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DNA methylation and expression profiles 
of placenta and umbilical cord blood reveal 
the characteristics of gestational diabetes 
mellitus patients and offspring
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Abstract 

Background:  Gestational diabetes mellitus (GDM) is a common pregnancy-specific disease and is growing at an 
alarming rate worldwide, which can negatively affect the health of pregnant women and fetuses. However, most 
studies are limited to one tissue, placenta or umbilical cord blood, usually with one omics assay. It is thus difficult to 
systematically reveal the molecular mechanism of GDM and the key influencing factors on pregnant women and 
offspring.

Results:  We recruited a group of 21 pregnant women with GDM and 20 controls without GDM. For each pregnant 
woman, reduced representation bisulfite sequencing and RNA-seq were performed using the placenta and paired 
neonatal umbilical cord blood specimens. Differentially methylated regions (DMRs) and differentially expressed genes 
(DEGs) were identified with body mass index as a covariate. Through the comparison of GDM and control samples, 
2779 and 141 DMRs, 1442 and 488 DEGs were identified from placenta and umbilical cord blood, respectively. Func-
tional enrichment analysis showed that the placenta methylation and expression profiles of GDM women mirrored 
the molecular characteristics of “type II diabetes” and “insulin resistance.” Methylation-altered genes in umbilical cord 
blood were associated with pathways “type II diabetes” and “cholesterol metabolism.” Remarkably, both DMRs and 
DEGs illustrated significant overlaps among placenta and umbilical cord blood samples. The overlapping DMRs were 
associated with “cholesterol metabolism.” The top-ranking pathways enriched in the shared DEGs include “growth 
hormone synthesis, secretion and action” and “type II diabetes mellitus.”

Conclusions:  Our research demonstrated the epigenetic and transcriptomic alternations of GDM women and 
offspring. Our findings emphasized the importance of epigenetic modifications in the communication between 
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Introduction
Gestational diabetes mellitus (GDM) is a common 
pregnancy-specific disease, characterized by glucose 
intolerance. GDM usually occurs in the middle or late 
pregnancy [1–3]. Increased insulin resistance and 
impaired insulin secretion are the main causes of GDM 
[4]. Due to different lifestyles, ethnicities, diagnostic 
methods, the median (interquartile range) prevalence (%) 
of GDM varies significantly from the lowest in Europe 
(6.1, 1.8–31) to the highest in the Middle East and North 
Africa (15.2, 8.8–20) during 2005–2018 [5]. Independ-
ent studies show that factors affecting the occurrence of 
GDM include maternal weight, gestational weight gain, 
diet and exercise, ethnicity, maternal age, and family his-
tory of diabetes [6–11]. Women with GDM are prone to 
pregnancy-related complications or perinatal adverse 
events, such as hypertension, preeclampsia, preterm 
birth, shoulder dystocia, perinatal morbidity, and death 
[12]. Fetuses exposed to GDM have an increased risk of 
macrosomia, fetal distress, congenital malformations, 
and jaundice [13]. Meanwhile, the offspring of GDM 
women has an increased risk of metabolic diseases and 
cardiovascular diseases, such as obesity and type II dia-
betes. GDM is also related to immune function loss and 
cognitive impairment in the offspring [14]. The molecu-
lar mechanism of insulin resistance and insulin secre-
tion defect in pregnant women is still under intensive 
investigation.

From a fertilized egg to the complete fetus, human 
genome remains relatively stable while the epigenome 
undergoes regulated reprogramming including dramatic 
DNA methylation changes and systemic histone modi-
fication alternations [15, 16]. Moreover, the epigenome 
of fetus is sensitive to the pregnant women’s intrauterine 
environment, especially high-glucose levels, which even-
tually leads to phenotypic changes [17]. How the expo-
sure of fetal to maternal GDM contributes to increasing 
offspring risk remains to be explored. Results from ani-
mal studies suggest that the exposure to intrauterine 
high-glucose environment may cause disorders of hypo-
thalamic neuropeptide neurons, impair blood glucose 
homeostasis and lead to abnormal renal development 
and islet β-cell dysfunction [18, 19]. Epidemiological 
studies have also confirmed that exposure of intrauter-
ine high-glucose environment may cause the transfer of 
lipid matrix molecules to the fetus, resulting in disor-
ders associated with adipocyte dysfunction and fatty acid 

accumulation [20]. Using bisulfite pyrosequencing assays, 
Houde and colleagues identified three candidate genes, 
LRP1B, BRD2 and CACNA1D, whose DNA methylation 
alterations in placenta and umbilical cord blood were 
related to energy metabolism and maternal glucose lev-
els [21]. Through methylated DNA immunoprecipitation 
(MeDIP) assay and next-generation sequencing (NGS), 
Rong and colleagues revealed genome-wide changes in 
the placenta of GDM patients and transcriptional varia-
tions of four GDM-related genes [22]. However, the genes 
and pathways involved in GDM have not been system-
atically characterized and thus remain elusive. Therefore, 
genome-scale DNA methylation analysis and transcrip-
tome studying of the placenta and paired umbilical cord 
blood from women with or without GDM can potentially 
uncover the underlying molecular mechanism.

Reduced representation bisulfite sequencing (RRBS) is 
an accurate and cost-effective method that can provide 
genome-wide mapping 5-methylcytosines, particularly 
enriching for coverage in promoter and enhancer regions 
that are crucial for transcriptional regulation [23, 24]. 
RNA-seq allows to profile thousands of gene expressions 
precisely and simultaneously [25]. Here, we employed the 
RRBS and RNA-seq methods to systematically analyze 
the genome-wide methylation and expression profiles of 
placenta and paired umbilical cord blood from a group of 
patients with GDM and control pregnant women without 
GDM. The aim of this study is to reveal critical epigenetic 
changes associated with GDM in pregnant women and to 
identify differentially expressed genes (DEGs) which may 
potentially contribute to GDM.

