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Abstract

Background: Ostecinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC)
recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of
Ca**-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich
osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO,) on
MSC migration. In addition, to evaluate the influence of CaSO, on MSC differentiation and the potential molecular
mechanisms involved.

Methods: A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice.
We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO,
concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and
histological analysis. In vitro, we evaluated the CaSO, effects on MSC migration by both wound healing and
agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO, treatment was also evaluated by gPCR.

Results: CaSO, increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT
analysis showed that the addition of CaSOy, significantly enhanced bone regeneration compared to the scaffold
alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free
CaSO,4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO, and
BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO, effects on MSC migration.

Conclusions: Specific CaSO, concentrations induce bone regeneration of calvarial defects in part by acting on the host's
undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in
osteoblast gene expression. Moreover, CaSO, regulates BMP-2-induced MSC migration by differentially activating the
PI3K/AKT pathway. Altogether, these results suggest that CaSO,4 scaffolds could have potential applications for
bone regeneration.
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Background

Osteoinduction is initiated by guided attraction of the
host’s mesenchymal stem cells (MSCs) from adjacent tis-
sues in response to chemotactic cues released from the
bone graft or the implanted biomaterial. Bone induction
is a stepwise cascade of cellular and biochemical events
and has been divided into different phases. The initial
phase involves MSC chemotaxis, followed by a few
rounds of proliferation and differentiation [1-3]. The
importance of osteoinduction for bone healing and
osteointegration of dental implants is that the majority
of newly formed bone depends on the undifferentiated
cells that are induced to become preosteoblasts [4].

During remodeling osteoclasts release a myriad of sig-
naling molecules from the bone matrix. These soluble
signals diffuse and create an osteoinductive microenvir-
onment that promotes the osteoprogenitor cell recruit-
ment into the resorbed lacunae. Under physiological
conditions, osteoprogenitor cell motility relies not only
on a single growth factor but on a chemoattractant gra-
dient formed by multiple biochemical signals. Several
studies have demonstrated that extracellular calcium
(the main component of the mineralized bone), TGF-p,
BMP-2, BMP-4, PDGF, and other growth factors have a
promigratory effect over the MSCs [5-9].

CaSO, is likely the simplest alternative as a synthetic
bone graft material and has been used for more than
100 years [10, 11]. CaSO, has been used in clinical im-
plant dentistry [12], craniofacial surgery [13], correction
of alveolar cleft in children [14], periradicular endodon-
tic surgery [15], and orthopedic surgery [16, 17], produ-
cing effective and consistent results. CaSO, and calcium
phosphate compounds mimic the mineral phase of bone.
They induce a biological response similar to that gener-
ated during bone remodeling, creating a calcium-rich
environment in the area of implantation [18—20]. Several
cellular in-vivo mechanisms have been proposed to ex-
plain the beneficial effects of CaSO, on bone regener-
ation. Walsh et al. [21] suggested that the decreased pH
and the local acidity produced during CaSO, resorption
cause a demineralization of the adjacent bone and re-
lease matrix-bound BMPs. In addition, increased angio-
genesis in the sites treated with CaSO, could account
for the good results reported [11]. Currently, the cellular
and molecular mechanisms involved in the osteogenic
effects produced by CaSO,4 remain poorly understood.

To date, over 20 BMP family members have been iso-
lated and characterized. BMP-2, BMP-4, and BMP-6 are
the most readily detectable BMPs on bone tissue [22].
The BMP/Smad pathway is one of the most prominent
signaling pathways promoting osteogenic differentiation.
However, binding of BMPs also triggers the activation of
Smad-independent pathways including PI3K/AKT or
p38 [23-25]. BMP target genes include a growing
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number of osteoblast determining transcription factors
such as Runx2, Osterix, and DIx3/5 which are essential
for osteoblast differentiation [26, 27].

