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Abstract 

The increasing size of datasets in drug discovery makes it challenging to build robust and accurate predictive models 
within a reasonable amount of time. In order to investigate the effect of dataset sizes on predictive performance and 
modelling time, ligand-based regression models were trained on open datasets of varying sizes of up to 1.2 million 
chemical structures. For modelling, two implementations of support vector machines (SVM) were used. Chemical 
structures were described by the signatures molecular descriptor. Results showed that for the larger datasets, the 
LIBLINEAR SVM implementation performed on par with the well-established libsvm with a radial basis function kernel, 
but with dramatically less time for model building even on modest computer resources. Using a non-linear kernel 
proved to be infeasible for large data sizes, even with substantial computational resources on a computer cluster. To 
deploy the resulting models, we extended the Bioclipse decision support framework to support models from LIBLIN-
EAR and made our models of logD and solubility available from within Bioclipse.
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Background
Ligand-based predictive modelling is widely used in drug 
discovery, primarily in lead identification, optimization, 
and safety assessment  [1–3]. A common ligand-based 
method is quantitative structure-activity relationship 
(QSAR), where molecular properties are modelled by 
numerically describing the molecules and correlating the 
numerical description to the molecular properties  [4]. 
Such QSAR models can then be used for predicting 
properties for new, unknown compounds with common 
examples including toxicity, biological activity, and phys-
icochemical properties.

Datasets useful for ligand-based predictive modelling 
are increasing in size and number, partly due to high-
throughput in  vitro technologies and the accumulation 
of data in public repositories. Increasingly larger data-
sets provide new challenges to build robust and accurate 
predictive models within a reasonable amount of time, 

and may require the use of high-performance computing 
(HPC) or cloud computing resources [5].

Apart from the time and cost of building models on 
large datasets there are also challenges for delivering 
the resulting models to the users involved in drug dis-
covery projects. A common way to deliver ligand-based 
models is to deploy them as Web services, which can be 
consumed by users by submitting a chemical structure 
(within a Web page or a third party application) that is 
transferred over a network to the Web service where the 
prediction is carried out, and the result is then returned 
via the network. Another approach is to make predic-
tions on the user’s local computer. This has the advantage 
of avoiding transferring potentially sensitive chemical 
structures over a network.

In this project we set out to study the task of building 
QSAR models on very large datasets. Publicly available 
datasets are commonly limited in size. We identified a 
dataset of measured solubility from which we extracted 
about 37 thousand substances [6]. In order to study larger 
datasets we used data from the ChEMBL  [7] database 
which contains calculated properties. We selected the 
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molecular property logD and extracted more than a mil-
lion substances with this property calculated.

Support vector machines (SVM) is commonly used for 
building QSAR models as reported by, for example, Dar-
nag et  al.  [8]. SVM has also, together with substructure 
fingerprints, been successfully used for predicting the 
LogD-related value LogP  [9]. In this work we described 
chemical structures with the signature descriptor  [10] 
which has been shown to produce good results together 
with SVM for QSAR predictions  [11–13] and lately was 
used for identifying Cathepsin-L inhibitors [14]. We used 
open data from ChEMBL and a public dataset of meas-
ured solubility values to train QSAR models using SVM. 
The resulting models were studied with regard to the 
effect of varying the training set size both with regards 
to training time as well as prediction performance, and 
the models were made available from the Bioclipse plat-
form [15, 16] via its decision support functionality [17].

Methods
Data
Solubility, the concentration of a dissolved compound 
in equilibrium with a solvent, is a fundamental physico-
chemical property. We used a dataset [6] originally con-
taining 57,859 compounds but with some values only 
tabulated as larger than a cut-off value. In order to avoid 
complications with modelling ‘larger than’ relations, we 
removed all entries with inequalities and thereby ended 
up with 37,099 solubility data points. We modelled the 
logarithm of the values, which made the solubility dataset 
similar to the LogD dataset.

ChEMBL is an open data chemical database contain-
ing more than one million compounds, manually curated 
with data extracted from the chemical literature and with 
calculated molecular properties appended  [7, 18, 19]. 
From ChEMBL version  17 we extracted all substances 
having the calculated property acd_logd (logD) at pH 
= 7.4, resulting in 1,270,472 substances.

LogP is an estimate of lipophilicity, which is an impor-
tant property in drug discovery as it relates to cell mem-
brane penetration [20]. Specifically, logP is the log of the 
value P, which is the partitioning of the neutral form of 
a compound between immiscible phases of octanol and 
water. LogD is logP with the consideration of ionized 
forms of the compound at a defined pH. A pH of 7.4, 
which is the average value for human blood, is commonly 
used for logD.