Results
Clinical characteristics of pregnant women and newborns
Forty-one pregnant women were recruited into this 
study, including 21 pregnant women with GDM and 20 
without GDM as control. Those pregnant women deliv-
ered 41 babies, including 4 babies with macrosomia, 2 of 
which were from the GDM group. Anthropometric and 
metabolic parameters of pregnant women and newborns 
are shown in Table 1. We observed that both the mater-
nal weight and body mass index (BMI) were significantly 
higher in the GDM group compared with those in the 
control group (Wilcoxon rank-sum test, P value < 0.05), 
while other characteristics, such as maternal age, ges-
tational weight gain, maternal height, gestational 
weeks, and fetal birth weight, did not show significant 

pregnant women with GDM and offspring, and provided a reference for the prevention, control, treatment, and inter-
vention of perinatal deleterious events of GDM and neonatal complications.
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differences between two groups. Given the significant 
differences of maternal BMI between GDM and control 
groups, BMI will be used as a covariate in the subsequent 
search for differentially methylated regions (DMRs) and 
DEGs.

Placenta shows genome‑wide methylation alterations 
associated with type II diabetes mellitus in GDM patients
DMRs are genomic regions with differential methylation 
status across multiple CpG sites, which are considered to 
play an important role in gene imprinting and regulating 
the expression of nearby genes that were called differ-
entially methylated genes (DMGs). In placenta samples, 
after excluding the effect of maternal BMI, a total of 2779 
DMRs were identified, including 1446 hyper-methylated 
DMRs (hyper-DMRs) associated with 1293 hyper-meth-
ylated DMGs (hyper-DMGs) and 1333 hypo-methylated 
DMRs (hypo-DMRs) associated with 1197 hypo-meth-
ylated DMGs (hypo-DMGs) (Fig.  1A, Additional file  2: 
Table  S2). Among them, 209 hyper-DMRs and 189 
hypo-DMRs were located in promoter regions, respec-
tively. The mean methylation of hyper-DMR and hypo-
DMR in GDM and control groups is shown (Fig. 1B). As 
expected, compared with the control group, the distri-
bution of mean methylation levels of all hyper-DMRs or 
hypo-DMRs in GDM group showed significant difference 
(Wilcoxon rank-sum test, P value < 0.05). Additionally, 
hyper-DMRs and hypo-DMRs widely spread across dif-
ferent chromosomes (Additional file  1: Fig. S1C), indi-
cating that the placenta has extensive and significant 
methylation changes in a genome-wide manner.

To further characterize DMRs identified, we per-
formed functional enrichment analysis using Gene 
Ontology (GO) terms and identified 401 and 288 signifi-
cantly enriched terms for hyper-DMGs and hypo-DMGs 
(FDR < 0.05), respectively (Additional file 2: Table S3, S5). 
For hyper-DMGs, the enriched pathways mainly included 
neural and developmental pathways, endocrine-, and 
immune-related pathways (Additional file  1: Fig. S1D). 
For hypo-DMGs, the enriched GO terms were similar to 
that in hyper-DMRs, but also included other ones, such 
as “cognition,” “long-term memory,” and epigenetic mod-
ification-related pathways (Additional file  1: Fig. S1E). 
Meanwhile, enrichment analysis with Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database identified 
31 and 3 pathways for hyper-DMGs and hypo-DMGs, 
respectively (Fig.  1C, D, Additional file  2: Table  S4, S6, 
FDR < 0.05). Of the pathways associated with hyper-
DMGs, “oxytocin signaling” (29 genes, FDR = 7.14e-05), 
“calcium signaling” (28 genes, FDR = 5.47e-06), and 
“insulin signaling” (19 genes, FDR = 8.63e-03) ranked 
in the top of the list (Fig. 1C). Interestingly, the “type II 
diabetes mellitus” pathway was significantly enriched in 
hypo-DMGs (FDR = 0.033), suggesting that GDM may 
have the epigenetic characteristics of type II diabetes 
mellitus (Fig. 1D).

Methylation contributes to expression change of genes 
associated with insulin signaling pathway
To further explore the pathogenesis of GDM, we next 
performed RNA-seq analysis using placenta samples 
from the GDM and control groups. After adjustments 
for multiple testing, we obtain 113 up-regulated and 9 

Table 1  Anthropometric and metabolic parameters of pregnant women and newborns

Difference analysis was conducted by Wilcoxon rank-sum test, * P value < 0.05, ** P value < 0.01, n.s. P value >  = 0.05

BMI Body mass index, OGTT​ Oral glucose tolerance test, HDL-c High-density lipoprotein cholesterol, LDL-c Low-density lipoprotein cholesterol

Parameters GDM (n = 21) Control (n = 20) P value Difference

Maternal age (years) 30.95 ± 3.8 30.05 ± 3.17 0.64 n.s

Maternal birth weight (kg) 73.56 ± 10.71 66.86 ± 6.08 0.029 *

Gestational weight gain (kg) 12.22 ± 3.01 14.25 ± 3.85 0.073 n.s

Maternal height (cm) 162.33 ± 5.36 161.35 ± 5.26 0.74 n.s

BMI (kg/m2) 22.61 ± 2.82 20.73 ± 1.92 0.021 *

Gestational weeks (week) 38.71 ± 1.06 39.15 ± 1.5 0.15 n.s

1 h post OGTT (mmol/L) 9.17 ± 2.11 7.33 ± 1.09 7.6e-3 **

2 h post OGTT (mmol/L) 7.54 ± 1.26 6.21 ± 1.07 3.9e-3 **

Fasting cholesterol (mmol/L) 5.83 ± 0.98 5.68 ± 1.2 0.62 n.s

Fasting HDL-c (mmol/L) 2.01 ± 0.44 1.93 ± 0.37 0.60 n.s

Fasting LDL-c (mmol/L) 2.76 ± 0.66 2.78 ± 0.91 0.94 n.s

24-week glycemia (mmol/L) 7.54 ± 1.26 6.21 ± 1.07 3.96e-3 **

Fetal birth weight (g) 3371.9 ± 507.8 3269 ± 433.89 0.566 n.s

Fetal gender (male/female) 11/10 12/8 / /
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down-regulated genes (FDR < 0.05). Given this number 
of DEGs is so small, it is challenging to interpret these 
genes in terms of biological processes and signaling path-
ways. However, this is not totally uncommon and has 
been observed in several previous type II diabetes mel-
litus-related studies [26, 27]. For this reason, research-
ers have developed the Gene Set Enrichment Analysis 
(GSEA) method, which was designed to detect modest 
but coordinate changes in the expression of groups of 
functionally related genes [28]. This also suggests that 
top-ranking genes are still good candidates for subse-
quent analysis, even though individual one of which is 
not statistically significant. For this reason, we used a P 
value-based threshold (|Fold changes|> 2, P value < 0.05) 
to select DEGs. With this threshold, 1001 genes were up-
regulated, and 441 genes were down-regulated (Fig. 2A, 
Additional file  2: Table  S7, S8). The up-regulated genes 

