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Abstract

compared it to other technigues.

Background: We present the first sequencing data using the combinatorial probe-anchor synthesis (cPAS)-based
BGISEQ-500 sequencer. Applying cPAS, we investigated the repertoire of human small non-coding RNAs and

Results: Starting with repeated measurements of different specimens including solid tissues (brain and heart) and
blood, we generated a median of 30.1 million reads per sample. 24.1 million mapped to the human genome and
23.3 million to the miRBase. Among six technical replicates of brain samples, we observed a median correlation of 0.
98. Comparing BGISEQ-500 to HiSeq, we calculated a correlation of 0.75. The comparability to microarrays was
similar for both BGISEQ-500 and HiSeq with the first one showing a correlation of 0.58 and the latter one
correlation of 0.6. As for a potential bias in the detected expression distribution in blood cells, 98.6% of HiSeq reads
versus 93.1% of BGISEQ-500 reads match to the 10 miRNAs with highest read count. After using miRDeep2 and
employing stringent selection criteria for predicting new miRNAs, we detected 74 high-likely candidates in the cPAS
sequencing reads prevalent in solid tissues and 36 candidates prevalent in blood.

Conclusions: While there is apparently no ideal platform for all challenges of miRNome analyses, cPAS shows high
technical reproducibility and supplements the hitherto available platforms.

Keywords: Next-generation sequencing, miRNA, Biomarker discovery, BGISEQ

Background

Currently, high-throughput analytical techniques are
massively applied to further the understanding of the
non-coding transcriptome [1]. Still, the full complexity
of non-coding RNAs is only partially understood. One
class of well-studied non-coding RNAs comprises small
oligonucleotides, so-called miRNAs [2, 3].

Among the techniques most commonly used for
miRNA profiling are microarrays, RT-qPCR, and next-
generation sequencing (NGS), also referred to as high-
throughput sequencing (HTS). An excellent review on
the different platforms and a cross-platform comparison
has been recently published [4]. A detailed examination
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of technologies, however, frequently reveals a bias. One
reason for the respective bias is the ligation step, as, e.g.,
reported by Hafner and co-workers [5]. For example, the
quantification of miRNAs differs between NGS and
microarrays as it is dependent on base composition [6].
Especially, the guanine and uracil content of a miRNA
seems to influence the abundance depending on the
platform used. A substantial strength of NGS is the abil-
ity to support the completion of the non-coding tran-
scriptome. Unlike microarrays and RT-qPCR, NGS
allows the discovery of novel miRNA candidates. To this
end, different algorithms have been implemented, with
miRDeep being one of the most popular ones [7]. A sub-
stantial part of small RNA sequencing data has been
obtained using HiSeq and MiSeq platforms (Illumina)
based on stepwise sequencing by polymerase on DNA
microarrays prepared by bridge PCR [8], as well as the
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IonTorrent systems from Thermo Fisher Scientific using
a different type of polymerase-based stepwise sequencing
on micro-bead arrays generated by emulsion PCR, the
first method proposed for making microarrays for mas-
sively parallel sequencing [9]. Another approach is the
ligase-based stepwise sequencing also using micro-bead
arrays, applied for example by ThermoFisher Scientific’s
SOLiD sequencing platform, and which has also been
used to analyze and present novel miRNAs [10].

In the current study, we applied the new combinatorial
probe-anchor synthesis (cPAS)-based BGISEQ-500 se-
quencing platform that combines DNA nanoball (DNB)
nanoarrays [11] with stepwise sequencing using poly-
merase. An important advantage of this technique com-
pared to the previously mentioned sequencing systems is
in that no PCR is applied in preparing sequencing arrays.
Applying cPAS, we investigated the human non-coding
transcriptome. We first evaluated the reproducibility of
sequencing on standardized brain and heart samples,
then compared the performance to Agilent’s microarray
technique and finally evaluated blood samples. Using the
web-based miRNA analysis pipeline miRmaster and the
tool novoMiRank [12], we finally predicted 135 new
high-likely miRNA candidates specific for tissue and 35
new miRNA candidates specific for blood samples.