Signature molecular descriptor
The signature molecular descriptor  [10] is a descriptor 
made up of atom signatures calculated for the atoms of a 
molecule, where an atom signature consists of a canoni-
cal description of the environment around the atom with 

its size controlled by a height parameter (see Fig.  1 for 
an example showing the signatures of ethanol). Larger 
heights mean higher information content, but more 
information also requires more memory and computa-
tional power when building predictive models.

We described chemical structures with molecular sig-
natures and used a combination of consecutive heights 
1–3, i.e., an atom distance of up to 3 atoms; values which 
have previously been shown to produce good results for 
SVM modelling  [21]. We used the molecular signatures 
implementation in the open source cheminformatics 
library Chemistry Development Kit (CDK)  [22, 23] ver-
sion 1.5.7.

QSAR modelling
For modelling we used support vector machines  [24], a 
machine learning method that has been used extensively in 
predictive modelling in cheminformatics [25, 26]. The algo-
rithm can use a kernel function to map the problem into 
a high dimensional space where the problem can be easier 
to solve. The radial basis function (RBF) kernel performs 
this mapping in a non-linear fashion. It is a commonly used 
kernel that has been suggested as a good starting point for 
SVM modelling  [27] and has previously been successfully 
used in QSAR studies [5, 17, 21]. πSVM [28] is a software 
implementation which enables distributed SVM calcula-
tions over multiple computation nodes of a computer clus-
ter, which facilitates training SVM models on large datasets. 
SVM with the RBF kernel has two parameters which need 
to be determined, cost and γ. The cost parameter limits 
over-fitting and the γ parameter affects the RBF-kernel. 
When tuning SVM parameters in this study we started 
with a grid search on a sample of our dataset to find good 
values of cost and γ for regression.

We also tested linear SVM using the implementation 
in the LIBLINEAR software [29], which does not support 

Fig. 1 Signatures of height 0–2 for ethanol. Note that hydrogen 
atoms are not included in the signatures. The ethanol molecule is so 
small that increasing the signature height beyond height 2 makes no 
difference
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parallel execution. Linear SVM comes with one param-
eter, cost, and we used a cross-validated parameter search 
on the training set to determine a good cost value for 
LIBLINEAR.

Figure 2 shows workflow diagrams for the LIBLINEAR 
and πSVM modeling.
πSVM models were built using four computer nodes, 

each consisting of two 8-core CPUs (Intel Xeon E5-2660, 
HP ProLiant SL230s Gen8), for a total of 64 cores. Each 
node had a memory configuration of 128  GB. The LIB-
LINEAR models were built using one such core (i.e., 
8 GB of memory).

Study design
We studied two datasets, one with measured solubility 
data and one with calculated logD data. For each data-
set, two factors were varied in the study: training set size 
(N) and machine learning method (M). The values for the 
factors used are tabulated in Table 1.

In order to decide on cost and γ for SVM RBF we used 
data from the logD dataset; a training set of 5000 chemi-
cal structures together with a test set of 50,000 structures, 

and evaluated the predictive performance of the models 
for varying cost and γ. The best performing combina-
tion of cost and γ was chosen and the structures used for 
determining these factors were removed and not used 
in the subsequent analysis. Performing a cross-validated 
grid search on the training set for SVM RBF was judged 
as infeasible because of the excessive execution time. 
In the case of LIBLINEAR, the execution times were so 
much smaller that we could use a cross-validated param-
eter search on the training set to find cost values. Many 
cost-values for the linear SVM resulted in the same per-
formance for the same training set size. In these cases we 
favoured lower cost values, which is an optimistic choice. 

Model provisioning via Bioclipse
Bioclipse is a workbench for the life sciences that pro-
vides open source drug discovery functionality  [30]. 
Bioclipse decision support (DS)  [17] provides a frame-
work for making predictive models available to end 
users running on a local computer (off-line). The users 
can, through the graphical user interface, download and 
install predictive models which can be executed for single 
molecules as well as on collections of molecules. The pre-
dicted results can be visually interpreted, as the signature 
that contributed the most to the prediction can be shown 
as a set of coloured atoms in the user interface [26, 31].