were annotated to multiple endocrine and metabolic-
related pathways, including “endocrine resistance,” “cor-
tisol synthesis, and secretion,” “dilated cardiomyopathy,” 
and “insulin secretion” (Fig. 2B, Additional file 2: Table S9 
and S10). For down-regulated genes, 341 and 32 terms 
were enriched in GO and KEGG functional enrichment 
analysis, respectively (Additional file  2: Table  S11 and 
S12). Examples of enriched KEGG terms include “antigen 
processing and presentation” (FDR = 8.89e-12), and “type 
I diabetes mellitus” (FDR = 2.81e-10) (Additional file  1: 
Fig. S2A). GO enrichment analysis showed that pathways 
related to immune regulation, cell proliferation, and gly-
colipid metabolism were most enriched (Additional file 1: 
Fig. S2B).

We next conducted GSEA using expression profile 
of placenta to detect modest but coordinate changes in 
the expression of groups of functionally related genes. 

Fig. 1  Placenta shows genome-wide methylation alteration associated with glucose metabolism in GDM patients. A Genomic annotation of DMRs 
in placenta. Blue bar represents hyper-DMRs and red bar represents hypo-DMRs. B Differences of DMRs mean methylation levels between GDM and 
control group. Yellow box represents GDM samples and green box represents control samples. *** P value < 0.001, Wilcoxon rank-sum test. C KEGG 
pathway enrichment analysis of hyper-DMGs in placenta. D KEGG pathway enrichment analysis of hypo-DMGs in placenta
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Fig. 2  Methylation contributes to expression change of genes associated with insulin signaling pathway. A Volcano plot of placenta expression 
profile. B KEGG pathway enrichment analysis of up-regulated genes in placenta. The numbers in the brackets of the ordinate label represent 
the number of genes involved. C GSEA analysis of Insulin secretion pathway in placenta expression profile. D The Venn Diagram between DMGs 
and DEGs in placenta, Fisher’s Exact Test. E KEGG pathway enrichment analysis result of shared genes between DMGs and DEGs in placenta, 
the numbers in the brackets of the ordinate label represent the number of genes involved. F Correlation between gene methylation and gene 
expression in placenta, title of each panel shows the gene name and genomic location. Significance was tested by Spearman’s rank correlation test
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Of note, 28/40 and 31/32 of KEGG positive and nega-
tive enriched pathways were validated by GSEA results, 
respectively (FDR < 0.25), which show that DGE-based 
results are largely consistent with that from GSEA in the 
pathway-level (Additional file  2: Table  S13, S14). Inter-
estingly, we discovered two significant insulin-related 
pathways, “insulin secretion” (FDR = 0.0898, Fig.  2C) 
and “insulin resistance” (FDR = 0.111, Additional file  1: 
Fig. S2D). Other positively enriched pathways include 
the “notch signaling pathway,” “autophagy,” “growth hor-
mone synthesis, secretion and action,” “prolactin signal-
ing pathway,” and “aldosterone synthesis and secretion 
pathways” (Table  2). Most notably, pathway “type I dia-
betes mellitus” ranked first in the negative enriched 
pathways (FDR < 0.001, Additional file 1: Fig. S2E). Other 
negatively enriched pathways, such as “one carbon pool 
by folate” (FDR = 3.65e-3), “primary bile acid biosynthe-
sis” (FDR = 6.96e-4), and “folate biosynthesis pathway” 
(FDR = 0.012), are listed in Table 3.

Next, to investigate whether methylation will affect 
the expression of genes that may attribute to GDM, we 
combined methylation data and transcriptome data for 
an integrated analysis. The analysis indicated that 155 
genes showed both methylation changes and expres-
sion alternations between the GDM and the control 
group (P value < 2.2e-16, odds ratio = 4.69, Fisher’s Exact 
Test, Fig.  2D). Though not statistically significant after 

Table 2  Positive enriched pathways of GSEA result for placenta 
transcriptome (top20)

Size represents the number of genes enriched in the corresponding pathway

NES Normalized enrichment score, FDR False discovery rate

Pathway Size NES P value FDR

Cortisol synthesis and secretion 64 0.50  < 0.001 0.16

Adherens junction 71 0.49  < 0.001 0.097

Notch signaling pathway 59 0.48  < 0.001 0.083

Autophagy 32 0.47  < 0.001 0.085

Growth hormone synthesis, secretion and 
action

118 0.46  < 0.001 0.087

ERBB signaling pathway 85 0.46  < 0.001 0.075

Snare interactions in vesicular transport 33 0.45 5.52e-3 0.075

Lysine degradation 63 0.43  < 0.001 0.10

Ovarian steroidogenesis 50 0.43  < 0.001 0.093

Insulin secretion 84 0.43  < 0.001 0.089

Alpha-linolenic acid metabolism 24 0.42 0.0175 0.086

GNRH signaling pathway 92 0.41  < 0.001 0.10

Prolactin signaling pathway 69 0.41  < 0.001 0.094

Inositol phosphate metabolism 73 0.41  < 0.001 0.091

Chronic myeloid leukemia 76 0.41  < 0.001 0.087

Aldosterone synthesis and secretion 97 0.41  < 0.001 0.082

Phosphatidylinositol signaling system 96 0.40  < 0.001 0.092

Hedgehog signaling pathway 56 0.40  < 0.001 0.087

Endometrial cancer 58 0.40  < 0.001 0.089

Acute myeloid leukemia 67 0.40  < 0.001 0.086

Table 3  Negative enriched pathways of GSEA result for placenta transcriptome (top20)

