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Abstract

Modern lifestyle has profoundly modified human sleep habits. Sleep duration has shortened over recent decades
from 8 to 6.5 hours resulting in chronic sleep deprivation. Additionally, irregular sleep, shift work and travelling across
time zones lead to disruption of circadian rhythms and asynchrony between the master hypothalamic clock and
pacemakers in peripheral tissues. Furthermore, obstructive sleep apnea syndrome (OSA), which affects 4 - 15% of the
population, is not only characterized by impaired sleep architecture but also by repetitive hemoglobin desaturations
during sleep. Epidemiological studies have identified impaired sleep as an independent risk factor for all cause of-, as
well as for cardiovascular, mortality/morbidity. More recently, sleep abnormalities were causally linked to impairments
in glucose homeostasis, metabolic syndrome and Type 2 Diabetes Mellitus (T2DM). This review summarized current
knowledge on the metabolic alterations associated with the most prevalent sleep disturbances, i.e. short sleep duration,
shift work and OSA. We have focused on various endocrine and molecular mechanisms underlying the associations
between inadequate sleep quality, quantity and timing with impaired glucose tolerance, insulin resistance and
pancreatic β-cell dysfunction. Of these mechanisms, the role of the hypothalamic-pituitary-adrenal axis, circadian
pacemakers in peripheral tissues, adipose tissue metabolism, sympathetic nervous system activation, oxidative stress
and whole-body inflammation are discussed. Additionally, the impact of intermittent hypoxia and sleep fragmentation
(key components of OSA) on intracellular signaling and metabolism in muscle, liver, fat and pancreas are also examined.
In summary, this review provides endocrine and molecular explanations for the associations between common sleep
disturbances and the pathogenesis of T2DM.
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Introduction
Modern society, characterized by widespread use of electri-
city, demand for high performance at work, shift work, pro-
longed commute times and multiple leisure time activities,
has significantly changed human sleep patterns. The aver-
age self-reported sleep duration has decreased from over
8 hours in the 1960’s to ≈ 6.5 hours in 2012, with 20–30%
of middle aged Americans reporting sleep duration of less
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than 6 hours [1-7]. Similar patterns have been reported in
other populations [8,9] and confirmed in studies employing
actigraphy to objectively quantify sleep duration [10,11]. In
addition to voluntary and work-related sleep restrictions, a
variety of common sleep disorders such as insomnia and
obstructive sleep apnea syndrome (OSA) contribute to im-
paired sleep in over 30% of adults [12].
Over the past decade, substantial evidence has accu-

mulated showing that sleep disorders negatively impact
not only cognitive functions and performance [13,14],
but also cardiovascular morbidity and mortality [15-18].
More recently, it has been recognized that sleep is also
causally related to the regulation of glucose homeostasis
and appetite control and that impaired sleep contributes
ed Central. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

mailto:jan.polak@lf3.cuni.cz
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Briançon-Marjollet et al. Diabetology & Metabolic Syndrome  (2015) 7:25 Page 2 of 16
to the rising prevalence of obesity and Type 2 diabetes
mellitus (T2DM) across the globe. In the following
review our goal is to discuss possible mechanisms be-
hind the epidemiological and experimental findings that
document an independent role for sleep disturbances
(including short sleep, shift work and OSA) in the de-
velopment of glucose intolerance, insulin resistance and
pancreatic endocrine dysfunction – impairments ultim-
ately leading to T2DM. Although some epidemiological
data suggest that excessively prolonged sleep might also
be associated with metabolic impairments, we have
chosen not to cover this topic here due to the lack of ex-
perimental tools, poor understanding of this association
and the possible confounding effect of other chronic
diseases.
Review
Physiological sleep
Sleep is an actively regulated, periodically occurring
state of reduced consciousness, muscle relaxation and
altered responsiveness to stimuli occurring in mammals,
birds, reptiles, amphibians, fish and even in flies and
worms. Based on patterns of brain electric activity, eye
movements and skeletal muscle tone, human sleep is
separated into distinct stages: non-rapid eye movement
(NREM) sleep, which is further divided into stages ac-
cording to sleep depth (stage 1, stage 2 and stage 3 also
referred to as slow-wave sleep), and rapid eye movement
(REM) sleep occurring every 60–90 minutes initially as
short episodes, but which progressively increase in dur-
ation during the night.
Sleep onset and periodicity are precisely controlled