Methods

Samples

In this study, we examined the performance of three
sample types using three techniques for high-throughput
miRNA measurements (Illumina’s HiSeq sequencer, Agi-
lent’s miRBase microarrays, and BGI's BGISEQ-500 se-
quencing system, see details below). The three
specimens were standardized HBRR sample ordered
from Ambion (catalog number AM6051) and UHRR
sample ordered from Agilent (catalog number 740000).
UHRR and HBRR samples were measured in two and
six replicates, respectively. As third sample type, we used
PAXGene blood tubes. Here, two healthy volunteers’
blood samples were collected and miRNAs were ex-
tracted using PAXgene Blood RNA Kit (Qiagen) accord-
ing to manufacturer’s protocol. The study has been
approved by the local ethics committee.

Next-generation sequencing using BGISEQ-500

We prepared the libraries starting with 1 pg total RNA
for each sample. Firstly, we isolated the microRNAs
(miRNA) by 15% urea-PAGE gel electrophoresis and cut
the gel from 18 to 30 nt, which corresponds to mature
miRNAs and other regulatory small RNA molecules.
After gel purification, we ligated the adenylated 3’
adapter to the miRNA fragment. Secondly, we used the
RT primer with barcode to anneal the 3’ adenylated
adapter in order to combine the redundant unligated 3"
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adenylated adapter. Then, we ligated the 5" adapter and
did reverse transcript (RT) reaction. After cDNA first
strand synthesis, we amplified the product by 15 cycles.
We then carried out the second size selection operation
and selected 103-115 bp fragments from the gel. This
step was conducted in order to purify the PCR product
and remove any nonspecific products. After gel purifica-
tion, we quantified the PCR yield by Qubit (Invitrogen,
Cat No. Q33216) and pooled samples together to make
a single strand DNA circle (ssDNA circle), which gave
the final miRNA library.

DNA nanoballs (DNBs) were generated with the ssDNA
circle by rolling circle replication (RCR) to enlarge the
fluorescent signals at the sequencing process as previously
described [11]. The DNBs were loaded into the patterned
nanoarrays and single-end read of 50 bp were read
through on the BGISEQ-500 platform for the following
data analysis study. For this step, the BGISEQ-500 plat-
form combines the DNA nanoball-based nanoarrays [11]
and stepwise sequencing using polymerase, as previously
published [13-15]. The new modified sequencing ap-
proach provides several advantages, including among
others high throughput and quality of patterned DNB
nanoarrays prepared by linear DNA amplification (RCR)
instead of random arrays by exponential amplification
(PCR) as, e.g., used by Illumina’s HiSeq and longer reads
of polymerase-based cycle sequencing compared to the
previously described combinatorial probe-anchor ligation
(cPAL) chemistry on DNB nanorrays [11]. The usage of
linear DNA amplification instead of exponential DNA
amplification to make sequencing arrays results in lower
error accumulation and sequencing bias.

Next-generation sequencing using HiSeq

Samples have been sequenced using Illumina HiSeq se-
quencing according to manufacturer’s instructions and
as previously described [16, 17].

Agilent microarray measurements

For detection of known miRNAs, we used the SurePrint
G3 8x60k miRNA microarray (miRBase version 21, Agi-
lent Technologies) containing probes for all miRNAs
from miRBase version 21 in conjunction with the
miRNA Complete Labeling and Hyb Kit (Cat. No. 5190-
0456) according to the manufacturer’s recommenda-
tions. In brief, 100 ng total RNA including miRNAs was
dephosphorylated with calf intestine phosphatase. After
denaturation, Cy3-pCp was ligated to all RNA
fragments. Labeled RNA was then hybridized to an indi-
vidual 8x60k miRNA microarray. After washing, array
slides were scanned using the Agilent Microarray
Scanner G2565BA with 3-pm resolution in double-pass
mode. Signals were retrieved using Agilent AGW
Feature Extraction software (version 10.10.11).
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Data availability

The new sequencing data using BGISEQ-500 data are
available in the Additional file of this manuscript (Add-
itional file 1: Table S3).