Size represents the number of genes enriched in the corresponding pathway

NES Normalized enrichment score

Pathway Size NES P value FDR

Type I diabetes mellitus 40  − 0.78  < 0.001  < 0.001

Allograft rejection 34  − 0.76  < 0.001  < 0.001

Ribosome 135  − 0.74  < 0.001  < 0.001

Graft-versus-host disease 36  − 0.74  < 0.001  < 0.001

Intestinal immune network for IGA production 44  − 0.72  < 0.001  < 0.001

Autoimmune thyroid disease 41  − 0.70  < 0.001 1.14e-5

Staphylococcus aureus infection 87  − 0.69  < 0.001 9.77e-5

Asthma 28  − 0.69  < 0.001 8.55e-5

Leishmaniasis 74  − 0.66  < 0.001 4.64e-4

Primary bile acid biosynthesis 17  − 0.65 2.63e-3 6.96e-5

Systemic lupus erythematosus 127  − 0.64  < 0.001 1.00e-3

Inflammatory bowel disease 60  − 0.63  < 0.001 1.09e-3

Rheumatoid arthritis 87  − 0.63  < 0.001 1.01e-3

Thiamine metabolism 15  − 0.6 2.67e-3 1.38e-3

Coronavirus disease 220  − 0.62  < 0.001 1.84e-3

Viral myocarditis 57  − 0.61  < 0.001 1.81e-3

Complement and coagulation cascades 83  − 0.60  < 0.001 2.15e-3

Antigen processing and presentation 69  − 0.60  < 0.001 2.11e-3

Pertussis 76  − 0.59  < 0.001 2.99e-3

One carbon pool by folate 20  − 0.58 2.55e-3 3.65e-3
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adjustment for multiple comparisons, the top-ranking 
pathways enriched in the overlapping genes include “Glu-
tamatergic synapse” (ADCY5/ADCY7/GRIK4/PLA2G4A/
PLCB1/SHANK2/SHANK3/SLC1A6, P value = 5.32e-
06), “cortisol synthesis and secretion” (ADCY5/ADCY7/
LDLR/PLCB1, P value = 2.29e-03), “insulin secretion” 
(ADCY5/ADCY7/PLCB1/RYR2, P value = 6.28e-3), “insu-
lin signaling pathway” (HK2/PRKCZ/SH2B2/SHC2/
SOCS3, P value = 6.34e-3), “type II diabetes” (HK2/
PRKCZ/SOCS3, P value = 7.10e-3) and “bile secretion” 
(ADCY5/ADCY7/LDLR, P value = 0.040) (Fig.  2E). We 
then selected 10 genes of interest and showed their mean 
methylation difference, expression change, and associ-
ated pathways in Table  4. Besides, from the 155 over-
lapped gene, we screened out four gene, SFN, PLCB1, 
TFAP2A and DAB2IP, whose gene expression level and 
gene mean methylation level show significant correlation 
and functional for glycolipid metabolism (Fig. 2F). Mean-
while, using the GSEA method, placenta CpG methyla-
tion generally had a negative regulatory effect on gene 
expression (P value < 0.001, NES = -0.255, Additional 
file 1: Fig. S2F). In summary, we found that some genes 
involved in glycolipid metabolism, insulin secretion, 

and insulin resistance had been epigenetically modified, 
which might contribute directly or indirectly to GDM.

Alterations for umbilical cord blood were related to insulin 
secretion and resistance
To explore whether the exposure to increased glu-
cose level could cause epigenetic changes in fetus, we 
next conducted RRBS and RNA-seq analyses using the 
umbilical cord blood paired with placenta described 
above. Due to the existence of placental barrier, the 
changes of fetal epigenome were subtler comparing 
with that in placenta. Genome-wide methylation pro-
filing by RRBS identified far less numbers of DMRs in 
contrast to that from the paired placenta. Specifically, 
after excluding the effect of maternal BMI, we detected 
75 hyper-DMRs and 66 hypo-DMRs which annotated 
to 74 hyper-DMGs and 65 hypo-DMGs, respectively 
(Fig.  3A, B; Additional file  1: Fig. S3A). Next, KEGG 
pathway enrichment analysis was conducted to iden-
tify pathways of differentially methylated genes. Though 
not statistically significant after adjustment for multiple 
comparisons, some enlightening pathways were identi-
fied in hypo-DMRs (Fig.  3B, red bar), including “cAMP 

Table 4  Annotation of overlapping genes of placenta DMGs and DEGs

delta DNA methylation difference, log2FC log2(Fold Change), Pathway KEGG pathway annotation

Gene Delta log2FC Pathway

ADCY5 0.5 1.93 Ovarian steroidogenesis

Cortisol synthesis and secretion

Insulin secretion

Bile secretion

B3GALT5 0.12  − 1.64 Glycosphingolipid biosynthesis—globo and isoglobo series

GADD45A  − 0.25  − 1.5 p53 signaling pathway

Chronic myeloid leukemia

HK2  − 0.67  − 2.92 Insulin signaling pathway

Type II diabetes mellitus

Fructose and mannose metabolism

JAG2 0.25 1.81 Endocrine resistance

LDLR  − 0.63 1.31 Cortisol synthesis and secretion

Aldosterone synthesis and secretion

Bile secretion

PLA2G4A 0.4  − 1.25 Glutamatergic synapse

Ovarian steroidogenesis

Oxytocin signaling pathway

RYR2  − 0.12 1.86 Insulin secretion

Oxytocin signaling pathway

Dilated cardiomyopathy]

SH2B2 0.49 1.43 Insulin signaling pathway

SOCS3  − 0.5  − 1.04 Growth hormone synthesis, secretion and action

Insulin signaling pathway

Type II diabetes mellitus
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signaling pathway” (ATP2B3/DRD5), “type II diabetes 
mellitus” (PRKCD), “cholesterol metabolism” (OSBPL5), 
“aldosterone synthesis and secretion” (ATP2B3), “insu-
lin resistance” (PRKCD). On the other hand, pathways 
“endocrine resistance” (JAG2/RB1), “PI3K-Akt signaling 
pathway” (BCL2L11/LPAR2/TCL1A), and “bile secre-
tion” (SLC10A2) were found in hyper-methylated genes 
(Fig. 3B, blue bar).

RNA-seq analyses of umbilical cord blood samples 
revealed 271 up-regulated genes and 217 down-regu-
lated genes (|Fold change|> 2, P value < 0.05, Additional 
file 2: Table S15, S16) by comparing GDM patients to the 

controls (Fig.  3C). KEGG enrichment analysis showed 
that the up- and down-regulated genes were associated 
with 21 and 6 pathways, respectively (P value < 0.05, 
Fig.  3D). Interestingly, two pathways, “human papillo-
mavirus infection” and “ovarian steroidogenesis” were 
overlapped for up-regulated genes between placenta and 
umbilical cord blood, showing that there is a certain rela-
tionship of expression profiles between pregnant women 
and offspring.