In our previous study, we presented a critical-size
calvarial bone defect model in mice using an agarose/
gelatin/CaSO, scaffold. We demonstrated that ex-vivo
pretreatment of MSCs with very low concentrations of
BMP-2 (2 nM) and Wnt3a (50 ng/ml) cooperatively
increases bone regeneration in vivo [28]. Notably, an
abundant endogenous cellular invasion was observed
histologically when an agarose/gelatin/CaSO, scaffold
without the addition of cells or growth factors was im-
planted into the bone defects. In the present study we
soaked the gelatin sponges in CaSO, solutions. Soaking
has also been used as a conventional method for loading
BMP-2 [29, 30]. Therefore, the aim of this study was to
determine the MSC migratory response to CaSO, in
vitro and in vivo using a critical-size calvarial bone de-
fect model in mice. In addition, to evaluate the effects of
CaSO, on MSC differentiation and the potential mo-
lecular mechanism involved in such effects.

Methods

Mesenchymal stem cell isolation and culture

For the in-vitro experiments, bone marrow MSCs were
obtained from male mice as described previously [28, 31].
Briefly, MSCs were isolated from BALB/C mice 6—8 weeks
old. The tibia and femur were collected from euthanized
mice and muscle was removed. The methaphyses were
cut and the bone marrow flushed with complete media
and filtered using a 70-um strainer (BD Falcon) before
seeding. The cells were cultured using DMEM supple-
mented with 10% fetal bovine serum (FBS), penicillin/
streptomycin, 1 mM pyruvate, and 2 mM glutamine. Non-
adherent cells were removed during the first days, and
when the attached cells reach 80% confluence they were
trypsinized for 3 minutes at room temperature. The lifted
cells were expanded for a maximum of six to eight pas-
sages and used in subsequent experiments.

Two-dimensional cell culture preparation
Two-dimensional cultures were performed in wells coated
with 0.1% gelatin solution dissolved in PBS (control). A
CaSO, stock solution in DMEM was filtered using a 70-um
strainer. For those conditions containing CaSO,, different
concentrations were mixed with the gelatin solution.
Treated plates were air-dried overnight in the cell culture
hood and stored at room temperature until needed.

Cell migration assays
Wound healing assay
MSCs (5 x 10* cells) were grown to confluence using the
gelatin (control) or gelatin/CaSOg4-coated 24-well plates
(from 3 to 15 mM). Twenty-four hours before starting
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the assay, standard media were replaced with media
containing 1% FBS. The confluent cells were then
“wounded” with a plastic tip and washed to remove de-
tached cells. The wound was allowed to close for
24 hours. To confirm the specificity of calcium on MSC
migration, EDTA was used at the same concentrations
as CaSQO,. The concentrations used for BMP-2 were 0.2,
2, and 10 nM. For PI3K inhibition, LY294002 (10 uM)
and Wortmannin (500 nM) were used. The wound was
photographed with a Leica DM IRB2 microscope linked
to an Olympus DP50 camera. The rate of cell migration
was measured as the percentage of invaded area with re-
spect to the initial wound area [32].

Agarose spot assay

Agarose spot assay was performed following the proto-
cols described previously [33-35]. Low-melting agarose
(Sigma-Aldrich) was diluted into PBS to make a 1%
agarose solution and then autoclaved. To prepare the
agarose spots, 100 pl of melted 1% agarose solution was
added into a 1.5-ml Eppendorf tube containing 100 ul of
PBS or 6 mM CaSQ, solution (to obtain a final concen-
tration of 0.5% and 3 mM respectively). Two separated
1-pl spots, one spot containing CaSO, and one contain-
ing only PBS, were pipetted onto 35-mm dishes. The
dish was cooled for 5 minutes at 4 °C to allow the spot
to solidify. Meanwhile, MSCs were tripsinized and
resuspended in 1% FBS media. After centrifugation
(1500 rpm) the pellet was resuspended and 5 x 10° cells
were pipetted into the plates containing the spots and
incubated overnight. Cells were fixed 24 hours later with
4% paraformaldehyde, analyzed by microscopy, and
photographed. The degree of cells invading the agarose
spot was analyzed by counting the number of cells and
the invaded surface measured as the percentage of
invaded area with respect to the initial area of the spot
using Image] software.