Bioinformatics analysis

The raw reads were collapsed and used as input for the
web-based tool miRMaster, allowing for integrated ana-
lysis of NGS miRNA data. On the server side, mapping to
the human genome was carried out using Bowtie [18] (one
mismatch allowed). miRNAs were quantified similar to
the popular miRDeep2 [19] algorithm. The prediction of
novel miRNAs was performed using an extended feature
set built up on novoMiRank [12]. For classification, an
AdaBoost model using decision trees was applied. Novel
miRNAs were cross-checked against other RNA re-
sources, including the miRBase [20], NONCODE2016
[21], and Ensembl non-coding RNAs. The assessment of
the quality of new miRNAs was carried out using the
novoMiRank algorithm. A downstream analysis of results
including cluster analysis was performed using R. For tar-
get prediction, we applied TargetScan 7.1 (http://www.tar-
getscan.org/vert_71/) and predicted for all new miRNAs
the targets. With the predictions, we extracted the context
++ scores and used them for prioritizing the targets,
miRNA-target interactions with context++ scores below 1
were considered as high-likelihood targets. Target net-
works were constructed using an offline version of MiR-
TargetLink [22] and visualized in Cytoscape. miRNA
target pathway analysis has been carried out using Gene-
Trai2 [23]. For the GeneTrail2 analysis, all available cat-
egories were analyzed, the minimal category size was set
to 4 and all p values were adjusted using Benjamini-
Hochberg adjustment.

Results

Raw data analysis

We sequenced six brain, two heart, and two blood samples
using the BGISEQ-500 system. The resulting reads were
mapped to the human genome allowing one mismatch per
read. The 10 samples had a median of 30.1 million reads.
Of these, 24.1 million reads mapped to the human genome
and 23.3 million reads to miRNAs annotated in the human
miRBase version 21. The remaining 0.7 million reads per
sample contain potentially new miRNAs.

Technical reproducibility of the BGISEQ-500 and compari-
son to microarrays

To assess the technical reproducibility of the sequencing
platform, we evaluated the six technical replicates of the
human brain sample (see correlation matrix in Fig. 1).
The median correlation between the six replicates was
0.98, and the 25 and 75% quantile were 0.98 and 0.99,
respectively. These data suggest an overall high
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correlation for technical replicates on the BGISEQ-500
platform.

Comparing the BGISEQ-500 data to the measurements
of the brain sample with microarrays (miRBase version
21) that have also been carried out as six technical repli-
cates (median correlation of the microarrays was 0.999),
we observed a log correlation of 0.48. A direct comparison
is presented in the scatter plot in Fig. 2a. This plot high-
lights many miRNAs that can be measured at a compar-
able level on both platforms. However, a subset of the
small non-coding RNAs is shifted towards higher expres-
sion on the array platform. The same behavior can be ob-
served in the cluster heat map in Fig. 2b. This heat map
graphically represents the 50 miRNAs with most different
detection between both techniques. To compare rather
the ranks of miRNAs instead of the absolute read counts,
the replicated brain samples on both platforms were
jointly quantile normalized. Three miRNAs, in particular,
showed highly significant deviations (multiple testing ad-
justed p values below 107>°). Hsa-miR-8069 was almost
not detected in the BGISEQ-500 but had 0.9 million nor-
malized intensity counts on the array platform, hsa-miR-
4454 had 51.6 normalized reads on the BGISEQ-500 ver-
sus 1.9 million normalized counts on the microarrays, and
hsa-miR-7977 had 3432 normalized reads on the
BGISEQ-500 versus 1.3 million normalized counts on the
microarrays. This means that the three miRNAs were or-
ders of magnitudes more abundant on microarrays as
compared to the sequencing system. The secondary struc-
tures of the three precursors are presented in Additional
file 2: Figure S1. These results match well to previously
published platform comparisons between NGS and micro-
arrays [6]. Here, several miRNAs such as hsa-miR-941
(not detected in any array experiment, not detected in RT-
qPCR, average read count of ~1000 reads using Illumina
HiSeq sequencing) had expression levels differing several
orders of magnitude between the miRBase microarrays
and using HiSeq sequencing.

The full list of miRNAs with raw and adjusted p values
in ¢ test and Wilcoxon-Mann-Whitney test comparing
BGISEQ-500 and microarrays is presented in Additional
file 3: Table S1. Overall, the results are well in-line with
those obtained between HiSeq NGS and the same
microarray platform [6]. Reasons that explain differences
between arrays and NGS include different sensitivity
levels of the platforms, cross-hybridization of miRNAs
with similar sequences on the microarrays or bias in li-
brary preparation. Further, effects of the normalization
can lead to variations in miRNA quantification.

