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Recently, a new metric for virtual screening applications 
was reported by Lopes et al. [1]. This metric is called the 
power metric (PM) as it is based on the principles of the 
statistical power of a hypothesis test. In this comment, 
we add to the original article and discuss the similarity 
of PM to precision (Pre) and draw new conclusions from 
their functional relationship.

PM is defined as:

and can be reformulated as follows:

In this formula, P is a  total number of positive and N 
a  total number of negative examples in a data set. Simi-
larly, Pre is defined as:

From the comparison of Eqs. 2 and 3 follows that PM 
differs from Pre by the P

N
 term which precedes the num-

ber of false positives FP in PM. Thus, the influence of FP 
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in PM is decreased in imbalanced data sets with a high 
number of negative examples and the magnitude of 
this effect directly depends on the P

N
 ratio. Due to this 

dependency, PM has the ability to cancel out the influ-
ence of negative examples and is, in this regard, more 
robust than Pre.

Pre and PM are, however, not mutually exclusive and 
depend on each other. From Eqs. 1 and 3, the following 
functional relationship can be derived:

Because of this relationship, both PM and Pre capture 
model performance trends in a very similar way as we 
will demonstrate further.

Using the same approach as described in [1], we gen-
erated three models with P

N
=

100

9900
: one of poor quality 

(λ = 3), one of good quality (λ = 10) and one of excellent 
quality (λ = 30) (Fig.  1). Each model yields an ordered 
set of compounds from which a fraction of molecules, 
defined by the cutoff threshold χ, is selected as hits (i.e., 
FP + TP). The influence of χ cutoff on both metrics in the 
early recovery region with χ < 0.1 is shown in Fig. 2.

Figure  2 clearly shows that both PM and Pre capture 
the same trends, albeit at different scales. For a poor 
quality model, PM values vary considerably more than 
Pre values, which is due to the P

N
 ratio. While PM is more 

sensitive to the increase in accepted actives (P
N

 decreases 
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the influence of false positives for PM, see Eq.  2), Pre 
value shows less variance and it quickly approaches zero 
because the list of the top hits gets “flooded” with false 
positives. On the other hand, for good and excellent 
quality models we find more variance in Pre than in PM 
(Fig. 2). In particular for an excellent quality model, PM 
varies very little, again due to the influence of P

N
. There-

fore using Pre, one can identify a range of χ values where 
a small shift in χ results in the acceptance of a large num-
ber of false positives (Fig.  2, black line segment). This 
effect is, however, not captured so distinctively by PM.

Therefore, we may conclude that the main advantage of 
PM over Pre is its robustness with respect to the imbal-
ance of positive and negative examples. However, PM 
fails to capture, especially for well-performing models, 
the influence of false positives. In addition, PM and Pre 
metrics are in a functional relationship. Therefore, if 
PM and Pre are used for the comparison of two differ-
ent models on the same data set, the conclusions are the 
same irrespective of the metric. Lastly, it is also impor-
tant to note that when the P

N
 ratio equals to 1 (i.e., in a 

balanced data set), PM and Pre become equivalent.
In the end, we would like to emphasize that PM is not 

a suitable metric for the performance assessment of clas-
sification models. Similarly to Pre, it does not take into 
account the number of true or false negatives. Thus, it 
should be accompanied by a metric taking negative clas-
sifications into account, just as Pre is commonly reported 
together with a recall.
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Fig. 1 ROC curves of three generated models. A P/N of each model 
was set to 100/9900. The poor quality model was obtained by set‑
ting a λ parameter to 3, the good quality model has a λ parameter 
equaling to 10 and λ in the excellent quality model was set to 30. A 
diagonal gray line shows the ROC of a random model

Fig. 2 The influence of χ cutoff on the shape of both PM and Pre 
metrics for models of various quality. Y‑axis shows the values of PM 
(full line) or Pre (dashed line) metrics. The black line segment delimits 
a χ range in which a small change in χ leads to a significant change 
in Pre for good and excellent models, i.e., to the acceptance of a large 
number of false positives
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