processes determined by three major factors: a) circa-
dian rhythms, b) homeostatic drive and c) emotional/
cognitive inputs. Circadian rhythmicity of sleep onset is
secured through the master pacemaker located in the
hypothalamic suprachiasmatic nucleus (SCN) with pro-
jections into various regions in the brain participating in
the regulation of sleep timing, behavioral and endocrine
processes, food intake, physical activity and substrate
metabolism. The intrinsic rhythm of these cells is inde-
pendent of exogenous stimuli and is mediated by cell-
autonomous periodic changes in gene expression and pro-
tein levels of transcriptional factors, such as Clock/Bmal
(with a complex network of transcriptional-translational
negative feedback loops). Adequate entrainment of SCN
intrinsic oscillations with environmental light/dark cycles
is mediated by direct projections from retina to the SCN.
In contrast, homeostatic drive represents a sleep promot-
ing mechanism with molecular actors which remain to be
identified; its magnitude and thus the tendency to fall
asleep increases with the duration of wakefulness and di-
minishes during sleep [19].
Whole body metabolism during sleep
Contrasting physiological purposes of sleep and wakefulness
are mirrored in substrate utilization and energy expenditure
differences. During physiological sleep, which is harmonic-
ally entrained to environmental and behavioral zeitgebers
(time cues), whole body energy expenditure drops by 15 -
35% with the lowest expenditure during slow-wave sleep
and slightly higher during REM sleep [20]. Furthermore,
glucose, lipid and protein turnover exhibits significant vari-
ability during the natural sleep/wake cycle that is independ-
ent of metabolic changes induced by food intake. For
example, plasma glucose levels strongly follow the circadian
pattern and progressively increase during sleep with the
highest levels in the early morning [21-23]. Diurnal varia-
tions in glucose metabolism are mediated primarily through
direct autonomic innervation of target organs from the SCN
[21] and are independent of circulating insulin or glucagon
levels [24,25]. In fact, SCN-driven autonomic output has
been shown to regulate hepatic glucose output [21,26,27]
and is most likely also involved in the reduction of skeletal
muscle blood flow and decreased muscle glucose uptake
during sleep [26-28]. In the anticipation of awakening, hep-
atic glucose output increases and contributes to the “dawn
phenomenon” in healthy as well as diabetic subjects [28,29].
Additionally, decreased neuron activity during slow-wave
sleep contributes to decreased glucose utilization by the
brain during sleep [30]. Similar circadian sleep/wake oscilla-
tions have been described in lipid metabolism. Plasma tri-
glycerides and fatty acids demonstrate strong circadian
oscillations with progressively decreasing levels during sleep
[31] when lipoprotein lipase (LPL) activity and fatty acid
synthesis in adipose tissue are at their highest [28,32,33].
Some authors have reported a slight increase in plasma free
fatty acids (FFA) and glycerol in the late stages of sleep,
which has been attributed to central pacemaker activity as
well as to the adipose tissue lipolysis promoting effects of
growth hormone [28,34,35].

Metabolic abnormalities in sleep disorders
Inadequate sleep duration together with misaligned or ir-
regular sleep (e.g. during shift work) not only impairs cog-
nitive performance [13,14,28] but are also associated with
increased mortality and morbidity [15-18]. More recently,
epidemiological and experimental studies have demon-
strated that sleep quality and quantity are important deter-
minants of whole-body metabolism. It has been suggested
that impaired sleep might causally contribute to the T2DM
and obesity epidemic via mechanisms depicted in Figure 1
and described further below.

Short sleep duration
Models
The detrimental impact of short sleep duration on hu-
man health has been demonstrated in multiple studies



Figure 1 Metabolic pathways linking sleep disorders with the development of Type 2 diabetes. HPA (hypothalamic-pituitary-adrenal axis),
ROS (reactive oxygen species), IL-6 (Interleukin-6), TNF-α (tumor necrosis factor-α).
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including: a) cross-sectional studies, b) longitudinal epi-
demiological studies and c) experimental studies using vari-
able severity and duration of sleep deprivation in human
volunteers. Even though the physiological need for sleep sig-
nificantly varies between individuals and is dependent on
other factors such as age, epidemiological studies in adults
typically consider 7–8 hours of sleep as “normal” sleep. In
contrast, the definition of “short sleep” across studies is quite
heterogeneous (from subjectively reported insufficient sleep
to cut-off values for sleep duration set at < 5, < 6 or <
7 hours).

Evidence
Large-scale cross-sectional epidemiological studies con-
ducted in various populations including adolescents,
middle-aged and elderly subjects, hypertensive patients
and pregnant women have convincingly and repeatedly
demonstrated that self-reported sleep duration is associ-
ated with approximately doubled prevalence of T2DM
or impaired glucose tolerance, particularly in women
[36-47]. Importantly, cross-sectional associations between
T2DM and short sleep are independent of other trad-
itional risk factors for diabetes. Furthermore, subjectively
perceived insufficient, poor or short sleep is associated
with several pre-diabetic features such as fasting hypergly-
cemia, elevated postprandial glucose and insulin levels or
indices of whole-body insulin resistance [39,46,48-56]. Fi-
nally, inadequate sleep has also been shown to be detri-
mental in patients who have already developed diabetes,
since it negatively impacts glycemic control [45,47].
Interpretation of cross-sectional studies is inherently lim-

ited due to the uncertainty of causality and its eventual dir-
ection. In fact, several reports suggest that hyperglycemia,
hyperinsulinemia and endocrine changes associated with
T2DM can significantly influence sleep quality and quantity
[57-59]. To better understand possible impact of sleep dur-
ation on metabolic homeostasis, observations based on pro-
spective studies have proven to be very informative. In
these studies, subjects with variable sleep habits and sleep
duration, but free of diabetes, were followed for an ex-
tended period of time while newly diagnosed cases of
T2DM were recorded. Results of these studies, which
followed from 661 to 70,026 adults over 4 to 32 years
[60-71] plus meta-analyses [2,72] fully support the relation-
ship suggested in cross-sectional studies. After adjustments
for known risk factors, subjects with short sleep duration
have a higher relative risk (RR = 1.28 [1.03-1.60]) of devel-
oping T2DM compared to those with normal sleep times.
Additional support for the epidemiological evidence has