Running predictive models on a local computer has 
the advantage that users are not dependent on a network 
connection for predictions with no risk for delays due to 
unresponsive remote servers. Another advantage is that 
no chemical information is sent over the network (as is 
the case when predictive models are provisioned as Web 
services). However, for an off-line predictive system with 
multiple large models, the size of models can become an 
issue, as they need to be downloaded and used on a local 
computer.

When predicting molecular properties using Bio-
clise DS, the molecular signatures for the query structure 

π

π

Fig. 2 Workflow diagrams. Diagrams showing the workflows for the LIBLINEAR and πSVM modelling

Table 1 Training set sizes tested during  the study for  the 
different methods and datasets

Linear SVM RBF SVM

Solubility logD Solubility logD

100 100 100 100

1000 1000 1000 1000

5000 5000 5000 5000

20,000 20,000 20,000 20,000

32,096 40,000 32,096 40,000

80,000 80,000

160,000 160,000

320,000

1,188,343
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are calculated. In the SVM model these signatures are 
represented as a vector of integers corresponding to a list 
of the signatures that were found in the query structure. 
In order for Bioclipse to be able to produce this vector of 
integers, the SVM model file comes with another file list-
ing all signatures used when training the model. These 
two files need to be read into memory by Bioclipse and for 
large training sets these files may be large. Users may work 
with 50 or even 100 models at the same time, which means 
that the trade-off between the model’s size and perfor-
mance can become important even on today’s computers.

Graphing and statistics
Plots and statistics were made using the statistical pro-
gramming language R [32].

Results
A grid search on a small subset of the logD dataset was 
performed to determine the SVM-RBF parameters cost 
and γ. A heat map generated from the grid search for 
these parameters is available in Fig. 3. The best performing 

combination in the grid search was cost = 100 and γ = 
0.001 and these parameters were used in the πSVM runs. 
For the linear SVM, a cross-validated parameter search 
was performed to determine cost. Table 2 lists the result-
ing optimal cost values for the two datasets and the vari-
ous training set sizes. We note that as the training set size 
increases, the stability among the values from the cross-
validation also increases. For training set size 100, the cost 
values range from 0.005 to 10,000 but for the larger train-
ing set sizes they seem to stabilize around 0.1 for the solu-
bility dataset and around 0.5 to 1 for the logD dataset.

We trained models with linear SVM and SVM-RBF on 
varying dataset sizes from our two tested datasets accord-
ing to the study design. Figures  4 and  5 show learning 
curves and model build time for the tested SVM imple-
mentations and training set sizes for the two datasets, 

Table 2 Costs chosen by  the cross-validation for  linear 
SVM using LIBLINEAR for the different training set sizes

Note the highly variable results among the three replicates for the small dataset 
sizes and low variation among the replicates for the larger training set sizes

Solubility logD

Training set size Found cost Training set size Found cost

100 100,000 100 10,000

2 0.01

0.1 0.005

1000 0.05 1000 10,000,000

0.05 1000

0.05 0.1

5000 0.05 5000 0.5

0.05 0.75

0.05 0.1

10,000 0.05 10,000 100

0.05 2

0.05 0.25

20,000 0.1 20,000 0.5

0.1 0.5

0.1 1

32,096 0.1 80,000 0.5

0.1 0.5

0.1 0.75

160,000 0.75

0.5

0.5

320,000 0.75

0.5

0.5

1,188,343 0.5
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Fig. 3 Heatmap of RMSD from the grid search. Above the heatmap 
is a colour key and histogram. Different cost and γ values were tested 
using a training set size of 5000 and a test set size of 50,000. The heat 
map was made using the R package gplots [34]
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respectively. The sizes of the SVM model file and the sig-
natures file for different training set sizes for the LIBLIN-
EAR approach are plotted in Fig. 6. Figures 7 and 8 show 
predicted versus original values for the logD and solubil-
ity datasets, respectively. A similar plot for the solubility 
dataset where the prediction was made using ChemAxon’s 
solubility predictor [33] is included as Additional file 1.    

Bioclipse  DS was extended to handle LIBLINEAR 
models and the trained models are planned to be 
included in the next Bioclipse release. Figure  9 con-
tains a screenshot of Bioclipse DS running the pro-
duced models. For instructions on how to install them 
in the meantime see: http://wiki.bioclipse.net/index.
php?title=MM-Models.

