, we have to trace two interfaces between dif-
ferent materials with some assumed variations such as air, iron and PM poles of rotor,
the modified multilevel set method (MLSM) has been used [, ]. The level set method
[] has found a wide range of applications also in electrical engineering. For instance, it
is used to address shape or topology optimization problems [, ].

The proposed approach is innovative, since stochastic modeling of uncertainties are
combined with a topology optimization for minimal electromagnetic torque fluctuations
(of the CT) and at the same time allowing for a robust optimization on the basis of a suit-
able optimization criterion. The current paper is an extended version of [] with many
more details and new results for an analysis of a PM electric machine in on-load state
(with excitation currents involved). More precisely, we paid a lot of attention to investi-
gate the impact of the optimization methodology on other machine parameters such as
the electromagnetic torque, the torque ripple, the back electromotive force and an analy-
sis of its frequency spectrum as the important source of noise and vibrations. However, it
should be noticed that in this paper we focus mainly on a robust low cogging torque design
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under uncertainty which resulted in no-load steady state analysis of stochastic curl-curl
equation (a density of excitation currents J(x) = ). Consequently, the machine analysis
in on-load state can be considered here as a post-processing procedure, since the elec-
tromagnetic (average) torque itself was not involved in the optimization task. Moreover,
we restricted ourselves to the minimization of noise and vibrations caused predominantly
by the cogging torque, the torque ripple and the back EMF, however, without coupling a
vibro-acoustic modeling as in, e.g., [] with the curl-curl equation. Instead the air-gap
flux density (as equivalence of the back EMF) is considered in the optimization procedure
as a second objective. It yields a considerably improvement of the wave form of the back
electromotive which, in turn, directly leads to the reduction of noise and vibrations. Fur-
thermore, to deal with a stochastic multi-objective problem, the trade-off method, incor-
porated in the level set method (LSM) as well as the AWM, involved in a robust functional,
have been applied.

The paper is organized as follows: first we describe the PM machine, which we use as
test case (Section ). Then the deterministic model is set up (Section ). Based on that, the
stochastic forward problem is formulated in Section . Section  describes the optimiza-
tion problem with the needed objective functions and the constraints. Then we combine
topology optimization and uncertainties (Section ). After a short description of the sim-
ulation in Section , we discuss numerical results (Section ).

2 Test case description
A design of a PM machine has to provide the shape and placement of magnets, iron poles
and air-gaps. These features primarily determine the torque characteristics and thus the
proper and efficient functioning of a PM machine. Specifically, we consider as test case an
electric controlled permanent magnet excited synchronous machine (ECPSM) []. For
illustration, Figure  provides a partial assembly drawing of such a device and the related
main parameters for the magnetic description are found in Table . In fact, the ECPSM
rotor consists of two almost identical parts, which just have opposing direction of the PM
poles (see Figure  ‘permanent magnet N ’ and ‘permanent magnet S’). Furthermore, an
additional DC control coil is mounted in the axial center of the machine, actually between
the laminated stators. Via a DC-chopper, this allows for controlling the effective excitation
of the machine. Eventually this results in a field weakening of  : , which is of particular
importance for electric propulsion vehicles [].

Figure 2 Cross-section of an ECPSM (an electric
controlled permanent magnet excited
synchronous machine): surface-mounted PM
rotor, three-phase windings, fixed excitation
control auxiliary coil [6].
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Table 1 Main parameters of the ECPSM (an electric controlled permanent magnet excited
synchronous machine) design [6]

Parameter (unit) Symbol Value

Pole number 2p 12
Stator outer radius (mm) rostat 67.50
Stator inner radius (mm) ristat 41.25
One part stator axial length (mm) las 35.0
Slot opening width (mm) woslot 4.0
Number of slots ns 36
Number of phases m 3
Permanent magnet pole NdFeB 12
PM thickness (mm) tm 3.0
Remanent flux density (T) Br 1.2

Figure 3 Sextant domain for mathematical
model: stator, rotor and three phases (A, B, C).

3 Mathematical model
In the following, we set up a deterministic model for the PM machine, which is suitable for
optimization. This comprises a discussion of the domain, a strong and weak formulation
and the objective functions.