Due to minor changes in gene expression levels, GSEA 
was then performed as a cutoff-free method for path-
way enrichment analysis (Additional file  2: Table  S17, 

Fig. 3  Alterations for umbilical cord blood were related to insulin secretion and resistance. A Genomic annotation of DMRs in umbilical cord blood. 
Blue bar represents hyper-DMRs and red bar represents hypo-DMRs. B KEGG pathway enrichment analysis of hypo-DMGs (red bar) and hyper-DMGs 
(blue bar) of umbilical cord blood. C Volcano plot of umbilical cord blood expression profile. D KEGG pathway enrichment analysis of up-DEGs (red 
bar) and hyper-DEGs (blue bar) in umbilical cord blood
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S18). In details, “collecting duct acid secretion” 
(FDR = 0.235), “FC gamma R-mediated phagocytosis” 
(FDR = 0.244), and “staphylococcus aureus infection” 
(FDR = 0.249) were significantly activated. By contrast, 
“systemic lupus erythematosus” (FDR = 0.0816), “one 
carbon pool by folate” (FDR = 0.0844), “fatty acid bio-
synthesis” (FDR = 0.203), and “primary bile acid bio-
synthesis” (FDR = 0.239) were significantly repressed. 
It is worth noting that pathway “one carbon pool by 
folate” were also enriched in the placenta samples. 
These results preliminarily show that there is a strong 
correlation between the current genomic changes and 
the offspring, and these changes are related to glucose 
metabolism and insulin, suggesting the possibility of 
metabolic diseases in the offspring.

In umbilical cord blood, we found one overlapping 
gene ZNF423 (DNA methylation delta = − 0.4, log2(Fold 
Change) = − 2.15), whose gene methylation and expres-
sion were both altered. Expression of ZNF423 has been 

reported directly to be proportional to the size of adipo-
cytes [29]. The gene product of ZNF423 promotes the 
transformation of non-adipocytes into adipocytes and 
inhibits subcutaneous adipogenesis, leading to adipo-
cyte hypertrophy and inflammation, and finally develop-
ing to obesity and insulin resistance [30]. The significant 
down-regulation of ZNF423 in umbilical cord blood may 
be related to the higher possibility of suffering obesity in 
offspring exposed to GDM.

Significant correlation between the changes of placenta 
and umbilical cord blood
After discovering altered pathways shared by umbilical 
cord blood and placenta samples, we further explored the 
correlation between placenta and umbilical cord blood 
through an integrated analysis. The analysis revealed that 
36 DMRs co-existed in the placentas and paired umbilical 
cord bloods (P value < 2.2e-16, odds ratio = 9.04, Fisher’s 
exact test, Fig. 4A). The top-ranking pathways enriched in 

Fig. 4  Significant correlation between the changes of placenta and umbilical cord blood, and involves glycolipid metabolism. A The Venn Diagram 
of DMGs in placenta and umbilical cord blood. Significance was tested by Fisher’s Exact Test. B The Venn Diagram of DEGs in placenta and umbilical 
cord blood. Significance was tested by Fisher’s Exact Test. C Mean methylation level of OSBPL5 DMR for placenta and umbilical cord blood in 
different group, log2TPM of each group is annotated on the right of each panel. Yellow bar represents GDM samples and green bar represents 
control samples
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the shared DMRs include “glycosphingolipid biosynthe-
sis-globo and isoglobo series” (A4GALT, P value = 0.012), 
“N-glycan biosynthesis” (ALG10, P value = 0.042) and 
“cholesterol metabolism” (OSBPL5, P value = 0.042).

We then investigated altered gene expressions in pla-
centas and paired umbilical cord blood samples by 
comparing GDM patients to the controls. The results 
demonstrated that 23 genes were overlapped between 
placenta and paired umbilical cord blood (P value = 2.3e-
03, odds ratio = 2.04, Fisher’s exact test, Fig.  4B). The 
top-ranking pathways enriched in the shared genes 
include “ECM-receptor interaction” (FRAS1/SPP1, P 
value = 4.92e-03), “growth hormone synthesis, secretion 
and action” (ADCY5/SOCS3, P value = 8.84e-03) and 
“type II diabetes mellitus” (SOCS3, P value = 0.055).

The gene OSBPL5 encode a protein which belongs to 
the oxysterol-binding protein family, and proteins in this 
family are critical to maintenance of cholesterol balance 
in human body [31]. Comparison of the methylation lev-
els of OSBPL5 across multiple specimens is illustrated 
in Fig. 4C. The DMR in placenta was annotated into one 
of the exons in the OSBPL5 gene, including four CpG 
sites (DNA methylation delta = 0.35; Fig.  4C left panel). 
Likewise, the DMR in umbilical cord blood located in 
an intron, including six CpG sites (DNA methylation 
delta = − 0.38; Fig. 4C right panel). Profiling of transcrip-
tome showed that expression of OSBPL5 (log2TPM) in 
the placenta of GDM patient was 2.4-fold of that in the 
control group (GDM 4.034 vs. control 2.767), but the dif-
ference was small in umbilical cord blood (GDM 0.757 
vs. control 0.863). These results suggest that the meth-
ylation and expression profile of umbilical cord blood are 
closely related to that in placenta, and the genes in glu-
cose metabolism-related pathway are more likely to be 
regulated by DNA methylation.

Discussion
To the best of our knowledge, this is the first study that 
use epigenomic and transcriptomic assays to character-
ize placenta and the paired umbilical cord blood samples 
from GDM patients and controls. Our data demonstrated 
that placenta undergoes extensive methylation changes in 
genomic regions that are related to glucose metabolism-
related pathways. Remarkably, methylation-altered genes 
in umbilical cord blood were associated with pathways 
insulin resistance and insulin secretion. And we also 
found that DMGs and DEGs were significantly over-
lapped between placenta and umbilical cord blood, indi-
cating that the GDM conditions could affect fetus.

An early study found that insulin resistance in GDM 
patients led to a compensatory increase of the synthesis 
and secretion of insulin, which can promote the absorp-
tion and metabolism of blood glucose in islet β-cells [32]. 