Biological replicates of blood samples and comparison to
other platforms

One of the most promising applications in small RNA
analysis is biomarker profiling in body fluids. We
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previously analyzed over 2000 blood samples on Agilent
microarrays [17, 24, 25] and about 1000 samples using
HiSeq sequencing [26, 27] and compared both platforms
[6]. We correlated two newly sequenced blood samples
using the BGISEQ-500 system to the data generated by
HiSeq and Agilent microarrays. When interpreting the
results, it is important to keep in mind that the microar-
rays and HiSeq data are from the same samples [6] while
the newly sequenced blood drawings are from other in-
dividuals and thus biological but no technical replicates.
To minimize a potential bias between the platforms with
respect to different miRNA sets, we first reduced the
marker set to the 2525 human miRNAs that were pro-
filed on all platforms and next to the subset of 658 miR-
NAs that were discovered in all three platforms. For
each, platform data were normalized using quantile
normalization. Due to the wide dynamic range of miR-
NAs in blood samples, which is approximately 107, we
present the three pairwise comparisons (BGISEQ-500 to
microarrays, BGISEQ-500 to HiSeq, and HiSeq to mi-
croarrays) on a log scale. The scatter plots are presented
in Fig. 3. The highest correlation was observed for
BGISEQ-500 to Illumina (0.75, Fig. 3a). Even the correl-
ation between microarrays and HiSeq was below this

value (0.6, Fig. 3c). Especially since technical replicates
have been measured for these platforms, the increased
correlation of sequencing platforms is remarkable. The
comparison of BGISEQ-500 and microarrays revealed
correlation values in the same range as for the brain
samples (0.58, Fig. 3b). The 3D scatter plot in Fig. 3d
compares the expression of the three platforms directly
to each other. The coloring of the miRNAs has been car-
ried out with respect to the GC content.

Expression distribution of miRNAs

As mentioned, miRNA expression is highly variable and
can scatter across many orders of magnitude. We thus
compared the distribution of the sequencing reads in
blood samples on the HiSeq to the BGISEQ-500. Blood
samples, including blood cells (especially red blood cells)
are known to be enriched for few miRNAs that are
highly expressed. The diagram in Fig. 4 (panel A) high-
lights that 90.8% of all blood sequencing reads from the
HiSeq match to one single miRNA: hsa-miR-486-5p.
The second most abundant miRNA miR-92a-3p takes
further 5.5%, and already the third most abundant
marker miR-451a has below 1% of all reads. In sum,
98.6% of all reads match to the top 10 miRNAs. For the
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Fig. 2 a Log average expression of common miRNAs for the brain RNA on BGISEQ-500 and on Agilent microarrays (six technical replicates each).
b Heat map with dendrogram for the 50 most differently detected miRNAs in the brain RNA between Agilent and BGISEQ-500 (six technical

replicates each)
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BGISEQ-500 (panel B), 45.9% of reads match to miR-
451a, further 20% map to miR-191-5p and 13.3% map to
miR-92a-3p. The most abundant miRNA in HiSeq, miR-
486-5p, is detected in 7.7% of all reads. 93.1% of all
sequenced reads match to the top 10 miRNAs.
Comparison of the distribution and abundance of miR-
NAs on the microarray platform is difficult since micro-
arrays show a saturation effect. This means that for two
miRNAs expressed in a range above the saturation, no
difference can be observed. We nonetheless performed
the same analysis as presented above, assuming that the
sum of all expression counts equals to 100%. In this ana-
lysis, miR-451a which is found in 0.8% of HiSeq reads
and 45.9% of BGISEQ-500 reads is the highest expressed

in microarrays (37.2% of all expression counts), followed
by 17% of miR-486-5p.

Prediction of novel miRNAs

Predicting new miRNAs from NGS data is a challenging
task since many false positive miRNA candidates are ob-
served. We implemented our own prediction tool for
miRNAs from NGS data and filtered the candidates
stringently to reduce the false discovery rate. Without
any filtering steps, our initial predictor trimmed for
maximizing the ROC AUC returned 25,086 candidates
across all samples. The exclusion of the candidates with
low abundance (less than 10 total reads) reduced the
number of candidates to around 10% (2354 candidates).
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Further analysis with novoMiRank (cutoff 1.5) filtered
out more miRNAs, leaving 1553. The miRNAs were
flagged by novoMiRank because of a high deviation from
miRNAs in the first miRBase versions, including deviat-
ing length, free energy, or nucleic acid composition of
miRNAs. Matching the remaining candidates to other
RNA resource in a blacklisting step finally presented 926
miRNA candidates (Additional file 4: Table S2). Still, it is
likely that this set contains many false positives.
Additionally, low-throughput experimental validation of
almost 1000 miRNA candidates, e.g., by Northern Blot is
a very labor-extensive approach. We thus additionally
compared the frequency of reads mapping to the blood
versus tissue samples. As detailed in Fig. 5a, we observe
a substantial variability between blood and tissue for the
926 miRNA candidates (correlation 0.18). Defining a
miRNA as tissue/blood specific if it occurs with a factor
of 100-fold higher in one of both sample types (normal-
ized for the total number of samples) highlighted 74 new
miRNA candidates specific for tissue and 36 new
miRNA candidates specific for blood samples. Figure 5b
shows bar plots for two miRNA precursors, the most tis-
sue specific novel-mir-36616 (blue), only present in the
brain samples, and the blood specific novel-mir-31007.
The first miRNA, which is observed exclusively in the
brain samples and not in the heart, reveals a significantly