3.1 Field quantity and simulation domain
The magnetic behavior of the PM machine can be formulated in terms of the unknown
magnetic vector potential A and the so-called curl-curl equation. Here we disregard eddy
currents, i.e., we assume σ ∂A

∂t = , where σ denotes the conductivity. Especially for op-
timization, one needs an efficient computational model. Therefore we reduce the three
(spatial-) dimensions of the problem into a simplified D FEM model, which provide us
with acceptably accurate computation result. We validated this approach in our previous
work [, ] using numerical simulation and experiment in the case of a similar topology.
Thus A = (, , A(x, y)), which gives us a D problem. Moreover, this setting exhibits ro-
tational symmetry with multiples of six. Hence we restrict the domain to one sextant, see
Figure .

3.2 Strong formulation
Now, in D the curl-curl equation for the magnetic vector potential A = A(x, y) becomes
the following Poisson equation:

∇ · (υ(
x,

∣∣∇A(x)
∣∣)∇A(x) – υPMM(x)

)
= J(x), x ∈ D ⊂ R

, ()

where the domain D denotes the sextant region in our test case. Here J(x) denotes the given
current density (at position x = (x, y)), M(x) represents the given remanent flux density of
the PM, υ is the reluctivity and υPM the reluctivity of the permanent magnets. Moreover,
we assume

M(x) := br(x)T(x), ()
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where T(x) describes the radial direction of the remanent flux density and br(x) denotes
a positive and bounded scalar function for the respective magnitude.

This quasi-linear elliptic problem () is equipped with periodic boundary conditions on
the radii of D and it is also equipped with a homogeneous Dirichlet condition on the outer
arc: A(x) = .

The reluctivity υ describes as real parameter the material relation H = υ(x, |B|)B, where
B = ∇ ×A and H denote the magnetic flux density and the magnetic field strength, respec-
tively. On the one hand, it depends nonlinearly on B := |B| = |∇ × A| = |∇A|, where | · |
denotes the Euclidean norm and we use the D setting A = (, , A(x, y)). On the other
hand, the reluctivity depends on the respective local material, i.e., it depends on the po-
sition x. In our case, our connected domain is composed of iron (Fe), air, and permanent
magnets:

D = DFe ∪ Dair ∪ DPM.

Thus the reluctivity reads

υ
(
x,

∣∣∇A(x)
∣∣) =

⎧
⎪⎨

⎪⎩

υFe(x, |∇A(x)|) for x ∈ DFe,
υair for x ∈ Dair,
υPM for x ∈ DPM.

()

That is, the reluctivity υ is discontinuous across material borders and nonlinear in ferro-
magnetic materials. In the following, we assume that υair = υ is the vacuum reluctivity
and that the electromagnetic material is soft. Moreover, we remark that the nonlinear de-
pendence of υFe on |∇A| is given by a spline interpolation of measurement data.

3.3 Weak form
We assume J ∈ L(DF) and M ∈ (L(DF)), where DF := D denotes the full circle. A func-
tion A ∈ V := H

(DF) = {A ∈ H(DF) : A|∂DF = } is a weak solution of the quasi-linear
elliptic Dirichlet boundary problem () if it holds

∫

DF

(
υ
(
x, |∇A|)∇ϕ∇A

)
dx

︸ ︷︷ ︸
=:a(ϕ,A)

=
∫

DF

ϕJ dx
︸ ︷︷ ︸

=:l(ϕ,J)

+υPM

∫

DF

M · ∇ϕ dx
︸ ︷︷ ︸

=:l(ϕ,M)

()

for all ϕ ∈ V . The symbol H(DF) denotes the Sobolev space of the real-valued functions
on DF with square integrable weak gradients. The existence and uniqueness of solution
for problem () is thoroughly investigated in, e.g., [].

4 Stochastic forward problem
The characteristics of ferromagnetic materials are usually deduced from measurements.
In our case, this applies to the reluctivity υ , which suffers from measurement uncertain-
ties. Now, the result for the electrical machine design is strongly affected by the unknown
material characteristics and geometric uncertainties, for example, the air-gap thickness,
see in [, ]. The latter effect can be also simulated by changing the material parame-
ter using the level set methodology (see below). This leaves us to include these material
uncertainties into the mathematical model and thus into the optimization procedure in
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order to achieve a robust design. Therefore, in our work, the reluctivity becomes a ran-
dom field, which allows us to quantify these uncertainties. The respective modeling is our
next subject.

