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Abstract

this conceptual knowledge into clinical benefit.

Over the past decades evidence has accumulated clearly demonstrating a pivotal role for the sympathetic nervous

system (SNS) and its neurotransmitters in regulating inflammation. The first part of this review provides the reader with

an overview showing that the interaction of the SNS with the immune system to control inflammation is strongly
context-dependent (for example, depending on the activation state of the immune cell or neuro-transmitter concentration).
In the second part we focus on autoimmune arthritis as a well investigated example for sympathetically controlled
inflammation to show that the SNS and catecholamines play a differential role depending on the time point of ongoing
disease. A model will be developed to explain the proinflammatory effects of the SNS in the early phase and the
anti-inflammatory effects of catecholamines in the later phase of autoimmune arthritis. In the final part, a conceptual
framework is discussed that shows that a major purpose of increased SNS activity is nourishment of a continuously
activated immune system at a systemic level using energy-rich fuels (glucose, amino acids, lipids), while uncoupling from
central nervous regulation occurs at sites of inflammation by repulsion of sympathetic fibers and local adrenoceptor
regulation. This creates zones of ‘permitted local inflammation’. However, if this ‘inflammatory configuration” persists and is
strong, as in autoimmunity, the effects are detrimental because of the resultant chronic catabolic state, leading to cachexia,
high blood pressure, insulin resistance, and increased cardiovascular mortality, and so on. Today, the challenge is to translate

Introduction

The sympathetic nervous system (SNS) is an integrative
system that reacts to dangerous situations, and activa-
tion of the SNS is part of the classical ‘fight and flight’
response. This is common knowledge. However, the SNS
is not active just in these extreme situations, but is part
of constant regulatory machinery that keeps body func-
tions in a steady-state equilibrium. Of course, the SNS is
not alone in performing these tasks but is interwoven
into complex regulatory circuits. Therefore, it is not pos-
sible to analyze the action of the SNS in inflammation
without considering the other important players, like the
hypothalamic-pituitary-adrenal (HPA) axis, and the sen-
sory nervous system and vagal nervous system (VNS).
For a detailed description of the functional anatomy of
the autonomous (SNS and VNS) and sensory nervous
system, as well as the HPA axis, we refer the reader to
respective standard textbooks of physiology since this is
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established and common knowledge and a detailed de-
scription would go beyond the scope of this review. In
the first part of this review we focus on important high-
lights concerning the SNS and inflammation. In the sec-
ond part, the standalone facts will be integrated to try to
understand the deeper meaning of this regulatory ma-
chinery in inflammatory disease. As an example, we refer
to findings concerning neuroendocrine immune regula-
tion in arthritis.

Review criteria

This review is based on a systematic search of the
PubMed database using the search terms ‘sympathetic
nervous system’, ‘peripheral nervous system’, ‘nerve fiber’,
‘neuroimmun®, ‘norepinephrine’, ‘arthritis’, ‘collagen induced
arthritis’, ‘rheumatoid arthritis’, ‘autoimmune diseases’,
‘autoimmunity’. Articles (including abstracts) published in
English or German up to March 2014 were considered.
All retrieved articles were screened for eligibility based on

title, abstract, and full content.
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The sympathetic nervous system and
inflammation

It was noted some time ago that the SNS and inflamma-
tion are close partners. One of the first mentions of the in-
fluence of the SNS on inflammation can be found in an
article from 1903. The authors performed surgical local
sympathectomy of the ear of rabbits after provoking in-
flammation by inoculation with staphylococci. They con-
cluded that “....relations of the sympathetic nerve ... to the
course of inflammation, ... are due to some nervous func-
tions of the sympathetic nerve other than... vasoconstric-
tion and vasodilatation’ [1]. Already in 1936, Reilly
speculated that endotoxin concentrates in sympathetic tis-
sue and irritates sympathetic nerve fibers, which results in
a systemic reaction that resembles symptoms of typhoid
fever [2]. This view, of course, was very rudimentary but
this theory already implied that there is some crosstalk be-
tween the SNS and inflammation, and that both systems
interact with each other.