less expressed 3' mature form as compared to the 5’
mature form. The second miRNA is exclusively observed
in blood samples. Here, the 5" mature form is lower
expressed compared to the 3' form. The boxes above
the bar plots show the secondary structures of both
miRNA candidates.

miRNA target analysis

For all 926 miRNAs, we predicted targets using TargetS-
can. To rank miRNA-target interactions, we used the
context++ score (distribution of the context++ score
across all predictions is provided in Additional file 5:
Figure S2). Thereby, we observed an accumulation of
high-likelihood targets for tissue-specific miRNAs. Of
the 926 miRNAs, the tissue specific had an average 42.8
targets, the neither for blood nor for tissue-specific miR-
NAs 40.7 targets while for blood-specific miRNAs, only
34.5 targets were predicted. The complex miRNA-target
network is presented in Additional file 6: Figure S3. It
contains 6014 nodes (5088 genes and 926 miRNAs).
Network characteristics such as degree distribution and
shortest path length are presented in Additional file 7:
Figure S4. The genes with largest numbers of predicted
miRNAs targeting the gene were CYB561D1 (229 miR-
NAs), FBXL12 (174 miRNAs), PML (162 miRNAs), and
VNN3 (154 miRNAs). The distribution of miRNAs in
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Fig. 5 a Expression of novel miRNAs in blood versus tissue. The green miRNAs are specific for blood, the orange miRNAs for tissue, and the blue

brain tissue and not in the heart tissue or blood, the -3p form is one order of magnitude less expressed compared to the -5p mature form. The
second mMiRNA novel-mir-31007 is expressed in blood and not in tissue, here, the -3p form is more than an order of magnitude more abundant

RNAs. The first miRNA novel-mir-36616 in blue is detected only in the

the different group is presented as Venn diagram in
Additional file 8: Figure S5). Among the predicted target
genes that were found only for candidate miRNAs being
blood specific was, e.g, HMOX1, heme oxygenase 1,
mediating the first step of the heme catabolism by cleav-
ing heme to build biliverdin or HPX, coding for hemo-
pexin. The complex nature of the in silico calculated
miRNA-target network requires further analyses to

understand whether target genes accumulate in specific
biochemical categories such as KEGG pathways or gene
ontologies. We thus applied GeneTrail2 separately to the
set of genes targeted by blood specific miRNAs, targeted
by tissue specific miRNAs and by all other miRNAs. As
the background sets, all genes predicted to be targeted
by at least a single miRNA were selected and the func-
tionality to compare different enrichment analyses by
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GeneTrail2 has been used. Enriched pathways seem to
be largely relevant for either blood or tissue miRNAs, as
Additional file 9: Figure S6 highlights. Tissue specific
miRNAs had target genes enriched for DNA damage re-
sponse, the apoptosis, or RNA polymerase II regulatory
region DNA binding while blood miRNAs target genes
were, e.g., enriched for TP35 network. Interestingly,
tissue miRNA target genes also clustered on specific
genomic locations (e.g., 19p12 and 19.q13) while blood
miRNA targets did not show such an enrichment. In
contrast, blood miRNA targets were enriched for disease
phenotypes such as carotid artery diseases. In sum, the
enrichment analysis highlights very distinct patterns for
blood and tissue miRNA targets. Of course, not only the
new miRNAs themselves but also the predicted targets
deserve detailed experimental validation.

Discussion

The advent of next-generation sequencing reduced the
costs of sequencing while simultaneously increasing the
speed of throughput [28]. Today, the costs for small
RNA seq are almost equal to and even lower than
miRNA microarrays, although small RNA-seq provides
the additional possibility for detecting novel small RNA
entities.