4.1 Stochastic modeling of uncertain reluctivities
We recall the reluctivity υ (), which is material dependent. We have: iron, air and perma-
nent magnet domains. Besides the variations of iron and permanent magnet reluctivities,
especially the uncertainty of υair is crucial from the engineering viewpoint, since it allows
us to simulate the variations of the air-gap thickness. For an uncertainty quantification,
the reluctivities become random variables on some probability space (Ω ,F ,P) with sam-
ple space Ω , sigma-algebra F and probability measure P. In our stochastic model, we
introduce random perturbations within the material parameters. The random field reads
as

υ
(
x, |∇A|, ξ)

=

⎧
⎪⎨

⎪⎩

υFe(x, |A(x)|)( + δξ) for x ∈ DFe,
υair( + δξ) for x ∈ Dair,
υPM( + δξ) for x ∈ DPM

()

with random vector ξ = (ξ, ξ, ξ). Therein, the random variables ξj (j = , , ) are assumed
to be independent and identically uniformly distributed in the interval [–, ]. Thus, the
parameters δj >  (j = , , ) specify the relative magnitude of the perturbation in the ma-
terial parameters. For the later numerical simulations, we choose δj = . for all j, which
corresponds to perturbations of %. Thus we have ξ : Ω → [–, ] =: Π .

For uncertainty quantification, we need the expectation and the variance among other
quantities. The expected value of a function f : Π → R, which depends on the random
variables, is defined as

E[f ] :=
∫

Ω

f
(
ξ (ω)

)
dP(ω) =

∫

Π

f (ξ )ρ(ξ ) dξ ()

provided that the integral is finite. In our case of uniform random distributions, the joint
probability density function is constant: ρ(ξ ) = 

 . Furthermore, given two functions f , g :
Π →R, the expected value () induces an inner product

〈f , g〉 := E(fg) ()

on the Hilbert space L(Ω) = {f : E[f ] < ∞}. The variance of a function f ∈ L(Ω) is simply

Var[f ] := E
[
f ] – E[f ]. ()

4.2 Polynomial chaos expansion
Our uncertainty quantification is based on the concept of the polynomial chaos expansion
(PCE). The homogeneous polynomial chaos was introduced in [] for Gaussian probabil-
ity distributions. Later this concept was extended to other probability distributions, which
resulted in the generalized polynomial chaos, see [, ].

Given a function f ∈ L(Ω), the associated PCE reads as

f (ξ ) =
∞∑

i=

fiΨi(ξ ). ()
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The expansion () converges in the L-norm of the probability space under certain as-
sumptions [, ], which are fulfilled for many random distributions such as the Gaus-
sian, uniform and beta distribution. On the one hand, the functions Ψi : Π →R represent
a complete orthonormala system of basis polynomials. Thus it holds that

〈Ψi,Ψj〉 =

{
 for i 
= j,
 for i = j

using the inner product (). These orthonormal polynomials follow from the choice of the
probability distributions in the stochastic modeling. Each traditional probability distribu-
tion exhibits its own orthogonal system, see []. In our case, the uniform distribution
implies the Legendre polynomials as basis. We remark that the multivariate polynomials
are just the products of the univariate orthonormal polynomials for each random variable.
On the other hand, the coefficients fi in () satisfy the relation

fi = 〈f ,Ψi〉 for each i, ()

i.e., they result from the projection of the function f onto the basis polynomials. In our
numerical simulation, these coefficients represent the unknowns, which are used to de-
scribe the desired solutions of our problem. For traditional random variables, the series
() is convergent in the norm of L(Ω).

We further remark that the PCE () includes the information of the expected value ()
as well as the variance () of the function f :

E[f ] = f, Var[f ] =
∞∑

i=

f 
i ()

under the assumption that Ψ ≡  and that the coefficients are given exactly by ().
To enable a numerical realization, the series () has to be truncated at some integer Nmax.