been provided by experimental studies demonstrating that
healthy human volunteers exposed to a rather severe para-
digm of total sleep deprivation lasting from one to five days
develop insulin resistance [73,74] and β-cell dysfunction
[75]. As a consequence of insulin resistance combined with
defects in insulin secretion, fasting and postprandial glucose
levels were increased following sleep deprivation [75-79].
Although total sleep deprivation studies have provided im-
portant insights into the role of sleep in metabolic regula-
tions, studies using milder paradigms, restricting sleep to
4–5 hours/night for several consecutive nights more closely
mimic chronic sleep loss present in today’s lifestyles. Despite
the heterogeneity of study designs, partially sleep-deprived
subjects also exhibited impairments in numerous parame-
ters of glucose tolerance and insulin sensitivity [80-87].
Interestingly, the metabolic profile observed after sleep re-
striction shared several similarities with T2DM, including
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decreased muscle glucose uptake, increased liver glucose
output and pancreatic β-cell dysfunction [80,83,84,88].
Mechanisms

Endocrine Despite the clear association between short
sleep and metabolic impairments, the underlying endocrine
and molecular mechanisms remain only partially eluci-
dated. Among the suggested mechanisms, the causal role of
the hypothalamo-pituitary-adrenal (HPA) axis and sympa-
thetic activation are supported by the largest body of litera-
ture. Circulating cortisol, assessed either by 24 h profiles or
by single measurements of evening cortisol levels, were ele-
vated together with markers of sympathetic activation [81]
and circulating catecholamines [86] after total or partial
sleep deprivation [79-81,83,89,90] as well as in short
sleepers [91]. In contrast, some studies reported impair-
ments in glucose homeostasis in sleep restricted individuals
along with unchanged cortisol and catecholamine levels
[82-84,88]. The complexity of associated endocrine mecha-
nisms can be further demonstrated by observations of ele-
vated levels of pro-inflammatory cytokines, lower circulating
testosterone, decreased thyroid stimulating hormone levels,
impaired pulsatility of growth hormone secretion [81,92,93]
and changes in adipokines secreted from adipose tissue
[94-96] in short sleepers [97-103] as well as after sleep
deprivation [104-107] (also reviewed in [108]).
Appetite regulation Prospective and cross-sectional
studies have also identified short sleep duration as an
independent risk factor for weight gain and abdominal
fat accumulation (as reviewed in [109,110]). Experimen-
tal evidence supports this association, since sleep-
restricted subjects express a preference for fat and
carbohydrate rich foods [111,112] and increase their
daily caloric intake by ≈ 20% [112-116]. It is therefore
reasonable to suggest that insufficient sleep stimulates
food intake [117] and contributes to the development of
obesity and metabolic syndrome. Furthermore, short
sleep duration decreased the amount of fat overweight
subjects lost during caloric restriction [118]. Within the
complex network of factors regulating food intake [119], in-
creased drive to eat in subjects exposed to sleep deprivation
[81,111,118,120-122] or in patients with short sleep duration
[39,123] has been linked to decreased leptin (limits food in-
take, secreted from adipose tissue) and elevated ghrelin (in-
creases food intake, secreted mainly from the stomach)
plasma levels. However, opposite or conflicting results have
also been published [79,85,90,114,116,118,124,125] pointing
to the role of other factors, e.g. decreased levels of anorexi-
genic peptide YY (PYY) [126]. In summary, it is safe to
conclude that development of obesity, due to neuroendo-
crine changes, induced by inadequate sleep represents an
additional independent risk factor for the development of
metabolic abnormalities.

Circadian misalignment and shift working
Peripheral tissue pacemakers
Non-traditional work schedules (including shift and night
work) together with travel across time zones represent typ-
ical examples of circadian disruption. Under these circum-
stances, behavioral cues such as physical activity, food intake
and sleep/wake cycling are misaligned with the autonomous
timing of the central pacemaker located in the hypothalamic
suprachiasmatic nucleus (SCN). Furthermore, cells of per-
ipheral organs involved in metabolic control including the
liver, adipose tissue and muscle express a functional network
of pacemaker genes and exhibit circadian cycling in expres-
sion of these genes, similar to the autonomous circadian
rhythmicity observed in the SCN. As a result, expression of
hundreds of tissue-specific genes undergo circadian vari-
ation in peripheral tissues [127-130].
Because pacemakers in peripheral tissues do not get any