However, when insulin resistance increases to a certain 
level, over-secreted insulin fails to maintain blood glu-
cose levels in a normal range [33] and GDM patients 
could display hyperglycemia and hyperinsulinemia simul-
taneously [34]. GSEA result of placental RNA-seq data 
showed that several genes associated with the insulin 
secretion and the insulin resistance pathways were signif-
icantly up-regulated. More importantly, genes with both 
DNA methylation alternations and expression changes 
were identified, including PRKCZ, ADCY5, CACNA1C, 
PLCB1. The DNA methylation alternations in those genes 
might contribute to expression changes of these gene, 
which further aggravates insulin resistance and insulin 
secretion.

At the beginning of pregnancy, the placenta releases 
hormones into the blood of pregnant women, raising the 
blood glucose concentration to ensure adequate nutrition 
for the fetus [35, 36]. Our data showed that many genes 
related with hormone production and secretion were 
highly expressed in placenta of GDM patients, which 
involved in “cortisol synthesis and secretion,” “growth 
hormone synthesis and secretion” and “aldosterone syn-
thesis and secretion pathway” (Table  2). However, it is 
reported that excessive cortisol levels in pregnant wom-
en’s blood can promote anxiety [37], increase the risk 
of obesity in offspring [38] and reduce children’s cogni-
tive ability [39]. Our investigation discovered decreased 
methylation levels in multiple genes of the cortisol syn-
thesis and secretion pathway, suggesting that cortisol lev-
els could be altered in GDM patients through placenta. 
This hypothesis is further supported by the GSEA result 
of RNA-seq data, which listed pathway “cortisol synthesis 
and secret” as one of the most positively enriched path-
ways (Additional file  1: Fig. S2C). The genes of which 
both methylation statuses and expression levels varied 
in this pathway included CACNA1C, LDLR, and ADCY9. 
The CACNA1C gene encodes an alpha-1 subunit of a 
voltage-dependent calcium channel and is related to the 
exocytosis of many hormones. Xu et al. [40] reported that 
miR-153 worked as a negative regulator for the expres-
sion of CACNA1C, which further increased the secretion 
of insulin. An independent GWAS study revealed that 
CACNA1C gene is associated with diabetic cataract [41]. 
Besides, the co-binding of low-density lipoprotein recep-
tor (LDLR) and insulin receptor (IR) reduces the ability of 
LDLR to clean up LDLR in blood, and insulin can destroy 
this co-binding [42].

Moreover, compared with control pregnancy, GDM 
patients had significantly lower serum total bile acids at 
24 weeks of gestation (Additional file 1: Fig. S4A) and at 
40  weeks of gestation (Additional file  1: Fig. S4B) (Wil-
coxon rank-sum test, P value < 0.05). Previous studies 
have shown that bile acids can activate glucose induced 
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insulin secretion [43] and have a strong correlation 
with insulin resistance and nonalcoholic fatty liver [44]. 
Based on the technique of liquid chromatography, Li 
et  al. reported that lower levels of serum bile acids in 
early pregnancy were independently associated with 
an increased risk of GDM in Chinese pregnant women 
[45]. At the same time, our GSEA analysis also showed 
that several genes associated with the primary bile acid 
biosynthesis pathway were significantly down-regulated 
in placental tissues (Additional file 1: Fig. S4C). Expres-
sion of CH25H, CYP7B1 and HSD3B7 were signifi-
cantly down-regulated in core enrichment genes, which 
played an important role in catalytic synthesis of bile 
acids. CYP7B1 is also involved in the synthesis of dehy-
droepiandrosterone and pregnenolone [46]. Both dehy-
droepiandrosterone and pregnenolone are related to 
hippocampus-associated memory and learning, which 
may reveal the relationship between GDM patients and 
the risk of memory decline. We believe that this is the 
first report to connect bile acid metabolism with GDM 
using placental high-throughput sequencing data. Nota-
bly, bile acid has been reported for the treatment of 
patients with obesity and diabetes [47], suggesting that 
bile acids can potentially be used in pregnant women to 
prevent and treat GDM in the future.

In placental tissues, 155 genes were differentially meth-
ylated and differentially expressed (partially displayed in 
Table  4), and some of these genes were involved in key 
metabolic pathway. From those genes, we manifested 
that the expression of three critical genes in the type II 
diabetes pathway was altered, including HK2 (down-
regulated), PRKCZ (up-regulated) and SOCS3 (down-
regulated). HK2 is the key gene of glycolysis, and its 
down-regulation has been shown directly leading to the 
reduction of glucose metabolism [48]. SOCS3 can inhibit 
insulin secretion, and down-regulation of this gene pro-
mote insulin secretion, resulting in insulin resistance 
[49]. The activation of PRKCZ depends on insulin, and 
over-expression of this gene affects the expression of the 
insulin-like growth factor 1 receptor (IGF1R) gene [50]. 
Additionally, previous research show that genes illus-
trated in Fig. 2F play key roles in insulin secretion, lipid 
droplet formation and are associated with type II diabe-
tes [51–53]. Taken together, those results suggested that 
the pathogenesis of GDM may be similar to type II dia-
betes, characterized with excessive insulin secretion and 
insulin resistance, and DNA methylation plays an impor-
tant role in the process.

Previous studies have indicated that the methylation 
levels of metabolism-related genes or genes involved 
in pathways could be changed after exposing to persis-
tent high-glucose levels in pregnant women with GDM, 
which is termed “metabolic programming” [54–56]. In 

present results, several pathways showed descending 
methylation levels in placenta of GDM patients, includ-
ing the “aldosterone synthesis and secretion pathway,” 
“insulin resistance” and “type II diabetes mellitus path-
way”. Besides, for up-regulated genes in placenta of 
GDM patients, enriched pathways included “EGFR tyros-
ine kinase inhibitor resistance,” “insulin secretion and 
“growth hormone synthesis, secretion and action”. Our 
results indicated that the glucose and lipid metabolism of 
offspring were probably affected by intrauterine exposure 
to GDM, both in epigenetic and expression levels. Fur-
thermore, there was a significant relevance between the 
changes of placenta and umbilical cord blood, regard-
less differentially methylated genes (Fig. 4A) or differen-
tially expressed genes (Fig.  4B). Most notably, genes in 
the one carbon pool by folate pathway were significantly 
down-regulated in placentas and umbilical cord bloods, 
indicating that both pregnant women and fetuses with 
GDM may have the characteristics of folate deficiency. 
However, a meta-analysis regarding to the correlation 
between folic acid and the pathogenesis of GDM pro-
vides controversial results [57]. Larger cohort studies are 
necessary to explore the correlations. The above results 
show that there are apparent associations between the 
methylome and the transcriptome in placenta and umbil-
ical cord blood, which share the common characteristics 
of insulin resistance and type II diabetes.