Often all multivariate polynomials up to some total degree are included in the truncated
expansion. This truncation causes that the associated variance is just an approximation of
the exact variance in (). Furthermore, the coefficients () are typically not given exactly,
since they are influenced by numerical errors. If a function f is also space-dependent, then
the PCE () is considered pointwise for each x ∈ D.

4.3 Stochastic PDE model and PCE approximation
Now, we return to our PDE problem (). For the uncertainty quantification, we consider
the case of no load state with the excitation density current J = . Consequently, in the Sec-
tion  about the modeling and the optimization problem we will mainly focus on reducing
the cogging torque (no-current torque) as an undesirable component for the operation of
the ECPSM machine and on improving a wave form of the electromagnetic force when
taking the uncertainties into account. Inserting the random field model for the reluctiv-
ities (), we obtain the following stochastic forward problem for our three subdomains
D = Dair ∪ DFe ∪ DPM:

⎧
⎪⎨

⎪⎩

∇ · (υFe(x, |∇A(x, ξ )|, ξ)∇A(x, ξ )) = , in DFe,
∇ · (υair(x, ξ)∇A(x, ξ )) = , in Dair,
∇ · (υPM(ξ)∇A(x, ξ )) = ∇ · υPM(ξ)M(x), in DPM,

()
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where A : D × Ω →R, A = A(x, ξ ) becomes an unknown random field. This random field
is approximated by a truncated PCE ()

A(x, ξ ) =
Nmax∑

i=

ai(x)Ψi(ξ ) ()

for some integer Nmax and unknown coefficient functions ai : D → R, which are defined
by () pointwise for x ∈ D.

4.4 Stochastic collocation
There are mainly two classes of numerical methods for the approximative computation of
the coefficient functions ai: stochastic collocation methods (SCM) and stochastic Galerkin
techniques, see, e.g., [, ]. We apply the SCM for our problem, since this strategy rep-
resents a non-intrusive approach, where the codes for the simulation of the deterministic
case can be reused in the stochastic case.

In the SCM, the probabilistic integrals () are approximated by a sampling scheme or a
multi-dimensional quadrature formula. In fact, any quadrature formula is defined by a set
of nodes ξ (k) ∈ Π and a set of weights wk ∈R, for k = , . . . , K . The approximations read as

ai(x) =
〈
A(x, ·),Ψi(·)

〉 ≈
K∑

k=

wkA
(
x, ξ (k))Ψi

(
ξ (k)) ()

for i = , , . . . , Nmax. That is, each term in the sum () involves the vector potential A at
a particular node in Π . Thus we have to solve our original PDE problem () K times for
different realizations of the reluctivity. This computation can be done by separate runs of
a numerical method for the deterministic case.

As multi-dimensional quadrature on [–, ]Q, we apply the Stroud formulas with con-
stant weight function, see [, ]. This type of quadrature methods exhibits an optimality
property with respect to the number of required nodes to calculate the integral exactly for
all multivariate polynomials up to a total degree R. For example, it holds that K = Q for
R =  and K = Q +  for R = .

Finally, the mean and the standard deviation are obtained from the representation ()
via

E
[
A(x, ·)] ≈ a(x) and std

[
A(x, ·)] ≈

√√√
√

N∑

i=

∣∣ai(x)
∣∣ ()

using the symbols ai also for the approximation of the exact coefficient functions from
() for convenience.

5 Modeling of the optimization problem
We need to define how the quality of the machine design is measured and the optimization
variables as well as their variations.

5.1 Objective functions
For the optimization, one has to assess the quality of the design of a PM motor. Here we
will have two ingredients, i.e., we set up a bi-objective optimization problem.
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On the one hand, the assessment is based on the cogging torque fluctuations. The cog-
ging torque T can be directly computed from the magnetic field distribution (Maxwell
stress tensor method) as a function of the rotor position θ []:

T(x) = υair

∮

S
x ×

((
n · B(x)

)
B(x) –

|B(x)|


n
)

dS(x), ()

where n denotes the unit outward normal vector and S a closed surface, which is located
in the air-gap and surrounds the rotor. T is mainly determined by the machine’s topology.