Cell proliferation assays

MSC proliferation was evaluated using 7-AAD and BrdU
labeling (BD, CA, USA), following the manufacturer’s
protocol. Briefly, 5 x 10* cells were seeded and incubated
at 37 °C for 24 hours. Then, BrdU (10 uM) was added to
the medium for 45 minutes. The cells were harvested
and analyzed by flow cytometry.

In-vivo calvarial bone defect model

A total of 35 BALB/c male mice 10 weeks old were anes-
thetized by isoflurane inhalation (Abbott) and an intra-
peritoneal injection of buprenorphine (0.05 mg/kg) was
administered for intraoperative analgesia. The procedure
was performed as described previously [28]. Briefly, after
shaving the incision area a longitudinal incision was
made and the periosteum was elevated to expose the
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cranium. A circular critical-size defect was produced in
the parietal bone using a 5-mm-diameter trephine and a
dental implant motor. Importantly, minimal irrigation
was used to heat-damage the host bone on the edges to
minimize spontaneous healing [36]. The bone disk was
removed carefully and the bone defect was covered with
a randomly selected scaffold according to the experi-
mental group (see Table 1). The skin was sutured and
the animals were monitored daily during recovery. All
animal procedures were performed in accordance with
the protocols approved by the Ethics Committee for
Animal Experimentation of the University of Barcelona
and by the Generalitat of Catalunya.

Cell-free scaffold preparation for the in-vivo experiment
Low-melting agarose (Sigma-Aldrich), gelatin sponges
(Gelita, B. Braun), and biphasic CaSO, were employed
to prepare a cell-free scaffold. Under sterile conditions,
the gelatin sponges were cut into pieces 7 mm x 7 mm
and 5 mm thick, and soaked in serum-free media alone
or containing CaSO, or BMP-2 as presented in Table 1.
One dish (60 mm) containing 3 ml of each solution was
used to soak the prepared sponges and keep them in the
incubator for 24 hours. Before the in-vivo experiment,
3 ml of melted agarose 1% was added to the dish con-
taining both the soaked sponges and the corresponding
solution. The dish was cooled for 5 minutes at 4 °C to
allow solidification of the construct. Each piece contain-
ing the condition of study was trimmed using a scalpel
and implanted carefully into the created bone defect.

Bone regeneration analyses

Seven weeks after the implantation the animals were
euthanized by CO, inhalation, and the heads fixed in 4%
paraformaldehyde for 24 hours and stored in PBS/azide
at 4 °C until scanning. Scanning was performed by a
Skyscan 1076 high resolution (Skyscan, Belgium). The
exposure parameters were 49 kV, 200 mA, 500 ms,
1-mm aluminum filter, and 180° rotation. Data re-
construction was performed using NRecon and three-
dimensional models using CTAn software. For the
histological analysis, the dissected calvariae were
decalcified with Decalcifier II (Leica Biosystems) for
2-3 days. After decalcification, the samples were
dehydrated, embedded in paraffin, and sectioned.

Table 1 Experimental groups used for in-vivo calvarial defects

Group Treatment

1. Control Serum-free media (SFM)
2. Bone morphogenetic protein 2 SFM+2 nM

3. Calcium sulfate SEM + 10 mM

4. Calcium sulfate SFM +20 mM

5. Calcium sulfate SFM +50 mM
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Sections of 6 pm were stained with hematoxylin and
eosin (HE). We quantified the cell number in the
histological sections using Image] software. Immuno-
histochemistry was performed using a primary anti-
body against Osterix (Ab22552) at 1:200 dilution
overnight. The slides were incubated with DAB and
counterstained with hematoxylin.

Quantitative RT-PCR analysis

After 24 hours, MSCs cultured on a coated 12-well plate
were lysed using Trisure (Bioline), following the
manufacturer’s instructions. RNA quantification was
performed by spectrophotometric analysis (Nanodrop
ND 1000; Thermo Scientific). Purified RNA (2 pg) was
reverse-transcribed using a High-Capacity Retrotran-
scription Kit (Applied Biosystems), and 50 ng of cDNA
per reaction was used in each qRT-PCR with two repli-
cates per sample. The gene expression was analyzed
using Tagman probes (Applied Biosystems)—Osterix
(Sp7) (Mm00504574_m1), Alpl (Mm00475834_m1), and
Osteocalcin/Bglap (Mm00649782_gl)—and normalized
to Gapdh (Mm99999915_gl). Mean CT values were
used for 2724“T quantification.