Dataset size
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Fig. 4 Learning curves and model creation time for the solubility dataset. The plot shows learning curves (in black) overlaid with curves for model 
creation times (in red) for varying dataset sizes and the two SVM implementations. Plotted are measured values with lines drawn between the medi-
ans. πSVM was run on 64 cores on the cluster and LIBLINEAR was run using one such core. LIBLINEAR was much faster but even though the two 
black curves seem to converge there is a difference between them that in many cases probably is relevant, especially so at these small dataset sizes
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Fig. 5 Learning curves and model creation time for the logD dataset. The plot shows learning curves (in black) overlaid with curves for model crea-
tion times (in red) for varying dataset sizes and the two SVM implementations. Plotted are measured values with lines drawn between the medians. 
πSVM was run on 64 cores on the cluster and LIBLINEAR was run using one such core. LIBLINEAR was much faster and gave similar performance in 
RMSD for the same training set sizes as πSVM
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Discussion
We observe that the linear SVM of LIBLINEAR was 
dramatically faster than the RBF SVM implementa-
tion in πSVM. Even though πSVM was run on 64 cores, 
it was not feasible to run it on the larger training sets 
constructed from the logD dataset; the largest dataset 
we were able to model consisted of 160,000 substances. 
When running on the shared computer cluster, it is gen-
erally desired that jobs should finish within a week. Run-
ning πSVM on 160,000 substances using 64 cores took 

more than 5½ days which corresponds to more than 8500 
core hours.

In an earlier study we benchmarked the effect of vary-
ing cost and γ when doing classification using the SVM 
and the RBF kernel with the result that a sweet spot is 
located around cost = 10 and γ = 0.01  [21]. We find it 
promising that the best combination of cost and γ for 
RBF SVM in this study was so close in the grid that, in 
fact, with a slightly different division of the tested values 
it seems likely that we would have gotten the exact same 

100 1000 5000 20000 80000 320000 1188343

Training set size

0 MB

10 MB

20 MB

30 MB

Signatures file size
Model file size

Fig. 6 File sizes. The sizes (in MB) of the signatures list file and the model file from LIBLINEAR for different training set sizes of the logD dataset
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Fig. 7 Predicted versus original values of logD. Predicted values (y-axis) versus original values (x-axis) for a few representative training set sizes of 
the logD dataset and the the two variants of SVM used (Linear and RBF)
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Fig. 8 Predicted versus original values of solubility. Predicted values (y-axis) versus original values (x-axis) for a few representative training set sizes 
of the solubility dataset and the the two variants of SVM used (Linear and RBF)

Fig. 9 Bioclipse screenshot. The produced models were published to Bioclipse DS. Atoms marked red in the figure have contributed more to the 
prediction, while atoms marked blue have contributed less
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cost and γ combination also for the regression problem in 
this study.

When determining the cost and γ for πSVM we used a 
sample of our logD dataset to do a grid search, and then 
we removed that data from the subsequent analysis. An 
alternative would have been to do a cross-validation. 
However, building the RBF SVM models would have 
taken too long and removing a small part of the data in 
this case does not have a major impact on the results as 
data was abundant.

The LIBLINEAR method was used for the final model 
for the logD dataset and the SVM RBF method was used 
for the solubility dataset. The 80 k logD dataset resulted 
in files of less than 8 MB as can be seen in Fig. 6 but it 
had a somewhat high RMSD of around 0.65 log units. 
The 1.2 million dataset gave an RMSD of around 0.4 log 
units but had a file size of around 27 MB. We decided to 
publish both the small and the large models for logD and 
let the user choose whether they want the higher accu-
racy or the model with a smaller file size.

For logD it is our opinion that the difference in predic-
tion performance for the two methods is so small that 
the vast difference in execution time motivates the use of 
LIBLINEAR over πSVM at least for the larger training set 
sizes. Also for the solubility dataset there is a large differ-
ence in execution time between the models but, although 
seemingly decreasing as training size increases, we also 
note a gap in prediction performance that might be of 
relevance. This difference in performance is also visible 
when comparing linear SVM with RBF SVM in Fig. 8. It 
can be worthwhile to use an RBF kernel and get a slightly 
more accurate model for the smaller dataset sizes, i.e., 
when a user can afford the time to wait for a model to 
build over night instead of in a few seconds.

Conclusion
Our study shows that when using large datasets the 
choice of machine learning method becomes impor-
tant. The linear SVM in LIBLINEAR produces models 
with similar predictive performance (for larger training 
set sizes) as the RBF SVM approach in πSVM, but with 
dramatically lower modelling time. For smaller dataset 
sizes we see some indications that πSVM might perform 
better but as datasets get bigger the less approximative 
method of RBF SVM becomes too slow to be a reason-
able alternative. Even when using parallel computation 
on 64 cores, πSVM demanded so much computational 
power that we could not build the models for the largest 
datasets.