In the present study, we investigated two current
sequencing approaches supporting massively parallel
sequencing, which is of high relevance in small RNA
research because of the high dynamic range of these
molecules: DNA nanoball [11]-based sequencing by
BGISEQ-500 and PCR cluster [8]-based sequencing by
HiSeq. An important difference between these tech-
niques is in that the first approach uses linear DNA
amplification, and the second uses exponential DNA
amplification to make sequencing arrays. The latter
approach may in turn lead to amplification errors and
some specific biases. Besides this fundamental difference,
both approaches have their additional advantages and dis-
advantages. Specifically for the BGISEQ-500, the library
preparation currently takes around three working days,
the sequencing itself needs one or at maximum two work-
ing days. Each flowcell of the BGISEQ-500 has two lanes.
On each of these lanes, 32 Gb data can be generated using
single-end reads of length 50 bases. The cost of the re-
agent and material is around 200 USD for 20 million reads
ensuring high-quality data at a reasonable cost.

Recently, we published a manuscript about bias in
NGS and microarray analysis for miRNAs [6], highlight-
ing that the expression of miRNAs on different plat-
forms varies by, for example, the nucleic acid
composition. In the validation by RT-qPCR, we focused
on miRNAs discordant between the high-throughput
platforms. Thereby, we observed cases where the RT-
qPCR results were concordant with Illumina HiSeq, with
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microarrays or with none of the techniques. Therefore,
we were especially interested how the BGISEQ-500
platform compares to the HiSeq platform and microar-
rays with the content from the miRBase for small RNA
analysis.

Three miRNAs had high divergence between arrays
and BGISEQ-500, among them hsa-miR-4454, which
was high abundant in arrays but almost not detectable
in BGISEQ-500. According to the miRBase, only 28% of
users believe that this miRNA is real. Although such
votes have only limited value, they at least indicate that
this miRNA may be influenced by technological bias.

For high-throughput sequencing, the library prepar-
ation and the kits used play a crucial role for the quality
of the sequencing results. Others and we noticed an
overly abundance of the miRNA miR-486-5p when using
the TruSeq kit (Illumina, San Diego), which seems to be
independent of the source of the analyzed material
[6, 29, 30]. Using the BGISEQ-500 platform, we ob-
served lower read counts for this miRNA. However, in
some cases, the miRNA abundance of BGISEQ-500
matches to the HiSeq sequencing results while microar-
rays show a different expression level, and in other cases,
the BGISEQ-500 deviates from the other platforms and
in several cases, all three techniques provide substan-
tially divergent results. The more even distribution of
reads of the BGISEQ-500 compared to the HiSeq results
facilitates the discovery of new miRNAs, which are ex-
pected to be significantly less expressed as compared to
the already known miRNAs, especially from early miR-
Base versions.

With respect to many miRNA currently annotated in
miRBase and the rapidly growing number of new miRNAs,
it is essential not only to have tools for filtering likely false-
positives such as the NovoMiRank tool but also to carry
out validation of miRNAs using other molecular biology
approaches such as cloning and Northern blotting.

Focusing on the performance of the BGISEQ-500, we
found a high technical reproducibility of sequencing
results, which was however slightly below the technical
reproducibility of microarrays. This fact can have differ-
ent reasons, e.g., the different limit of detection of
microarrays. In contrast to sequencing, microarrays have
a saturation effect. With respect to the total number of
discovered known miRNAs, performance of the
BGISEQ-500 was comparable both to the Illumina and
the microarray platform.

Conclusions

In sum, none of the mentioned platforms seems to pro-
vide the “ultimate solution” in miRNA analysis. All have
their advantages and disadvantages and show some bias
for the detection of certain sequence types.