On the other hand, the root mean square (rms) value of the magnetic field density is
employed to assess the quality as second criterion. In fact, this is done only in an approx-
imated way, see []: the rms is calculated along a path of length L from location αn to
αn+, which lies completely in the air-gap:

∣∣Br,rms(x)
∣∣ =


L

∫ αn+

αn

∣∣Br(x)
∣∣ dx ≥ τ · ∣∣Br,rms

()∣∣. ()

Here τ denotes an assumed level of the magnetic flux density in the air-gap, treated here
as the fraction of the value |Br,rms

()|, which is calculated for the initial configuration us-
ing ().

Alternatively, the back-EMF (electromotive force) can be considered as a second objec-
tive in the topology optimization problem []. It results from the fact, that the harmonic
content of the back-EMF is primarily responsible for the pulsation in the developed elec-
tromagnetic torque [, ]. Thus, the square of the back-EMF magnitude is defined as

∣∣Uback(x)
∣∣ := LSNwtπω

m∑

i=


|Si|

∫

Si

∣∣A(x)
∣∣ dx, ()

where LS refers to the axial length of the stator, Nwt denotes the number of winding turns,
Si represents the cross-section area of the windings for every phase, while m specifies the
number of phases.

From engineering viewpoint, both objectives, which compete each other, are very im-
portant. The first of them as a main component of the torque ripple is responsible for min-
imizing the noise and vibrations, which are crucial for the low-speed application. While
the second function allows for ensuring possibly the bigger value of the flux density cal-
culated in air-gap or, equivalently, the highest value of Uback. The spectrum of the latter
has also impact on vibrations. As a result, it influences the electromagnetic torque as well.
For a solution of the multi-objective problem the ε-method [], incorporated in the LSM
scheme has been applied. It means that a second criterion serves as a constraint bounded
by some allowable range of parameters ε. On the one hand, this method requires some
technical information about objectives preferences as well as the convexity of a Pareto
front, what for the periodic functions is often fulfilled. On the other hand, the obtained
solution might not necessary be globally non-dominated [] due to the treatment of the
Br objective as the fraction of areas. Therefore, in order to find a non-dominated globally
solution a Pareto front technique need to be applied for a robust optimization.
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Figure 4 Distribution of the signed distance
function [35]. Here the shapes of rotors poles (the
blue shape with black lines) are described by the
zero-level set.

5.2 Optimization variables and multi-level representation
In the course of the PM machine design optimization, the placement of iron, permanent
magnets and air gaps are subject to variations. To this end, we denote the iron pole domain
by D, the magnet pole domain by D and the air gap region by D, see Figure . Employing
the modified multilevel set method (MLSM) [, ], we have to trace the two interfaces
between different materials (iron/air and permanent magnet/air) by corresponding signed
distance functions φ and φ, see also Figure . Using the signed distance functions, we
can describe the respective domains as:

D = {x ∈ D|φ >  and φ > }, D = {x ∈ D|φ >  and φ < },
D = {x ∈ D|φ <  and φ > }, D = {x ∈ D|φ <  and φ < }.

()

During optimization the signed distance functions φi (i = , ) are continuously adapted.
Their evolution is governed by the following Hamilton-Jacobi-type equation []

∂φi

∂t
= –∇φi(x, t)

dx
dt

= Vn,i|∇φi|, ()

with pseudo-time t and the normal component of the zero-level set velocity Vn,i.

5.3 Optimization and uncertainty
For a robust optimization, that uncertainties of the reluctivities need to be included. We re-
call our stochastic model for the reluctivity υ (), where ξ = (ξ, ξ, ξ) denote the stochastic
variations in υ for Fe, air and PM. In the multi-level set representation, the reluctivity υ

and the remanent flux density coefficient br (of the PM-material, see above in ()) become
functions of the random variables ξ and the sign distance functions φ = (φ,φ):

υ(φ, ξ ) = υ(ξ)H(φ)H(φ) + υ(ξ)H(φ)
(
 – H(φ)

)

+ υ(ξ)
(
 – H(φ)

)
H(φ) + υ(ξ)

(
 – H(φ)

)(
 – H(φ)

)
, ()

br(φ) = brH(φ)H(φ) + brH(φ)
(
 – H(φ)

)

+ br
(
 – H(φ)

)
H(φ) + br

(
 – H(φ)

)(
 – H(φ)

)
()

with Heaviside function H(·). Thus the standard level-set-based algorithm [, ] in-
cludes the following steps:

(a) First, after a model initialization, using, e.g., a gradient topological method, the
signed distance functions φi, i = ,  need to be calculated. In particular, it means
that the shapes under colorred the consideration are described by the zero-level
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sets, shown on Figure  (without utilizing any additional parametrization function,
besides a model discretization).