direct information about the day/night cycle, other
mechanisms have developed to secure harmonious
synchronization of metabolic functions in peripheral tis-
sues with the SCN (which receives information about
light intensity through direct retinal projections). At the
transcriptional level, entrainment of metabolic function in
peripheral tissues could be mediated by glucocorticoids.
Plasma levels of cortisol (or corticosterone in mice) ex-
hibit a rigid circadian variability persisting even under
conditions of experimental forced desynchronization [22].
Glucocorticoid synthesis and release is controlled by a
peripheral clock-oscillator [131] entrained to the SCN via
direct sympathetic innervation of the adrenals [132-134].
The resulting circadian oscillations in plasma glucocortic-
oid levels induce oscillations in gene expression in target
tissues (e.g. the liver) by binding to the promoter region of
the Per gene, which represents a key component of the
peripheral pacemaker network in the liver, adipose tissue
and skeletal muscle [135-140]. The unique feature of per-
ipheral oscillators is that they can be entrained by external
cues. For example, nutrition has been identified as a
potent zeitgeber for peripheral pacemakers even when
clock genes were deleted or the SCN damaged [141,142].
Similarly, physical activity and exercise have been shown
to entrain peripheral oscillators especially in skeletal
muscle [140].
Together with the transcriptional regulation of genes par-

ticipating in peripheral pacemaker activity, metabolism in
peripheral tissues can be synchronized with SCN via endo-
crine mechanisms. For example, metabolic responses to os-
cillations in plasma levels of melatonin (a hormone released
from the pineal gland under direct SCN control) were doc-
umented in fat [143], muscle [144-146], the liver [147,148]
and the pancreas [149]. Studies revealed that melatonin (or
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melatonin receptor agonist) administration improved glu-
cose homeostasis through various mechanisms including en-
hanced glucose uptake, increased glucose-induced insulin
secretion, improved insulin sensitivity or decreased liver glu-
coneogenesis in various animal models [144,145,147,148,
150-159]. Melatonin or melatonin receptor agonists also in-
creased glycogen synthesis in hepatocytes [147], limited fat
accumulation in adipocytes [160] and even decreased adi-
posity in humans [161] and rats [162]. Additionally, growth
hormone [163], thyroid stimulating hormone [164] and dir-
ect sympathetic innervation of peripheral tissues [165] also
exhibits strong circadian rhythmicity and contributes to en-
trainment of peripheral pacemakers to the SCN and the
metabolic needs of the whole organism.

Metabolic impact of shift working
The harmony between pacemakers located in the SCN
and peripheral tissues and their synchronization with en-
vironmental and behavioral cycles such as light/dark
cycle, sleep/wake cycle, food intake and physical activity
is challenged by shift work and long-distance travel.
Complete re-setting of the central biological pacemaker
to a night shift work is extremely rare in humans, espe-
cially under rotating shift schedules [166-170]. Incom-
plete adaptation to irregular sleep pattern results in a
significant misalignment between biological pacemakers
and the living environment. Metabolically active tissues
obtain environmental cues (e.g. nutrition and physical
activity) at inappropriate “central” times or at an in-
appropriate times of their own pacemaker cycle. Align-
ment of central and peripheral pacemakers is important
for survival and overall needs of the organism [171],
while dyssynchrony results in serious consequences
including increased cardiovascular mortality and mor-
bidity [172-178] and higher risk of cancer (reviewed in
[179,180]).
Shift work and circadian misalignment profoundly im-

pair metabolic function and glucose homeostasis. Cross
sectional and retrospective studies have found a higher
prevalence of T2DM [181-183], glucose intolerance
[183], insulin resistance [184,185] and metabolic syn-
drome in shift workers [186-188]. Furthermore, a meta-
analysis of observational studies confirmed higher risk of
T2DM in shift workers, particularly men, in all shift-
working schedules except evening and mixed shifts
[189]. Shift workers also gained more weight over time
[190,191]. Causal effect of shift work in the development
of metabolic abnormalities has been corroborated in sev-
eral prospective studies conducted in men and women
who engaged in shift work. The studies found a higher
risk of developing metabolic syndrome [192-196] and
T2DM [176,197-201], although some of these findings
lost significance after being adjusted for changes in body
weight. All of the above effects seem to resonate in
patients who have already developed diabetes and seem
to be especially affected by the negative consequences of
shift work. Elevated HBA1C levels were reported in dia-
betics engaged in shift work and insufficient diabetes
control was linked to the duration of shift work employ-
ment and the number of hours worked per shift
[177,182,192,193,201].

Mechanisms
Studies using mice with whole-body or organ-selective
mutations in pacemaker genes have demonstrated the
crucial role of central and peripheral pacemakers in the
regulation of glucose levels, glucose tolerance, insulin
sensitivity, insulin secretion and food intake [202-208].
For example, liver-specific loss of the Bmal gene induces
hypoglycemia and altered expression of genes involved in
glucose metabolism [209], while the β-cell-specific Bmal
gene deletion results in hyperglycemia and impaired
glucose-induced insulin secretion [205] caused by exces-
sive production of reactive oxygen species [203]. Similarly,
mice fed under conditions of central and peripheral pace-
maker misalignment gained more weight and developed
insulin resistance [210]. Additionally, healthy human vol-
unteers subjected to circadian misalignment exhibited de-
creased insulin sensitivity, impaired compensatory insulin
secretion and increased CRP (C-reactive protein) despite
preserved total sleep time [211]. These regulations were
also observed in shift work subjects, where plasma glucose
and insulin responses to a test meal were significantly
higher when identical food was administered during the
night as opposed to during the day [212]. In parallel, insu-
lin resistance and hyperinsulinemia were observed in shift
work individuals [212,213].
Prolonging the natural 24-hour day to 28 hours (or