Fehlmann et al. Clinical Epigenetics (2016) 8:123

Additional files

Additional file 1: Table S3. miRNA read count of the BGISEQ-500.
(XLSX 250 kb)

Additional file 2: Figure S1. Predicted secondary structures for
selected miRNAs. (PNG 241 kb)

Additional file 3: Table S1. Comparison of BGISEQ-500 to Agilent.
(XLSX 135 kb)

Additional file 4: Table S2. List of novel miRNA candidates. (XLSX 6531 kb)

Additional file 5: Figure S2. Histogram of the decade logarithm of the
context++ scores (multiplied by —1) of predicted targets for the
candidate miRNAs. Since negative context++ scores are favorable, the
mIRNA targets on the right of the diagram are more likely true
interactions. (PNG 78 kb)

Additional file 6: Figure S3. Full interaction network. Predicted miRNAs
are represented in large nodes, colored by type (red: blood specific, blue:
tissue specific, green: all others) and genes are represented by smaller
gray nodes. (PNG 1033 kb)

Additional file 7: Figure S4. Core network characteristics as node
degree distribution (top) and shortest path length (bottom). (PNG 129 kb)

Additional file 8: Figure S5. Venn diagram showing the distribution of
predicted target genes for tissue-specific miRNA candidates, blood-specific
miRNA candidates, and all other miRNA candidates. (PNG 156 kb)

Additional file 9: Figure S6. Comparison of the pathway enrichment

analysis for the GeneTrail2 analysis with respect to the three target sets.
Red arrows represent significant enrichments. (PNG 289 kb)

Acknowledgements
We acknowledge the support of BGI-Shenzhen and Complete Genomics.

Funding
The study has been funded by internal funds of Saarland University.

Availability of data and materials
Following publication expression data are available in the gene expression
omnibus (GEO).

Authors’ contributions

Setting up the assay were done by CG, XS, AA, SD, CZ, DA, JL, and RD.
Generating miRNA data were done by SR, CZ, NL, MH, ZZ, CX, AC, and MN.
Evaluation of data was done by TF, CB, NL, YL, and AK. Drafting and revision
of the manuscript were done by EM, AK. Study design and set-up were done
by YL, CS, XX, EM, and AK. All authors read and approved the final
manuscript.

Competing interests
Authors with affiliations 1 and 2 are employed by BGI-Shenzhen, Shenzhen,
China, and Complete Genomics (a BGI company), Mountain View, CA, USA.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study has been approved by the local ethics committee (Arztekammer
des Saarlandes).

Author details

'Clinical Bioinformatics, Saarland University, 66125 Saarbriicken, Germany.
2BGI-Shenzhen, Shenzhen, China. 3Department of Human Genetics, Saarland
University, Saarbriicken, Germany. “Complete Genomics (a BGI company),
Mountain View, CA, USA.

Received: 6 October 2016 Accepted: 4 November 2016
Published online: 21 November 2016

Page 10 of 11

References

1.

20.

21.

22.

23.

24,

Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis
of ncRNA through deep sequencing techniques. Front Bioeng Biotechnol.
2015;3:77.

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell.
1993;75(5):843-54.

Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science.
2001;294(5543):797-9.

Mestdagh P, Hartmann N, Baeriswy! L, Andreasen D, Bernard N, Chen C,
Cheo D, D'’Andrade P, DeMayo M, Dennis L, et al. Evaluation of quantitative
mMIRNA expression platforms in the microRNA quality control (miRQC) study.
Nat Methods. 2014;11(8):809-15.

Hafner M, Renwick N, Brown M, Mihailovic A, Holoch D, Lin C, Pena JT,
Nusbaum JD, Morozov P, Ludwig J, et al. RNA-ligase-dependent biases in
miRNA representation in deep-sequenced small RNA cDNA libraries. RNA.
2011;17(9):1697-712.

Backes C, Sedaghat-Hamedani F, Frese K, Hart M, Ludwig N, Meder B, Meese
E, Keller A. Bias in high-throughput analysis of miRNAs and implications for
biomarker studies. Anal Chem. 2016:88(4):2088-95.

Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S,
Rajewsky N. Discovering microRNAs from deep sequencing data using
miRDeep. Nat Biotechnol. 2008,26(4):407-15.

Mayer P, Farinelli L, Kawashima EHUhwgcpUS. Method of nucleic acid
amplification. In.: Google Patents; 2011

Drmanc R, Crkvenjakov R. Prospects for a miniaturized, simplified and frugal
human genome project. Sci Yugosl. 1990;16(1-2):97-107.

Keller A, Backes C, Leidinger P, Kefer N, Boisguerin V, Barbacioru C, Vogel B,
Matzas M, Huwer H, Katus HA, et al. Next-generation sequencing identifies
novel microRNAs in peripheral blood of lung cancer patients. Mol BioSyst.
2011;7(12):3187-99.

Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG,
Carnevali P, Nazarenko |, Nilsen GB, Yeung G, et al. Human genome
sequencing using unchained base reads on self-assembling DNA
nanoarrays. Science. 2010,327(5961):78-81.

Backes C, Meder B, Hart M, Ludwig N, Leidinger P, Vogel B, Galata V, Roth P,
Menegatti J, Grasser F, et al. Prioritizing and selecting likely novel miRNAs
from NGS data. Nucleic Acids Res. 2016;44(6):€53.

Canard B, Sarfati RS. DNA polymerase fluorescent substrates with reversible
3-tags. Gene. 1994;148(1):1-6.

Tsien RY, Ross P, Fahnestock M, Johnston AJUhwgcpCAAce. Dna
sequencing. In.: Google Patents; 1991

Church GM, Mitra RDUhwgcpEPAce. Nucleotide compounds having a
cleavable linker. In.: Google Patents; 2003

Meder B, Backes C, Haas J, Leidinger P, Stahler C, Grossmann T, Vogel B, Frese
K, Giannitsis E, Katus HA, et al. Influence of the confounding factors age and
sex on microRNA profiles from peripheral blood. Clin Chem. 2014;60(9):1200-8.
Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J,
Ruprecht K, Paul F, Stahler C, et al. A blood based 12-miRNA signature of
Alzheimer disease patients. Genome Biol. 2013;14(7):R78.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10(3):R25.

Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2
accurately identifies known and hundreds of novel microRNA genes in
seven animal clades. Nucleic Acids Res. 2012;40(1):37-52.

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ.
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic
Acids Res. 2006;34(Database issue):D140-4.

Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ, et
al. NONCODE 2016: an informative and valuable data source of long non-
coding RNAs. Nucleic Acids Res. 2016;44(D1):D203-8.

Hamberg M, Backes C, Fehimann T, Hart M, Meder B, Meese E, Keller A.
MiRTargetLink—miRNAs, genes and interaction networks. Int J Mol Sci.
2016;17(4):564.

Stockel D, Kehl T, Trampert P, Schneider L, Backes C, Ludwig N, Gerasch A,
Kaufmann M, Gessler M, Graf N, et al. Multi-omics enrichment analysis using
the GeneTrail2 web service. Bioinformatics. 2016;32(10):1502-8.

Keller A, Leidinger P, Vogel B, Backes C, ElSharawy A, Galata V, Mueller SC,
Marquart S, Schrauder MG, Strick R, et al. miRNAs can be generally associated
with human pathologies as exemplified for miR-144. BMC Med. 2014;12:224.


dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1
dx.doi.org/10.1186/s13148-016-0287-1

Fehlmann et al. Clinical Epigenetics (2016) 8:123

25.

26.

27.

28.

29.

30.

Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, Wendschlag A,
Giese N, Tjaden C, Ott K, et al. Toward the blood-borne miRNome of human
diseases. Nat Methods. 2011;8(10):841-3.

Keller A, Backes C, Haas J, Leidinger P, Maetzler W, Deuschle C, Berg D,
Ruschil C, Galata V, Ruprecht K, et al. Validating Alzheimer's disease micro
RNAs using next-generation sequencing. Alzheimers Dement. 2016:12(5):
565-76.

Backes C, Leidinger P, Altmann G, Wuerstle M, Meder B, Galata V, Mueller
SC, Sickert D, Stahler C, Meese E, et al. Influence of next-generation
sequencing and storage conditions on MiRNA patterns generated from
PAXgene blood. Anal Chem. 2015;87(17):8910-6.

van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-
generation sequencing technology. Trends Genet. 2014;30(9):418-26.
Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL,
Liu'Y, Liang M, et al. Characterization of human plasma-derived exosomal
RNAs by deep sequencing. BMC Genomics. 2013;14:319.

Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A,
Tembe W, Kim S, Metpally R, Van Keuren-Jensen K. Identification of
extracellular miRNA in human cerebrospinal fluid by next-generation
sequencing. RNA. 2013;19(5):712-22.

Page 11 of 11

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Samples
	Next-generation sequencing using BGISEQ-500
	Next-generation sequencing using HiSeq
	Agilent microarray measurements
	Data availability
	Bioinformatics analysis

	Results
	Raw data analysis
	Technical reproducibility of the BGISEQ-500 and comparison to microarrays
	Biological replicates of blood samples and comparison to other platforms
	Expression distribution of miRNAs
	Prediction of novel miRNAs
	miRNA target analysis

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