Western blot assay

Cells were washed twice with cold PBS and lysed by adding
75 ul of buffer containing PBS, 100 mM PMSE, 1 mM so-
dium orthovanadate, 10 mM [-glycerophosphate, 1 pg/ml
leupeptin, 1% Triton X-100, 10 mM NaF, and 1 pg/ml pep-
statin, for 1 hour at 4 °C. The lysates (30 pg of protein)
were subjected to SDS-PAGE and transferred to mem-
branes, which were incubated with the following primary
antibodies: pAKT (Ser 473) (Cell Signaling) and «-Tubulin
(T6199) (Sigma). Horseradish peroxidase-conjugated sec-
ondary antibodies were utilized, followed by EZ-ECL
reagent incubation (Biological Industries). A chemolumi-
nescent image was captured by a Fujifilm LAS 3000 device.

Statistical analyses

Data were obtained from at least three independent ex-
periments and presented as mean + SEM. The analyses
were performed using Student’s ¢ test with GraphPad
Prism 5 software. The differences were considered sig-
nificant at p <0.05, p < 0.01, and p < 0.001.

Results

CaSO, induces MSC migration in vitro

In order to evaluate the MSC migration response, the
cells were exposed to different CaSO, concentrations
and allowed to migrate for 24 hours. Using a wound
healing assay we observed a CaSO, concentration-
dependent effect on MSC migration. A significantly
higher response was observed at 3-5 mM concentra-
tions compared to the control (Fig. 1la, b). However,
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there was a gradually decreasing response in those cells
exposed to doses higher than 10 mM. To confirm the
CaSO, influence on MSC migration, an agarose spot
assay was performed. As shown in Fig. 1c, d, a higher
number of migrated cells and percentage of invaded sur-
face was observed in the presence of CaSO4 3 mM com-
pared to the control (PBS). In addition, to test the
specificity of calcium on the migration of MSCs, EDTA
was added. As shown in Fig. 1e, f, the CaSO, effect was
completely abolished when calcium was chelated by
EDTA. We also tested the proliferation of the MSCs cul-
tured for 24 hours. The results showed that control and
CaSOy-treated cells had no significant differences in
their proliferative rate after the BrdU incorporation and
flow cytometry analysis (Additional file 1: Figure S1).
These results demonstrate that in-vitro CaSO, induces a
promigratory effect on MSCs in a concentration-
dependent manner. An optimal range between 3 and
5 mM promotes migration.

CaSO, increases bone regeneration in vivo by recruiting
the host’s osteoprogenitor cells

We implanted cell-free agarose/gelatin scaffolds, with or
without CaSQ,, into the critical-size calvarial bone de-
fects. After 7 weeks, micro-CT morphometric analysis
(BV/TV) showed a lower amount of regenerated bone in
the control group (15.06% +5.15). BMP-2 (2 nM) in-
creased the regeneration ability (23.06% + 2.9). Bone for-
mation was significantly higher (37.48% + 7.02) in those
conditions soaked in 20 mM solution (p <0.05). How-
ever, these positive effects of CaSO, were reduced in the
50 mM CaSOy4-soaked group (24.5% +2.99) (Fig. 2).
Histological analysis from HE preparations showed in-
creased host’s cell migration into the implanted calcium-
containing scaffolds, as shown in Fig. 3a, b. Consistent
with the micro-CT and histological analyses, CaSO,
groups improved substantially the host’s osteoprogenitor
cell recruitment (Osx positive) (Fig. 3c). Therefore, these
results suggest that bone regeneration of the calvarial de-
fect was correlated to the ability of CaSO, to recruit the
host’s osteoprogenitor cells into the implanted scaffolds.