more) for several consecutive days provides an experi-
mental tool to investigate the metabolic impact of circa-
dian misalignment and shift work independently of the
possible influence of circadian oscillations in metabolic
and endocrine pathways. Using such an experimental
paradigm of forced dyssynchrony in human volunteers re-
sulted in elevated glucose and insulin levels along with im-
paired glucose tolerance and pancreatic β-cell dysfunction
[22,84]. Additionally, circadian disruption accelerated dia-
betes development in diabetes-prone rats due to apoptosis
of insulin secreting β-cells [214].
Recent studies have identified elevated FFA levels,

decreased leptin levels and a disrupted cortisol rhythm as
possible endocrine mechanisms contributing to the develop-
ment of insulin resistance and β-cell dysfunction in shift
workers and/or after circadian disruption. Furthermore, in-
creased secretion of pro-inflammatory cytokines by macro-
phages has been reported after circadian disruption in mice
[203,215], suggesting a putative mechanism for the overall
pro-inflammatory activation typical of T2DM [216].



Briançon-Marjollet et al. Diabetology & Metabolic Syndrome  (2015) 7:25 Page 6 of 16
Obstructive sleep apnea syndrome (OSA)
Metabolic impact of OSA
Obstructive Sleep Apnea Syndrome (OSA) is a common
sleep disorder with a recognized prevalence of 3 - 7% in the
general population. Its prevalence is actually increasing
along with the prevalence of obesity, which represents the
most important risk factor for OSA [217]. OSA is about
twice as common in men than in women [218,219]. OSA is
characterized by repeated obstructions of the upper airways
during sleep, causing intermittent oxygen desaturations and
arousals during sleep. OSA is widely recognized as an inde-
pendent risk factor for cardiovascular diseases [220-222].
Moreover, a growing body of evidence suggests that OSA is
also associated with a number of metabolic alterations such
as dyslipidemia, insulin resistance, glucose intolerance and
T2DM. This has been reviewed extensively in the last few
years [223-226]. Several cross-sectional studies have shown
that obstructive sleep apnea impaired glucose tolerance
and/or insulin sensitivity, as measured by HOMA-IR, even
after adjusting for BMI [227-230]. Overall, it has been re-
ported that the prevalence of prediabetes, assessed by insu-
lin resistance and glucose intolerance, was higher in OSA
patients than in controls with estimates varying from 20 to
67% [231]. More importantly, the severity of nocturnal hyp-
oxia in non-obese OSA patients was associated with insulin
resistance [232], suggesting that the OSA-related hypoxia-
reoxygenation sequences play a major role in this metabolic
dysfunction.
In large longitudinal studies, such as the Wisconsin co-

hort or the Busselton Health Study, the authors were able
to demonstrate that OSA was associated with a higher
prevalence of T2DM over 2 to 11 year follow-up periods
[233-236]. Meta-analysis of prospective studies confirmed
that moderate to severe OSA increases the risk of devel-
opment of T2DM by approx 60% [237]. Finally, based on
the hypothesis that OSA can cause insulin resistance and
diabetes, several studies have investigated whether OSA
treatment by CPAP could reverse these deleterious effects.
Uncontrolled studies examining the effect of CPAP on
glucose tolerance and insulin sensitivity in OSA patients
with or without diabetes have yielded mixed results, lead-
ing to no clear conclusion [231]. Of the nine randomized
controlled trials that have examined the effect of CPAP
(compared with sham- CPAP) on glucose metabolism,
only four studies demonstrated beneficial effects for thera-
peutic CPAP [231]. However, it should be emphasized that
overall compliance with CPAP therapy has been demon-
strated to be rather limited [238] and could influence out-
comes of published studies. Recent study showed that
CPAP use limited to 4 hours/night (traditionally consid-
ered as the lower limit of “compliant” CPAP use) would
not sufficiently treat REM-associated apneas and hypop-
neas, which are closely associated with HBA1c levels
[239]. Only minor improvements in glucose control can
thus be expected with 4 hours/night CPAP use and pro-
longed CPAP therapy (i.e. 7 hours/night) was calculated as
necessary to achieve clinically significant improvements in
HBA1c levels [239]. Similarly, changes in HBA1c levels
were associated with CPAP use only in those T2DM pa-
tients, who used CPAP for more than 4 hours/night [240].
Non-Alcoholic Fatty Liver Disease (NAFLD), a prevalent

liver disease in which fat excessively deposits in the liver, has
been recently associated with OSA [241]. NAFLD is related
to insulin resistance and is included among the clinical con-
ditions associated with metabolic syndrome. Interestingly, it
was suggested that OSA-induced intermittent hypoxia was
associated with hepatic fibrosis and inflammation in both
obese or non-obese patients [242-245]. Minville et al. further
suggested that the severity of nocturnal hypoxia was inde-
pendently associated with steatosis, and that pre-existing
obesity exacerbated this effect [246]. These results were con-
firmed in pediatric OSA patients [247].
Mechanisms
Intermittent hypoxia