Using LIBLINEAR it was possible to build regression 
QSAR models based on over one million substances. 
Bioclipse DS allowed us to make such models avail-
able through a point and click interface, and with visual 

interpretation consisting of highlighted chemical sub-
structures (highlighting what contributed the most to the 
predicted result). With our choice to include both small 
and large model versions, users can choose between a 
model with maximal predictive performance or a smaller 
model with slightly less predictive performance.

Authors’ contributions
OS and JA conceived and designed the study. JA implemented the analysis 
components. SL executed the jobs on a computer cluster. CA and WS pro-
vided help with the study design. JA, OS and WS drafted the manuscript. OS 
extended Bioclipse DS to handle LIBLINEAR models including the highlighting 
of substructures on LIBLINEAR models. All authors read and approved the final 
manuscript.

Author details
1 Department of Pharmaceutical Biosciences, Uppsala University, 751 
24 Uppsala, Sweden. 2 Science for Life Laboratory, Uppsala University, 751 
24 Uppsala, Sweden. 3 Department of Medical Sciences, Uppsala University, 
751 85 Uppsala, Sweden. 

Acknowledgements
This work was supported by SNIC through Uppsala Multidisciplinary Center for 
Advanced Computational Science (SNIC-UPPMAX) under projects b2013262 
and b2015001, the Swedish strategic research programme eSSENCE, and the 
Swedish e-Science Research Center (SeRC).

Competing interests
The authors declare that they have no competing interests.

Received: 14 March 2016   Accepted: 12 July 2016

References
 1. Cumming JG, Davis AM, Muresan S, Haeberlein M, Chen H (2013) Chemi-

cal predictive modelling to improve compound quality. Nat Rev Drug 
Discov 12(12):948–962

 2. Muster W, Breidenbach A, Fischer H, Kirchner S, Miiller L, Pahler A (2008) 
Computational toxicology in drug development. Drug Discov Today 
13(7):303–310

 3. Raunio H (2011) In silico toxicology – non-testing methods. Front Phar-
macol 2:33

 4. Hansch C (1969) Quantitative approach to biochemical structure-activity 
relationships. Acc Chem Res 2(8):232–239

 5. Moghadam BT, Alvarsson J, Holm M, Eklund M, Carlsson L, Spjuth O 
(2015) Scaling predictive modeling in drug development with cloud 
computing. J Chem Inf Model 55(1):19–25

 6. National Center for Biotechnology Information. PubChem BioAssay 
Database; AID = 1996. https://pubchem.ncbi.nlm.nih.gov/bioassay/1996

 7. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light 
Y, McGlinchey S, Michalovich D, Al-Lazikani B et al (2012) Chembl: a 
large-scale bioactivity database for drug discovery. Nucleic Acids Res 
40(D1):1100–1107

 8. Darnag R, Mazouz EM, Schmitzer A, Villemin D, Jarid A, Cherqaoui D 
(2010) Support vector machines: development of QSAR models for 
predicting anti-HIV-1 activity of TIBO derivatives. Eur J Med Chem 
45(4):1590–1597

 9. Liao Q, Yao J, Yuan S (2006) SVM approach for predicting logP. Mol Divers 
10(3):301–309

Additional file

Additional file 1. Details and plots for the solubility dataset.

https://pubchem.ncbi.nlm.nih.gov/bioassay/1996
http://dx.doi.org/10.1186/s13321-016-0151-5


Page 9 of 9Alvarsson et al. J Cheminform  (2016) 8:39 

 10. Faulon J-L, Visco DP, Pophale RS (2003) The signature molecular descrip-
tor. 1. Using extended valence sequences in QSAR and QSPR studies. J 
Chem Inf Comput Sci 43(3):707–720

 11. Norinder U, Ek ME (2013) QSAR investigation of NaV1. 7 active com-
pounds using the SVM/signature approach and the bioclipse modeling 
platform. Bioorg Med Chem Lett 23(1):261–263

 12. Spjuth O, Georgiev V, Carlsson L, Alvarsson J, Berg A, Willighagen E, 
Wikberg JE, Eklund M (2013) Bioclipse-R: integrating management and 
visualization of life science data with statistical analysis. Bioinformatics 
29(2):286–289

 13. Alvarsson J, Eklund M, Engkvist O, Spjuth O, Carlsson L, Wikberg JES, 
Noeske T (2014) Ligand-based target prediction with signature finger-
prints. J Chem Inf Model 54(10):2647–2653