(b) Based on the knowledge of the zero-level set velocity Vn,i, modified by area
constraints, for which the adjoint variable method or the continuum design
sensitivity analysis might be applied, the corrections of the distribution of signed
distance functions are calculated and then introduced into the model in every
iteration. Here also the distribution of level sets can be modified based on the
topological information. Additionally, the Tikhonov regularization or the total
validation technique can be used in order to control the complexity/smoothness of
the optimized shapes [, ].

(c) Finally, stops criteria are checked and the optimization process is continued until
they will be fulfilled.

6 Topology optimization under uncertainties
We have setup a shape optimization problem constrained by the elliptic PDEs () with
random material variations. Now we need efficient and robust computation strategies.

6.1 Dual problem
When a nonlinear magnetostatic problem is considered, a variational formulation of a dual
problem needs to be additionally formulated, e.g., [] and []. In a magnetostatic case,
it takes the form of

∫

DF

(
υ
(
x, |∇A|)∇ϕ∇ζ

)
dx +

∫

DF

(
∂Bυ

(
x, |∇A|) · ∇ϕ∇ζ

)
dx

=
∫

DF

(ϕJ + υPMM∇ϕ) dx for all ϕ ∈ V ()

with adjoint variable ζ . A discussion of the existence and uniqueness of solution of ()
can be found in [, ].

In the steady-state analysis and using a Newton-Raphson algorithm, the adjoint variable
ζ can be computed directly. This is due to the fact that the converged system of the direct
problem () and the adjoint problem () are the same []. This technique, the so-called
frozen method was successfully applied for calculating the electromagnetic force in the
nonlinear magnetostatic system [] and for providing the on-load CT [].

6.2 Robust topology optimization problem
The minimization of the cogging torque in our D magnetostatic case can be equivalently
represented as the minimization of the magnetic energy Wr variation [, ].

In our context of the shape optimization problem with the PDE constraint (), the mag-
netic energy is defined as

Wr(φ,φ, ξ ) =
∫

D
B(φ,φ)H(φ,φ) dx +

∑

i=

βiTV(φi). ()

Here TV(·) denotes the total variation regularization with given coefficient βi; it is used to
control the geometrical complexity of obtained shapes [, ].
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Now, employing the magnetic energy in the yield function of the minimization process
allows us to compute the sensitivity an efficient way []. This reads as follows:

∂Wr

∂p
=

∫

γ

(υ – υ)∇ × A∗ · ∇ × A∗∗ – (M – M) · ∇ × A∗∗ dγ , in D ()

with υ and υ as well as M and M representing reluctivities and remanent flux density
for different domains, as well as A∗ := A and A∗∗ := ζ denoting the magnetic vector po-
tential in the primal and dual problem. The vector of parameters p is defined as follows
p = (υ, br).

Moreover, () is subjected to the constraint (), where Br is replaced by Br(φ,φ).
In our optimization procedure, this constraint is realized in an approximative way. It is
introduced as two separate area constraints, one for each rotor pole cf. [, , ]:

G(φ) = |D|/|D | – S = ,

G(φ) = |D|/|D | – S = ,

where S and S are prescribed coefficients, which is a kind of standard approach in a
robust framework), while D and D represent initial areas of a PM and iron pole, re-
spectively.