Whole-body effects of intermittent hypoxia Numerous
studies have investigated the link between intermittent
hypoxia, as a component of OSA, and insulin resistance.
In several rodent models, chronic exposure to IH in-
duced impaired glucose tolerance (GTT) [248-250], in-
creased HOMA index [251-253] and impaired glucose
clearance [254]. Moreover, acute IH exposure of healthy
human volunteers resulted in a decrease in insulin sen-
sitivity and glucose effectiveness (the ability of glucose
itself to stimulate glucose uptake and suppress hepatic
glucose production) [255].
Overall, CIH appears to be responsible for carbohydrate

dysregulation, nonetheless, the mechanisms involved re-
main unclear. In the following sections, we will review the
consequences of IH on insulin target tissues, namely the
liver, skeletal muscle, the pancreas and adipose tissue
(summarized in Figure 2), with special emphasis on the
molecular mechanisms involved, such as impaired lipid
metabolism, inflammation, oxidative stress and sympa-
thetic nervous system activation.
Impact of IH on the liver Structural damage. Studies have
demonstrated that CIH can induce liver damage and
increase serum levels and activity of key liver enzymes such
as serum aspartate aminotransferase, alanine aminotransfer-
ase and alkaline phosphatase in both mice and humans
[251,256-258]. Several weeks of IH exposure resulted in liver
steatosis, necrosis, inflammation with neutrophil accumula-
tion and collagen deposits [256,257,259]. While triglyceride
content is increased by CIH in lean and obese mice
[251,257], hepatic cholesterol content appears to be depleted



Figure 2 Mechanisms linking intermittent hypoxia to impaired glucose metabolism. Intermittent hypoxia acts on pancreatic insulin production
and secretion as well as on insulin target organs such as adipose tissue, liver and skeletal muscle. These combined effects induce impaired glucose
tolerance, insulin resistance and dyslipidemia. Intermittent hypoxia effects may be direct and/or mediated through the activation of the sympathetic
nervous system. HIF-1α (hypoxia inducible factor 1-alpha), NF-κB (nuclear factor-κB), GLUT4 (glucose transporter type 4).
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after 12 weeks of IH but was, by contrast, increased after
6 months in another study [257,258].
Exposure to IH led to increases in key lipid biosynthesis

enzymes in the liver (SREBP-1, SCD-1 or HDL receptor)
[260,261], at least partly mediated by HIF-1 transcription
factor [262]. Glucose production is upregulated by IH, as
supported by the observation of higher glycogen content
[257,258], increased gene expression and protein levels of
key gluconeogenic enzymes [250] and increased glucose
output from isolated hepatocytes [250].
Oxidative stress and inflammation. Nitric oxide me-

tabolites as well as liver iNOS levels have been shown to
be increased by CIH along with reduced activity of liver
antioxidant enzymes and DNA damage and apoptosis
[256,263]. Moreover, IH resulted in increased lipid
peroxidation and up-regulated p47phox expression
and phosphorylation [264]. Pro-inflammatory cytokines,
TNFα and Macrophage Inflammatory Protein 2 (MIP2)
expression were unaffected by IH in lean mice but were
increased in obese mice exposed to 4 weeks of IH [251].
However, longer periods of IH enhanced liver pro-
inflammatory cytokines, such as IL-1β, IL-6 and MIP2
in lean mice, together with activation of the pro-
inflammatory transcription factor NFkB [258]. Also,
both HIF-1α and NFkB transcription factors have been
shown to be up-regulated in the liver after 5 weeks of
IH [263].
Overall, experimental evidence suggests that IH pro-
motes liver injury and increases hepatocyte glucose out-
put through several mechanisms. It should be noted that
structural and functional lesions observed in IH-exposed
livers resemble those of non-alcoholic fatty liver disease
(NAFLD), a prevalent liver disease associated with OSA
[246,265]. Therefore, apnea-related intermittent hypoxia
appears to play a major role in OSA-related liver injury.
Impact of IH on skeletal muscle As the principal
insulin-sensitive organ, skeletal muscle is responsible
for 80 to 90% of insulin-induced glucose uptake. How-
ever, probably because of the lack of consensus about
the time-course of insulin resistance development, very
few studies have focused on skeletal muscle metabolism
in response to IH. It was suggested that IH-induced
modifications of muscle metabolism were characterized
by a decrease in creatine phosphate, citrate, alpha-
ketoglutarate and glutamate content and by alterations
in the anaerobic glycolytic pathway [266]. More re-
cently, Liyori et al. observed a decrease in glucose me-
tabolism in the soleus, a mostly oxidative muscle, using
a mice model of CIH [252]. Finally, an alteration of the
cytosolic-to-membrane translocation of GLUT4 that
could provide an explanation for the development of IR
in mice exposed to CIH [267].