CaS0O, attenuates BMP-2-mediated MSC migration and
AKT activation

During bone resorption, ions, cytokines, and growth fac-
tors, including BMPs, are released from the bone matrix,
promoting osteoprogenitor cell recruitment [37, 38]. We
treated MSCs with BMP-2 concentrations (0.2, 2, and
10 nM) that have been shown to induce Osx expression
and osteoblast commitment [26, 27] A maximal migration
response was observed in those MSCs exposed to 2 nM
(Additional file 2: Figure S2A). Interestingly, higher
BMP-2 concentrations (10 nM) decreased such an
effect on migration. Our results suggest that higher
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Fig. 1 CaSO, promotes MSC migration in a concentration-dependent manner. a, b Wound healing or scratch assay used to measure MSC migration
response to different CaSO, concentrations (3—15 mM) after 24 hours. Results shown as average of four different experiments with six replicates for
each condition. A representative image displayed for each condition. ¢, d Agarose spot assay used to confirm the effect of CaSO,4 (3 mM) on MSC
migration compared to control (PBS). Results presented as percentage of invaded area and number of migrated cells. Six replicates were performed.
e, f CasO, (3-5 mM) migration effect was completely abolished when calcium was chelated by the addition of equal EDTA concentrations. Data
presented as mean + SEM. Differences considered significant at *p < 0.05, **p < 0.01, and ***p < 0.001. EDTA ethylenediaminetetraacetic acid
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Fig. 2 Bone regeneration quantification of critical-size calvarial bone defects by micro-CT analysis. a Regeneration of critical-size calvarial bone
defects (5 mm diameter) quantified after 7 weeks of cell-free scaffold implantation. Representative coronal and sagittal images of the control
group (soaked in serum-free media), 2 nM BMP-2, CaSO, (CS.) 10 mM, CS. 20 mM, and CS. 50 mM. b Quantitative analysis of new bone formation
by bone volume/tissue volume (BV/TV). Quantitative data presented as mean + SEM. Differences considered significant at *p < 0.05. BMP bone
morphogenetic protein, S. F. serum free




Aquino-Martinez et al. Stem Cell Research & Therapy (2017) 8:265

Page 6 of 10

SOAKED
SERUM FREE MEDIA

SOAKED
2nM BMP-2

o

6000 | T I ]

4000+

*

|_I

- iy

© & & & &
o eer oo (e ety o
N eV LT o

2000+

CELL NUMBER

SOAKED

Fig. 3 CaSO, increases bone regeneration in vivo by recruiting the host's cells into the bone defect. a HE staining shows host's cells recruited
into the cell-free implanted scaffold. Representative images of the control group (soaked in serum-free media), 2 nM BMP-2, CaSO, (CS.) 10 mM,
CS. 20 mM, and CS. 50 mM taken from the center of the defect. 10x, scale bar =400 um. b Recruited cells into the different scaffolds quantified
as described in Methods. ¢ Osteoprogenitor cells expressing Osterix (OSX) identified in a representative implanted control and calcium-containing
scaffold by immunohistochemistry. Differences considered significant at *p < 0.05, **p < 0.01. BMP bone morphogenetic protein

SOAKED
C.S. 20 mM

SOAKED
C.S. 50 mMm

T

CONTROL

CaS04

osteoblastic commitment (assessed by Osterix expression)
could correlate with a decrease in the ability of MSCs to
migrate (Additional file 2: Figure S2B). Therefore, we also
assessed the CaSO, effects on BMP-2-induced migration
activity. MSCs were treated with CaSO, 3 mM and/or
BMP-2 2 nM for 24 hours. Consistent with our results,
CaSO, and BMP-2 alone promoted a significantly higher
migratory effect compared to untreated cells. The MSC
migration response to CaSO, or BMP-2 was closely simi-
lar when they acted independently. However, when both
signals were added together a lower migration was ob-
served (Fig. 4a, b).