Today our understanding of this relationship is more
detailed. When an antigen enters the body, local activation
of immune cells leads to release of proinflammatory medi-
ators, which are able to excite or lower thresholds of affer-
ent nociceptive and afferent vagal nerve fibers [3]. If the
neuronal signal strength is strong enough or if spillover of
local inflammatory mediators into the circulation is robust
enough, it signals to the brain, resulting in activation of
the two major stress axes, the HPA axis and the SNS [3,4].
Cytokines like interleukin (IL)-1p [3,5] or tumor necrosis
factor (TNF) [6] produced by locally activated innate im-
mune cells are pivotal in this communication from im-
mune system to central nervous system.

Vice versa, central sympathetic activity has a direct im-
pact on inflammatory cytokines. In a study with hyper-
tensive patients, central inhibition of the SNS decreased
peripheral TNF serum levels [7]. In another study, sym-
pathetic tone was positively correlated with IL-6 plasma
levels [8]. Similarly, stress responses that modulate SNS
activity have great impact on inflammation [9]. However,
there might be a disruption of this communication be-
tween the brain and the immune system in the course of
protracted inflammation, as shown in an arthritis model
in rats [10]. This disruption is beneficial on a systemic
level, which is discussed below.

In the mid-1980s, it was recognized that secondary
lymphoid tissue is highly innervated by sympathetic nerve fi-
bers and sympathetic nerve terminals are found in close
proximity to immune cells, especially in primary and sec-
ondary lymphoid tissue [11]. Immune cells express receptors
for neurotransmitters, for example, adrenoceptors (ARs),
which are functional and translate neuronal signals into im-
mune cell signals [12]. The communication between brain
and inflamed area can be disturbed, for example, by a stroke,
which results in asymmetric inflammation. This can lead to
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reduced inflammation on the paralyzed side in rheumatoid
arthritis, which was already recognized in 1962 [13].

In this respect, it has been shown that patients with
minor stroke [14] or poliomyelitis [15] show weaker de-
layed type hypersensitivity (DTH) responses on the paretic
side. After excluding changes in blood flow, the authors of
the latter study concluded that ‘... another mechanism,
such as a direct effect of sympathetic transmitters on in-
flammatory cells, may mediate the putative effects of the
SNS on DTH responses.’

Another clinically well recognized phenomenon after
stroke is immunosuppression. In a rat model of stroke,
the authors observed reduced infection rates following
sympathectomy, indicating SNS-mediated immunosup-
pression [16], which might depend on the type of infec-
tious agent [17].

The activation of the SNS in the context of an active
immune system results in release of sympathetic neuro-
transmitters. Notably, sympathetic nerves release not
only norepinephrine (NE) as the major neurotransmitter,
but also ATP, neuropeptide Y (NPY), and nitric oxide
[18]. All neurotransmitters have direct influence on im-
mune cells, although NE is the best characterized in this
respect. NPY, for example, has been shown to increase
adhesion of human leukocytes to endothelial cells [19],
and the NPY antagonist PP56 showed anti-inflammatory
effects in acute carrageenan-induced arthritis and
chronic adjuvant arthritis [20].

Sympathetic influence on immune cells can be direct, via
ARs on immune cells [4], or indirect via regulating blood or
lymph flow [21], regulating distribution [22] and production
[23] of lymphocytes, or modulating the release of proinflam-
matory peptides [24], like substance P from sensory nerve
endings, which among others express a-ARs [25] (Figure 1).
Inflammatory cell recruitment and redistribution is also con-
trolled by the SNS (Figure 1). One study showed that regula-
tion of circadian changes in leukocyte distribution involves,
among others, the activity of the SNS via -ARs expressed
on non-hematopoietic cells, leading to tissue-specific, differ-
ential circadian oscillations in the expression of endothelial
cell adhesion molecules and chemokines [22]. Another study
pointed out the role of SNS-dependent monocyte recruit-
ment from the spleen in experimental peritoneal infection
[17,26]. In addition, the generation of some leukocytes in
the bone marrow is influenced by the SNS via -ARs, result-
ing in preferential production of proinflammatory leukocyte
populations [23].