Still, there are few limitations in this study. Firstly, due 
to the complexity of placenta dissection structure, it is 
inevitable to obtain a variety of tissues and cell types dur-
ing sampling. Using single-cell sequencing technology 
or spatial transcriptome technology will make a more 
in-depth study on the pathogenesis and mother–child 
interaction of GDM comparing with traditional bulk 
RNA-seq. In addition, in differentially gene expression 
analysis, we did not correct P value by FDR method, 
because very few genes (placenta 122, umbilical cord 
blood 0) had significant differences with FDR cutoff of 
5%. Therefore, we used GSEA method to support our 
point of view, which results are largely consistent with 
DGE-based results. Finally, as confounding factor, BMI 
weights much in present research, and we did not find a 
suitable tool to exclude the influence of BMI during call-
ing DMRs. Instead, we divided samples into two groups 
with equal number of samples, BMI-high and BMI-low, 
and used DSS to identify BMI-related DMRs, which were 
removed from subsequent analysis.

Conclusions
In summary, our study systematically profiled the methy-
lome and transcriptome of placenta and umbilical cord 
blood of pregnant women with or without GDM, and 
investigated the relationship between methylation and 
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gene expression. Our results provide detailed molecular 
changes among GDM patients compared with the con-
trols, which pave the way for the further investigation of 
GDM pathogenicity.

Materials and methods
Patient recruitment
Pregnant women were recruited at Hangzhou Women’s 
Hospital (Hangzhou Maternity and Child Health Care 
Hospital, China) from January 1, 2020 to May 31, 2020. 
All participants signed a written consent forms and this 
study was approved by the ethics committee of Hang-
zhou Women’s Hospital. GDM is diagnosed according 
to the International Association of Diabetes and Preg-
nancy Study Groups (IADPSG) guidelines. Specifically, 
at least one of the following conditions must be met: 
1. Fasting blood glucose ≥ 5.1  mmol/L; 2. Blood glu-
cose ≥ 10.0  mmol/L one hour after the oral glucose tol-
erance test (OGTT); 3. Blood glucose ≥ 8.5 mmol/L two 
hours post the OGTT [58]. Pregnant women who met 
the following conditions were enrolled in this study: (1) 
age 24–39; (2) singleton pregnancy; (3) full-term birth 
(37–40  weeks of gestation); (4) detailed information for 
the OGTT; (5) records showing that the perinatal exami-
nation, delivery and infant physical examination were 
conducted in our hospital. Pregnant women with normal 
blood glucose and no history of adverse diseases were 
recruited in the control group. We excluded the pregnant 
women with the following conditions from our study: (1) 
having chronic diabetes complicated with pregnancy or 
preeclampsia. (2) suffering from liver or kidney dysfunc-
tions, or other chronic diseases which required long-
term drug treatment; (3) showing a mental disorder or a 
serious infection; (4) smoking, drinking and drug abuse 
during pregnancy; (5) fetal chromosome abnormalities; 
(6) lacking registration information in the Women’s and 
Children’s Insurance Systems. The difference of physi-
ological parameters of pregnant women and newborns 
between GDM group and control group was performed 
by Wilcoxon rank-sum test.

Placenta and umbilical cord blood sampling
Within 15 min after delivery, 5 ml of neonatal umbilical 
cord blood was collected using two PAXGenRNA sam-
pling tubes (2.5  ml/tube), and collected samples were 
stored at – 80 ℃ [59]. The placental tissues were collected 
from both the maternal and fetal side. Specifically, using 
a clean scalpel, one full-thick placental tissue was incised 
5 cm from the perimeter of the placenta (a size of about 
1 × 1 × 2 cm, including maternal and fetal side). Then, the 
tissues were rinsed with phosphate buffer (PBS) or nor-
mal saline until no visible blood and stored at – 80 ℃ in 

a cryopreservation tube [60]. DNA or RNA was extracted 
after homogenizing the tissues together.

RRBS and RNA‑seq libraries preparation and sequencing
Genomic DNA of placenta and umbilical cord blood 
specimens was extracted by using the TIANamp genomic 
DNA kit (Cat. No. DP304-02, TIANGEN Biotech CO. 
LTD., Beijing, China) per the manufacture’s recommen-
dations. 50–300  ng of purified genomic DNA was uti-
lized to generate RRBS libraries as previously described 
[61]. Indexed RRBS libraries were pooled accordingly and 
sequenced in a NovaSeq 6000 sequencer (Illumina, USA) 
with 100-base paired-end reads. Similarly, total RNAs 
were isolated using a miRNeasy Mini kit (QIAGEN, Ger-
many) according to the manufacture’s recommendations. 
We used the Ribo-off rRNA depletion kit (Cat. No. N406-
01, Vazyme Biotech Co. Ltd, Nanjing, China) to remove 
ribosomal RNA from total RNAs following the manu-
facturer’s instructions. To generate RNA-seq libraries, 
10–100 ng rRNA-depleted RNAs were utilized by using 
the VAHTS total RNA-seq (H/M/R) library prep kit for 
Illumina (Cat. No. NR603-01, Vazyme Biotech Co. Ltd, 
Nanjing, China) per the manufacturer’s instructions. We 
sequenced the RNA-seq libraries in the NovaSeq 6000 
sequencer with 100-base paired-end reads.

The sequencing data volume of a single sample is 
around 8 gigabases (Gb) and the average sequencing 
depth of the target region of the enzyme digestion frag-
ment is > 30 × , the coverage proportion of CpG region 
is > 40%, and the total data volume is 100  Gb. Similarly, 
transcriptome profile for each placenta and umbilical 
cord blood sample was also conducted. VAHTSTM Total 
RNA-seq (H/M/R) Library Prep Kit for Illumina® based 
on Ribo-zero method was used to constructed transcrip-
tome RNA library and high-throughput sequencing was 
performed subsequently. 10 Gb volume of transcriptome 
data for each sample was necessary.