To determine the potential molecular mechanism in-
volved in the ability of CaSO, and BMP-2 to induce mi-
gration, we evaluated the phosphorylation of AKT as a
target downstream of PI3K. As shown in Fig. 4d, only
BMP-2 increased the activation of AKT. By contrast,
when CaSO, is combined with BMP-2 a consistent
attenuation in the phosphorylation of AKT is observed
at 24 hours. In addition, we assessed the effects of two
different PI3K inhibitors, L294002 and Wortmannin, on
CaSOy-induced migration. As shown in Fig. 4c, both
inhibitors abrogate the induced migration of MSCs.
Interestingly, there was a statistically higher inhibitory
effect in those conditions treated with Wortmannin that
in those exposed to LY2940002. Taken together, CaSO,
and BMP-2 induce MSC migration by distinct mecha-
nisms and the former could attenuate the ability of the
latter to increase migration.

CaS0, effects on osteogenic gene expression

Enhanced osteogenic gene expression and osteoblast
differentiation in MSCs cultured on calcium-based
biomaterials or in the presence of additional calcium
concentrations in the culture media have been reported
[39]. We determined the effects of different CaSO,
concentrations on MSC differentiation after 1, 4, and
10 days. As shown in Fig. 5, downregulation on day 1
was followed by a gradual increment of Osterix, Alpl,
and Osteocalcin mRNA expression from day 4 to day 10.
These results suggest that CaSO, produces a dual effect
on MSC differentiation into osteoblasts. Initially (1-4
days), there is a transiently attenuating effect on differenti-
ation followed by a progressive upregulation of osteogenic
genes, such as Osterix, Alpl, or Osteocalcin.

Discussion

Following implantation of demineralized bone matrix
(DBM), MSCs undergo directed migration in response to
matrix chemoattractants [40]. Indeed, the induction of
bone formation requires three key components: an
osteoinductive soluble signal, an insoluble substratum,
and responding host’s cells [41, 42]. We hypothesized that
CaSO, could act as a promigratory signal and would
induce the recruitment of such endogenous cells. We
checked this hypothesis using a gelatin sponge as a sub-
stratum to provide initial attachment to the osteoprogeni-
tor cells and agarose to both provide a sustained Ca**
release and serve as a binding agent. Our findings strongly
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suggest that CaSOy has the ability to recruit osteoprogeni-
tor cells in vitro and in vivo.

Our results showed that there is an optimal range of
CaSO, concentration to promote MSC migration. In our
model this range is between 3 and 5 mM in vitro, whereas
in vivo a threshold for an osteoinductive effect was deter-
mined in those scaffolds soaked in a solution of CaSO,
20 mM. Yamaguchi et al. [5] found that exposure of
MC3T3-E1 cells to high CaCl, (up to 4.8 mM) in vitro
resulted in dose-dependent chemotaxis stimulation. In

addition, we also observed that the addition of higher
CaSO, concentrations disturbed MSC migration in vitro
and bone regeneration in vivo according to the micro-CT
and histological analysis. It has been shown that extra-
cellular fluid at sites of injury, infection, or inflammation
contains high concentrations of calcium [43]. Interestingly,
rapid resorption of CaSO, results in a Ca**-rich fluid that
could modulate inflammation and apoptosis [44, 45].
Furthermore, we evaluated the effect of CaSO, on MSC
differentiation. Osteoblast differentiation is regulated by
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the sequential expression of several osteogenic marker
genes [46, 47]. In this study, CaSO, lowered the expres-
sion of Osterix at 24 hours and Alpl or Osteocalcin up to
4 days but increased all of them after 10 days in culture.
In agreement with our results, Lazary et al. [48] have
shown that expression of Osteocalcin (Bglap), Bone
Sialoprotein (Ibsp), and Collal was decreased when
MC3T3-E1 cells were cultured on CaSO, discs or with
medium supplemented with CaCl, 25 mM. The Smad
pathway transduces signals from BMP receptors and leads
to transcriptional induction of key osteogenic transcrip-
tion factors such as Runx2 and Osterix. It has been shown
that other growth factors, such as TGF-B, HGF, EGF,
FGF, or IGF, also induce a chemotactic response on
MSCs. However, these growth factors individually also
induce an antagonistic effect on BMP-induced osteo-
blast differentiation by inhibiting the nuclear accumu-
lation of Smads [49-51].