Finally, let the random space be sampled at K + quadrature grid points (using the Stroud
formula). Thus, a stochastic multi-objective topology optimization problem is formulated
in terms of a robust functional [], consisting of the expectation and the standard devia-
tion using the WAM []:

min
φ

(
E

[
Wr(φ,φ, ξ )

]
+ κ

√
Var

[
Wr(φ,φ, ξ )

])

s.t. K
(
υk)Ak = fk , k = , . . . , K ,

|D| ≤ S · |D | and |D| ≤ S · |D |

()

with prescribed parameter κ =  (analogously to three-sigma rule of thumb used in statis-
tics and empirical science), and stiffness matrix K.

Here, one can compute the total derivative of the magnetic energy () on the basis of the
forward analysis, only. That is, the forward model is calculated in the collocation points,
while using the models for υ (), br () and the sensitivity () as well as the coefficients
of the PCE () and the moments (). We remark that a similar approach was used in [,
] for the solution of stochastic identification/control problems for constrained PDEs
with random input data. However, their type of cost functional was different. It should be
also emphasized that in contrary to the work by [] about the deterministic low ripple
torque design, in our paper we deal with the low cogging torque design of the ECPSM
machine under uncertainties.

7 Simulation procedure
Furthermore, the algorithm for the robust topology optimization has been implemented
using the Comsol (COMSOL .a, The COMSOL Inc., Burlington, MA, ) and Matlab
(MATLAB ., The MathWorks Inc., Natick, MA, ) scripts. Thus the Finite Element
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method is used to solve both the weak formulations of primary and dual system, defined by
() and (), respectively. The respective triangular mesh consists of , elements with
each second order Lagrange polynomials for the A-formulation. As a reluctivity model
for iron parts, the soft iron material without losses has been applied and a standard spline
interpolation of measured data are used for the nonlinear dependence on |∇A|. The com-
putation time (wall clock time) for a fixed position of rotor and stator in our configuration
was about . s. This did involve , degrees of freedom. Additionally, every rotor
pole has been divided into  voxels. This applies to PM and iron pole, separately. The
UQ analysis has been performed using the software implemented by []. The Stroud-
formula has been used for this purpose. The optimized shapes of rotor poles have been
found in the th iteration of the optimization process. We have applied the Stroud- for-
mula in order to obtain the final results for the UQ analysis of the CT, the back EMF, the
electromagnetic torque and the magnetic flux density in the air-gap, respectively.

8 Numerical results
The above described procedure has been applied to design the rotor poles of the ECPSM
for no-load state, Figure , with parameters in Table  Subject to optimization is the shape
of the iron pole and the PM pole. The initial domains of the respective poles and the cor-
responding field in the ECPSM machine are represented in Figure . This is the starting
point for the optimization. In addition, the reluctivities are assumed to be uncertain ()
with maximum deviation of %b for the respective nominal value. The rotor poles after
optimization are depicted in Figure .c

Afterwards, to discuss the quality of the design, the CT is computed for two periods of
both the initial and the optimized topology. And the interaction of the stator teeth with
the rotor poles is investigated. The results for the mean and standard deviation of the CT
are depicted in Figure . The peak value of the mean value of the CT is reduced about
%. In order to investigate the influence the robust optimization on the back EMF and
the magnetic flux density in the air-gap under rotor poles, we show the mean and standard
deviation calculated for both considered quantities in Figures  and , respectively. Addi-
tionally, for the last quantity we perform a spectral analysis using FFT, which is depicted
on Figure . Based on this we are able to calculate the total harmonic distortion (THD)d

Figure 5 An initial topology of the ECPSM [35].
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Figure 6 The optimized topology of the ECPSM [35].

Figure 7 Mean and standard deviation for initial
and optimized topology of the ECPSM: cogging
torque versus mechanical degree.

Figure 8 Mean and standard deviation for initial
and optimized topology of the ECPSM: magnetic
flux density in the air-gap under magnet and
iron poles.

factor that allows for assessing the improvement of waveform of the back EMF, which in
our case becomes around %.

Finally, we also computed the electromagnetic torque, shown on Figure . It means that
we analyzed the machine in an on-load mode with defined excitation currents defined the
right side of equation (). The detailed analysis for the machine before and after the opti-
mization is presented in the form of Table . Unfortunately, we have also to report that the
root mean square of the flux density in the air-gap, the back EMF and the electromagnetic
torque are decreased by around %, % and %, respectively. Surely this can be seen as
a drawback of the proposed method. On the other hand, robustness is included.
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Figure 9 Mean and standard deviation for initial
and optimized topology of the ECPSM: back-EMF
waveforms versus electric degree.