Data processing
For RRBS data, FastQC (version 0.11.9) [62] software 
was used to evaluate the quality of the original RRBS 
sequencing reads, and TrimGalore (version 0.6.5) [63] 
was further applied to trim adapters and low-quality 
bases. The trimmed reads were then aligned to the hg19 
genome using BSMAP [64] software. Methylation call-
ing of BAM file obtained in the previous step was con-
ducted by MethylDackel [65]. R package DSS [66] 
was used to discover de novo DMRs. In this research, 
DMRs were defined as regions whose mean methyla-
tion level across CpG sites increased or decreased > 0.1, 
width > 50  bp, CpG number > 3, and P value < 0.05. Spe-
cifically, statistical tests for differential methylation at 
each CpG site were performed by function “DMLtest” 



Page 13 of 16Lu et al. Clinical Epigenetics           (2022) 14:69 	

with default parameters, which output was then pro-
cessed using function “callDMR” (parameters: delta = 0.1, 
p.threshold = 0.05) to call DMRs-GDM by comparing 
GDM group with control group. Meanwhile, to eliminate 
the influence of confounding factors, we divided samples 
into two groups with equal number of samples, BMI-
high and BMI-low, and used DSS to identify BMI-related 
DMRs, which were removed from subsequent analysis. 
Finally, DMRs were annotated using R package ChIP-
seeker [67] with default parameters to find differentially 
methylated genes (DMGs) and genomic distribution of 
DMRs.

As for RNA-seq data, quality control and base trim-
ming were similarly conducted by using FastQC and 
TrimGalore, respectively. STAR (2.6.1d) [68] was used 
to map the quality-controlled reads to the hg19 genome. 
Then, the transcripts were quantified by using software 
kallisto [69], and the expression abundance of transcripts 
was generated accordingly. RNASeQC is used to count 
the quality of genome alignment. Subsequently, using the 
output of kallisto, gene expression levels were estimated 
from the abundance of transcription level by function 
“tximport” of R package tximport [70]. Gene differential 
expression analysis between GDM group and control 
group was performed by function DESeq of R package 
DESeq2 [71] using default parameters. Briefly, disper-
sion was estimated by fitting a dispersion-mean relation 
via a robust gamma-family GLM (General linear model); 
library size was estimated by the standard median ratio 
method introduced in DESeq; finally, the GLM coeffi-
cients were tested for significance using Wald test. Mean-
while, BMI was added as a covariate in the difference 
analysis to exclude the influence of confounding factors.

The unique mapping ratio of RRBS and RNA-seq data 
were illustrated in Additional file 1: Fig. S1A, B, respec-
tively. All quality control table of RRBS and RNA-seq 
data were listed in Additional file 2: Table S1.1–S1.4.

Functional enrichment analysis
The genomic annotation of DMRs was conducted by 
R package ChIPseeker [67] and consequently were 
grouped to 6 classes: promoter, exon, intron, intergenic, 
UTR (untranslated region) and downstream regions. To 
investigate the enriched functional pathways of DMGs 
and DEGs, functional enrichment analysis of GO (Gene 
Ontology) biological process and KEGG pathway annota-
tion was performed by the R package clusterProfiler [72] 
(parameters: pvalueCutoff = 0.05, qvalueCutoff = 0.05, 
pAdjustMethod = “fdr”).

Gene Set Enrichment Analysis (GSEA) was used to 
detect modest but coordinate changes in the expression 
of groups of functionally related genes [73]. Java com-
mand line tool gsea (http://​www.​gsea-​msigdb.​org/​gsea/​

msigdb/​downl​oad_​file.​jsp?​fileP​ath=/​resou​rces/​softw​
are/​gsea2-2.​2.4.​jar) was used to find the key pathways in 
gene expression profiles of placenta and umbilical cord 
blood (parameters: xtools.gsea.GseaPreranked -scor-
ing_scheme weighted -collapse true -mode Max_probe 
-norm None -nperm 1000 -include_only_symbols true 
make_sets true -plot_top_x 20 -rnd_seed timestamp 
-set_max 3000 -set_min 15 -zip_report false -gui false). 
Specifically, all genes in gene expression profile were 
firstly sorted by Z-scores, which were converted from 
P values and associated log2 fold change using function 
qnorm. Then, enrichment significance test of each KEGG 
pathway was performed by GSEA, and P values of all 
pathways were adjusted for multiple testing. According 
to official advice, pathways with FDR < 0.25 were consid-
ered statistically significant.

Integrating analysis
To explore the effect of DNA methylation on gene expres-
sion under GDM environment, we compared differen-
tially methylated genes and differentially expressed genes 
in a tissue of interest, including placenta and umbilical 
cord blood. A gene was counted as an overlap if it was 
differentially expressed and near DMR. The statistical 
significance of overlapping was tested by Fisher’s exact 
test with all genes in gene expression profile as a back-
ground. Similarly, we compared DMGs in placenta and 
umbilical cord blood, as well as DEGs in placenta and 
umbilical cord blood. Spearman’s rank correlation test 
was used to assess the significance of correlation between 
mean methylation level of DMGs and mean gene expres-
sion level of DEGs across samples. The biological func-
tion of overlapped genes was then evaluated by GO/
KEGG functional enrichment analysis.
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mapping ratio of placenta and blood samples for A RRBS data and B 
RNA-seq data. C Genomic distribution of DMRs in placenta. GO pathway 
enrichment result of placenta for D hyper-DMGs and E hypo-DMGs. The 
number in brackets represents the number of enriched genes. Fig. S2 
Methylation contributes to expression change of genes associated with 
insulin signaling pathway. A KEGG pathway enrichment analysis of down-
DMGs in placenta. B “Cortisol synthesis and secretion” C “Adherens junc-
tion,” D “Insulin resistance” and E “Type I diabetes mellitus” pathway enrich-
ment result of placenta expression profile GSEA analysis. F GSEA analysis 
of placenta DMGs to placenta expression profile. Fig. S3 Alterations for 
umbilical cord blood were related to insulin secretion and resistance A 
Genomic distribution of DMRs in umbilical cord blood. B Differences of 
DMRs mean methylation levels between GDM and control umbilical cord 
blood samples. Yellow box represents GDM samples and green box rep-
resents control samples. *** P value < 0.001, Wilcoxon rank-sum test. Fig. 
S4 Differential characteristics of primary bile acid synthesis and autophagy 
between GDM and control samples. Total bile acid concentration between 
GDM and control sample in A 24 gestational week and B 40 gestational 
week. Wilcoxon rank-sum test. C ‘primary bile acid biosynthesis’ and D 
‘Autophagy’ pathway enrichment result of placenta expression profile 
GSEA analysis.
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