In addition, it has been reported that genes down-
stream of G-protein coupled receptor (GPCR) signaling
pathways may be the earliest response to calcium-based
ceramics [52]. Indeed, calcium sensing receptor (CaSR),
a receptor belonging to the GPCR family, modulates the
chemotactic response of MSCs in response to extracellu-
lar calcium [5, 6, 53]. It has been reported that CaSO,
induces a significant increment in Smad3 and Smad6
expression [48]. Smad3 and Smad6 have an inhibitory ef-
fect on BMP signaling during osteoblast differentiation
by targeting the BMP-responsive Smadl/5/8 complex
[49, 54]. It has been demonstrated that high extracellular
calcium decreased the levels of phosphorylated SMADI,
ERK 1/2, and p38 and that Ca®>* could bind BMP-2
extracellularly [55, 56]. In contrast, low concentrations of
extracellular calcium (0.18 mM) enhanced BMP-2-
induced osteogenic differentiation [55]. Interestingly, Sr**
produces a similar inhibitory effect on BMP-2 osteogenic
capacity via the canonical Smad pathway [57]. Altogether,
these results suggest that CaSO, transiently attenuates
BMP-2 signaling, antagonizing the canonical Smadl/5/8,
with subsequent Osterix downregulation.

In our study we observed a differential activation of
AKT levels by CaSO, and BMP-2. A lower AKT phos-
phorylation was observed in CaSO,-treated conditions.
Moreover, LY294004 and Wortmannin treatment abol-
ished the migration induced by CaSO,, supporting the
evidence that Ca**-induced migration could be mediated
by AKT. In agreement with our results, it has been re-
ported that extracellular calcium produces early AKT ac-
tivation with maximal effect between 5 and 60 minutes
[58-60]. Class I PI3Ks are divided into class IA (PI3Ka,
PI3Kp, and PI3KS) and class IB (PI3Ky). It has been
demonstrated that BMP-2 induces AKT phosphorylation
through the specific activation of the PI3Ka isoform
[32]. In contrast, PI3Ky is almost exclusively activated
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by GPCRs [61, 62]. Several studies have reported that
GPCR activation inhibits PI3K signaling [63]. Of note,
class IA isoform p110a (activated by BMP-2) might be
inhibited by the GTP-bound GPy subunit which is
downstream of GPCRs [63-65]. Altogether, our results
suggest a novel mechanism by which CaSO, modulates
MSC migration by attenuating BMP-2 activation of AKT.
Migration of undifferentiated MSCs dramatically de-
creases during further steps of osteogenic differentiation
[66] and also leads to lower response to chemotactic fac-
tors [9]. Therefore, an initial modulation of osteoblast dif-
ferentiation could promote progenitor cell recruitment.
There are at least two aspects in our study relevant to un-
derstanding some of the biological mechanisms whereby
Ca®* promotes bone regeneration. First, CaSO, promotes
MSC migration in a concentration-dependent fashion and
modulates BMP-2-induced migration. Second, CaSO, ex-
erts a biphasic effect on MSC differentiation. An initial
transient attenuation of BMP-2 promoted differentiation
which is followed by a progressive increment in the
expression of osteoblastic genes, such as Osterix, Alpl, or
Osteocalcin. Therefore, Ca®>* may act on undifferentiated
MSCs promoting migration by modulating PI3K/AKT ac-
tivation and simultaneously delaying a mature osteoblast
phenotype which is correlated with decreased motility.

Conclusion

Calcium sulfate (CaSOy,), as source of Ca>*, promotes in-
vitro MSC migration and bone regeneration in vivo by
recruiting the host’s osteoprogenitors into the implanted
cell-free scaffold. This response might be mediated by
both a transient attenuation of BMP-induced Osterix
expression and increasing MSC recruitment. To our
knowledge, this is one of the first studies covering the
relationship between MSC migration and differentiation
induced by CaSO, Our results could be relevant to
understand the mechanisms of osteoinduction and imple-
ment potential clinical applications of CaSO, to regener-
ate craniofacial bone defects.

Additional files

Additional file 1: Figure S1. Effects of CaSO4 on proliferation of BM-MSCs.
(TIF 5165 kb)

Additional file 2: Figure S2. Dose-response effects of CaSO4 on migration
and Osx expression. (TIF 3900 kb)
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