Briançon-Marjollet et al. Diabetology & Metabolic Syndrome  (2015) 7:25 Page 8 of 16
Impact of IH on the pancreas Insight into the effects of
IH on pancreatic function is of great importance for under-
standing mechanisms leading to impaired glucose homeo-
stasis. Although many hypotheses have been proposed, only
a few have been confirmed [268]. In severely obese adults,
OSA was independently associated with an increase in basal
pancreatic beta-cell function although glucose metabolism
remained normal [269]. On the other hand, pancreatic insu-
lin secretion was not affected in healthy volunteers exposed
to IH, although insulin sensitivity and glucose effectiveness
were diminished [255]. In mice exposed to CIH, beta-cell
death as well as proliferation were observed [270,271]. Due
to down-regulation of the enzyme prohormone convertase 1
(converting proinsulin to insulin), insulin content was de-
creased in islets from CIH-treated mice [272]. In-vitro cellu-
lar experiments have also suggested that IH exposure
diminished glucose-induced insulin secretion due to down-
regulation of CD38 gene transcription, which is involved in
Ca2+ mobilization and thus insulin secretion [273]. Finally,
studies in mice models using antioxidant strategies sug-
gested that ROS are involved in IH-induced pancreatic dam-
ages [271,272].

Impact of IH on adipose tissue Adipose tissue is gen-
erally recognized as a key player in insulin resistance.
Free fatty acids (FFA) released by lipolysis of adipose tis-
sue are able to induce insulin resistance through their ef-
fects on muscle, liver and adipose tissue itself (see [274]
for review).
Results from several studies showed that IH can cause

dyslipidemia through an increased FFA release [275-277]
than can be normalized by oxygen supplementation in
humans [276] and is accompanied with morphological
and functional remodeling of the adipose tissue in mice
[277]. Moreover, IH-induced dyslipidemia can also be re-
lated to decreased lipoprotein clearance due to the inhib-
ition of lipoprotein lipase (LPL) mediated by HIF-1 and
Angiopoietin-Like 4 (Angptl4) [249,277,278]. Finally, Iin-
termittent hypoxia down-regulates adiponectin in 3 T3-L1
adipocytes [279], which is a potent insulin-sensitizing hor-
mone and increases adipose tissue production of resistin
that can contribute to the development of insulin resist-
ance through pro-inflammatory processes involving TNFα
and IL-6 production [280].

Sympathetic nervous system activation
Healthy adults display lower sympathetic nervous system
(SNS) activity during sleep than during wake-time. In con-
trast, OSA patients exhibit high level of sympathetic ner-
vous system activity during both wake-time and sleep,
accompanied by higher levels of circulating catechol-
amines [281,282]. Both human and animal models of IH
reproduce this phenotype. Indeed, IH exposure has been
shown to increase sympathetic nervous system activity in
healthy humans [283] and in rodents [284,285]. Oxidative
stress, increased HIF-1α signaling and decreased HIF-2
signaling as well as endothelin-1 have been proposed as
key mechanisms in IH-induced SNS activation [286].
Increased sympathetic tone strongly impacts lipid and

glucose metabolism, through circulating factors as well as
neural innervation of the liver, pancreas, skeletal muscle
and white adipose tissue [287-289], depicted in Figure 2.
Adrenal epinephrine released during sympathetic activation
triggers glucose production and impairs insulin secretion,
thereby promoting insulin resistance [290]. Consistently,
sympathetic nervous system inhibition by carotid body de-
nervation abolished insulin resistance in a rat model of diet
induced obesity [291] and abolished IH-induced fasting
hyperglycemia and HOMA-IR elevation [292]. Moreover,
epinephrine, and to a lesser degree norepinephrine, have
been largely studied and acknowledged as crucial mediators
of adipose tissue lipolysis [293,294] acting through several
β-adrenoceptor subtypes [295,296]. It is therefore tempting
to postulate that IH-induced lipolysis and insulin resistance
might be mediated through sympathetic nervous system ac-
tivation. Finally, sympathetic innervations could be involved
in hepatic glucose release [297] and in muscle insulin resist-
ance [298]. In human volunteers, a 5 hour IH exposure
induces a decrease in insulin sensitivity along with an in-
crease in sympathetic nervous system activity but to date
no causal link has been demonstrated [255]. Even though
using α-blockers or inhibiting epinephrine release by ad-
renal medullectomy improved glucose tolerance [299,300]
and phentolamine treatment additionally prevented impair-
ments in insulin secretion induced in mice by IH [299], the
impact of IH on insulin sensitivity seems to be independent
of autonomic activity as neither medullectomy, phentola-
mine treatment or administration of SNS blocking agent
hexamethonium improved IH-induced insulin resistance in
mice [252,299,300]. More studies are therefore needed to
clarify the involvement of SNS activation in IH-induced
metabolic dysregulation.