 14. Chen JJF, Visco DP Jr (2016) Developing an in silico pipeline for faster 
drug candidate discovery: Virtual high throughput screening with the 
signature molecular descriptor using support vector machine models. 
Chem Eng Sci. doi:10.1016/j.ces.2016.02.037

 15. Spjuth O, Helmus T, Willighagen EL, Kuhn S, Eklund M, Wagener J, 
Murray-Rust P, Steinbeck C, Wikberg JE (2007) Bioclipse: an open source 
workbench for chemo-and bioinformatics. BMC Bioinform 8(1):59

 16. Spjuth O, Alvarsson J, Berg A, Eklund M, Kuhn S, Masak C, Torrance G, 
Wagener J, Willighagen EL, Steinbeck C et al (2009) Bioclipse 2: a script-
able integration platform for the life sciences. BMC Bioinform 10(1):397

 17. Spjuth O, Eklund M, Ahlberg Helgee E, Boyer S, Carlsson L (2011) 
Integrated decision support for assessing chemical liabilities. J Chem Inf 
Model 51(8):1840–1847

 18. Overington J (2009) ChEMBL. An interview with John Overington, team 
leader, chemogenomics at the European Bioinformatics Institute Outsta-
tion of the European Molecular Biology Laboratory (EMBL-EBI). Interview 
by Wendy A. Warr. Springer, Heidelberg

 19. Papadatos G, Overington JP (2014) The chEMBL database: a taster for 
medicinal chemists. Future Med Chem 6(4):361–364

 20. Waring MJ (2010) Lipophilicity in drug discovery. Exp Opin Drug Discov 
5(3):235–248

 21. Alvarsson J, Eklund M, Andersson C, Carlsson L, Spjuth O, Wikberg JES 
(2014) Benchmarking study of parameter variation when using signature 
fingerprints together with support vector machines. J Chem Inf Model 
54(11):3211–3217

 22. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) 
The chemistry development kit (CDK): an open-source Java library for 
chemo-and bioinformatics. J Chem Inf Comput Sci 43(2):493–500

 23. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006) 
Recent developments of the chemistry development kit (CDK)—an 
open-source Java library for chemo-and bioinformatics. Curr Pharm Des 
12(17):2111–2120

 24. Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat 
Comput 14(3):199–222

 25. Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine 
learning: support vector machines for pharmaceutical data. Comput 
Chem 26(1):5–14

 26. Carlsson L, Helgee EA, Boyer S (2009) Interpretation of nonlinear 
QSAR models applied to Ames mutagenicity data. J Chem Inf Model 
49(11):2551–2558

 27. Hsu C-W, Chang C-C, Lin C-J (2009) A practical guide to support vector 
classification. http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf

 28. PiSvM Software. http://pisvm.sourceforge.net. Accessed 26 Mar 2015
 29. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) Liblinear: a library 

for large linear classification. J Mach Learn Res 9:1871–1874
 30. Spjuth O, Carlsson L, Alvarsson J, Georgiev V, Willighagen E, Eklund M 

(2012) Open source drug discovery with bioclipse. Curr Topics Med Chem 
12(18):1980–1986

 31. Ahlberg E, Spjuth O, Hasselgren C, Carlsson L (2015) Interpretation of 
conformal prediction classification models. In: Gammerman A, Vovk 
V, Papadopoulos H (eds) Statistical learning and data sciences: Third 
international symposium, SLDS 2015, Egham, UK, April 20–23, 2015, 
proceedings. Springer, Cham, pp 323–334

 32. R Core Team (2014) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. http://
www.R-project.org/

 33. Calculator Plugins version 15.11.2.0, ChemAxon. http://www.chemaxon.
com

 34. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley 
T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2014) 
Gplots: various R programming tools for plotting data. R package version 
2.14.0. http://CRAN.R-project.org/package=gplots

http://dx.doi.org/10.1016/j.ces.2016.02.037
http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf
http://pisvm.sourceforge.net
http://www.R-project.org/
http://www.R-project.org/
http://www.chemaxon.com
http://www.chemaxon.com
http://CRAN.R-project.org/package=gplots

	Large-scale ligand-based predictive modelling using support vector machines
	Abstract 
	Background
	Methods
	Data
	Signature molecular descriptor
	QSAR modelling
	Study design
	Model provisioning via Bioclipse
	Graphing and statistics

	Results
	Discussion
	Conclusion
	Authors’ contributions
	References