Figure 10 FFT analysis of the back EMF mean for
initial and optimized model of ECPSM.

Figure 11 Mean and standard deviation for
initial and optimized topology of the ECPSM:
electromagnetic torque versus electric degree.

9 Conclusion
In this paper we demonstrated how to combine the stochastic collocation method (SCM)
with the multi-level set method (MLSM) and how to apply this technique efficiently for
the robust topology optimization of a PM synchronous machine. In the end, the shape
of rotor poles were optimized also with respect to the level of noise and vibrations. This
did result in significant reductions of both the rms of the CT (%) and the mean value
of the standard deviation (%). Thereby we were able to take variations with respect to
manufacturing tolerances/imperfections into account by assuming a random field for the
reluctivities. As a drawback, we reported a small decrease in the root mean square values
of the electromagnetic torque and back EMF. However, it should be noticed that aims of
the low cogging torque robust topology optimization (the electric machine in the no-load
mode) have been completely fulfilled. Additionally, the waveform has been considerably
improved about %, while the torque ripple has been reduced around %. The detailed
analysis presented in Table  indicates that further research should be focused on the low
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Table 2 Values of some physical parameters of the ECPSM model before and after
optimization

Quantity (unit) Before
optimization

After
optimization

Decrease/
increase

Expectation of the cogging torque (Nm)
Rectified mean value 0.072 0.012 83.70% ↓
RMS value 0.085 0.015 82.19% ↓
Minimal value –0.139 –0.027 80.21% ↓
Maximal value 0.138 0.026 80.51% ↓
Mean value of standard deviation 0.004 0.002 43.19% ↓

Expectation of the back EMF (V)
Rectified mean value 257.1 225.9 12.14% ↓
RMS value 268.3 240.6 10.33% ↓
Minimal value –330.0 –299.8 9.14% ↓
Maximal value 330.0 299.8 9.14% ↓
Mean value of standard deviation 6.34 6.23 1.85% ↓

Expectation of the air-gapmagnetic flux density (T)
Rectified mean value 0.575 0.471 18.08% ↓
RMS value 0.592 0.502 15.11% ↓
Minimal value –0.647 –0.539 16.73% ↓
Maximal value 0.733 0.749 2.29% ↑
Mean value of standard deviation 0.019 0.017 12.29% ↓

Expectation of the electromagnetic torque (Nm)
Rectified mean value 2.407 2.014 16.31% ↓
RMS value 2.433 2.019 17.02% ↓
Minimal value 1.738 1.779 2.31% ↑
Maximal value 2.788 2.200 21.11% ↓
Mean value of standard deviation 0.09 0.063 20.33% ↓

Expectation of others quantities
Ripple torque (%) 43.62 20.90 52.10% ↓
THD of the back EMF (V/V) 0.732 0.498 31.93% ↓
Mass of iron pole (g) 15.95 14.94 6.32% ↓
Mass of PM pole (g) 15.95 12.19 23.56% ↓

ripple torque robust design in the on-load state (with excitation currents included). Then,
the robust optimization of the electric machine could be performed when taking both the
ripple torque and the average electromagnetic torque into account. This is considered as
a further direction of our investigation. This work also highlights the effectiveness of the
proposed methodology.
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Endnotes
a For an orthogonal system of basis polynomials a normalization can be done straightforward, e.g., [33].
b Due to the used Stroud quadrature formulas [51], the same distribution had to be assumed with a relatively high

variance based on [38] for the reluctivity of a PM.
c A similar PM machine was also the topic of the scientific project ‘The Electrically Controlled Permanent Magnet Excited

Synchronous Machine (ECPSM) with application to electro-mobiles’ under the Grant No. N510 508040, founded by
Polish Government. There the topology was deterministically optimized.

d The THD is defined as: THD =

√
V22 +V

2
3 +V

2
4 +···+V2n

V21
, where Vk is the root mean square voltage of the kth harmonic and

k = 1 denotes the fundamental frequency.
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