Sleep fragmentation
Apneic episodes, a cornerstone of OSA, are associated
with bouts of increased brain activity (arousals) leading to
repetitive partial or full awakenings and thus, sleep frag-
mentation [301]. Taking into consideration the multiple
detrimental metabolic consequences of intermittent hyp-
oxic exposure, the obvious question with important clin-
ical and therapeutic implications has been asked: does
sleep fragmentation per se, without concomitant hypox-
emia contribute to the development of metabolic impair-
ments observed in OSA?
Sleep fragmentation represents a situation where total

sleep duration is preserved, but continuous sleep and its
architecture is interrupted by internal (e.g. arousals in OSA)
or external (e.g. auditory stimuli in experiments) factors.
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Experimental studies using sleep fragmentation paradigm
showed, that disruption of sleep by auditory and mechanical
stimuli for two to three nights decreased insulin sensitivity
[302-304], which was not compensated by increased insulin
secretion [303], suggesting that such exposures compromise
fundaments of glucose homeostasis and induce impairments
typical for pathogenesis of T2DM.
Epidemiological studies support the experimental evi-

dence. Number of arousals was closely associated with
fasting insulin levels and insulin resistance even after ad-
justments for age and severity of adiposity in young adults
[301] and EEG cues of wake/sleep transitions were associ-
ated with decreased insulin sensitivity and impaired insu-
lin secretion independently of age, sex, body mass index,
sleep stages, the arousal index, and the apnea-hypopnea
index [305]. Importantly, it was observed that sleep frag-
mentation exerts a negative impact in subjects with clinic-
ally manifested diabetes, as suggested by a community-
based study investigating middle-age adults assessing sleep
using wrist actigraphy which demonstrated that sleep frag-
mentation was associated with higher fasting glucose and
insulin levels as well as with reduced insulin sensitivity in
patients with T2DM, but not in non-diabetics [56]. Add-
itionally, sleep of patients with T2DM is characterized by
higher sleep fragmentation scores detected by wrist acti-
graphy [306].
Mechanisms linking sleep fragmentation to altered meta-

bolic control probably include elevated night and morning
cortisol levels [302,307] as well as sympathetic activation
[302]. Additionally, sleep fragmentation is independently
associated with increased adiposity [308] and less weight
reduction during weight loss program [309]. Experiments
performed in rodent models of acute and prolonged
(2 weeks) sleep fragmentation confirmed increased adipos-
ity, insulin resistance, hyperglycemia and impaired insulin
secretion [310-312]. Additionally, animal demonstrated in-
creased markers of inflammation and oxidative stress in adi-
pose tissue, in parallel to elevated corticosteroid levels
[310,313]. Sleep fragmentation in mice also induced
changes in visceral adipose tissue transcriptome with
modifications in signaling and metabolic pathways in-
cluding glucose metabolism [314] and adipocyte differ-
entiation [315], however it is not known, whether these
changes happen also in humans. Besides endocrine effects,
sleep fragmentation seems to also have epigenetic effects
demonstrated by insulin resistance and increased body
weight of offspring of pregnant dams exposed to sleep frag-
mentation [316].
Sleep fragmentation is typically accompanied by a re-

duction in slow-wave sleep duration, which represents an-
other mechanism for impaired glucose metabolism. It has
been proposed that slow-wave sleep is particularly import-
ant for metabolic homeostasis as selective suppression of
slow-wave sleep (SWS), without perturbation of total sleep
time, resulted in glucose intolerance, insulin resistance
and impaired β-cell function [303]. Selective SWS sup-
pression (but not REM sleep suppression) also elevated
morning glucose and insulin levels and impaired post-
prandial glucose homeostasis in healthy men [317]. Fur-
thermore, sleep fragmentation impaired satiety perception,
impaired insulin and glucagon-like peptide 1 response to
meals [304] and reduced fat oxidation [318], making sub-
jects prone to adipose tissue accumulation, especially
under conditions of reduced satiety perception [304]. The
importance of SWS in glucose homeostasis is further sup-
ported by cross-sectional studies documenting that SWS
duration is strongly predicting glucose-induced insulin se-
cretion in obese individuals [43] as well as by studies
reporting shorter SWS in T2DM compared to nondiabetic
subjects [58]. Importantly, duration of SWS was negatively
associated with HbA1c levels also in T1DM patients
[319], suggesting a global position of SWS in the regula-
tion of glucose metabolism, independently of obesity or
pathogenesis of T2DM. In contrast, REM sleep duration
seems to be more related to energy homeostasis, as reduc-
tion in REM sleep is associated with obesity in children
and adults [320-322], which could be at least partly ex-
plained by increased metabolic rate during REM sleep,
which is lost with REM time reduction [323].

Conclusions
In this review, we summarized the current knowledge of
molecular and endocrine mechanisms underlying independ-
ent and possibly causal associations between short sleep, cir-
cadian rhythm disruption (as observed with shift working)
and OSA with glucose intolerance, insulin resistance, im-
paired insulin secretion and ultimately T2DM. Based on the
literature, it can be concluded that hypothalamic-pituitary-
adrenal axis activation with increased circulating cortisol
levels, misalignment between central and peripheral pace-
makers, enhanced lipolysis and modified adipokine release
in adipose tissue and intermittent hypoxia-induced sympa-
thetic nervous system activation, generation of reactive
oxygen species and the induction of a whole-body pro-
inflammatory state are the most likely mediators. Several of
these mechanisms represent potential drug targets, however
future research is warranted to determine, whether targeting
the above mentioned molecular regulations would provide
metabolic benefit in patients with inappropriate sleep.
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