As a side note, there is a direct interrelation between
the SNS and the sensory nervous system, since the sen-
sory response is significantly modulated by sympathetic
signaling (for example, [27]). Such findings have also
been discussed in the context of understanding clinical
entities like the complex regional pain syndrome (for ex-
ample, [28]).
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Figure 1 Basic neuronal anti-inflammatory reflex. Local inflammation (the fire) is detected by vagal and sensory nerve fibers, which express
receptors for inflammatory mediators, like interleukin (IL)-13 (red dots). An afferent signal is generated and transmitted to the brain (central nervous
sytem (CNS)), which in turn leads to activation of the sympathetic nervous system (SNS), which has a complex impact on inflammation. Local release
of SNS neurotransmitters, like norepinephrine, at the site of inflammation or in secondary lymphoid organs has a net anti-inflammatory outcome. On
the other hand, non-specific immune stimulatory processes on a systemic level are supported, like recruitment of leukocytes, increased blood and
lymph flow, but also increasing antigen processing and presentation and provision of energy-rich fuels. Ln, lymph node.

TNF was the first cytokine whose production was the pattern of AR expression on immune cells [53], or
shown to be regulated by occupation of a-ARs or f-ARs  simply age [54].
by catecholamines [29,30]. Subsequently, a whole array Increasing the complexity of this matter, the VNS also
of other cytokines and immune cells has been demon- has profound effects on inflammatory responses. The ac-
strated to be influenced by AR stimulation, both in vitro  tivity of the VNS is increased following endotoxemia. In
and in vivo (for example, [31]). Selected examples of the  this respect, an ‘anti-inflammatory reflex’ has been pos-
direct modulation of immune cell function by sympa- tulated, with the efferent vagus nerve acting in an anti-
thetic neurotransmitters are presented in Table 1. inflammatory manner via release of acetylcholine and

Also, pathogens use the sympathetic machinery to  activation of a7-nicotinic acetylcholine (nACh) receptors
their advantage. For example, the cytomegalovirus im-  expressed on immune cells [55]. Since the spleen has no
mediate/early promotor can be stimulated directly via  parasympathetic innervation, it has been hypothesized
2-ARs of monocytes, leading to reactivation of the virus  that the efferent part of the vagus activates splenic SNS
[49]. NE release from sympathetic nerves in the gut is fibers that release NE from SNS nerve endings in close
inhibited by infection with Trichinella spiralis to  proximity to immune cells. Upon stimulation of ARs on
dampen the immune response against the pathogen [50].  a subset of CD4 T cells, these cells release acetylcholine,

The net effect of stimulating ARs on immune cells is  which in turn has an immunosuppressive effect via o7-
not straightforward because it strongly depends on the nACh receptors on macrophages [55]. However, this
context of exposure of receptive cells to sympathetic ~view has been challenged recently, since it has been
neurotransmitters; for example, the activation state of shown by retrograde and anterograde staining and elec-
the cell [45,51], the proximity of the cell to the source of  trophysiological experiments that there is no neural con-
neurotransmitters (since this determines neurotransmit- nection from VNS to SNS projecting to the spleen [56].
ter concentration at the receptor; Figure 2), the presence  This challenges the view that the vagus is indeed the
of factors that modulate the adrenergic response [52], effector arm of the ‘anti-inflammatory reflex’ [57].
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Table 1 Examples of direct sympathetic neurotransmitter immune cell interactions

Cell type Source Receptor/neurotransmitter Costimulus  Main effect Reference
concentration
Macrophage Bone marrow, mouse NE 107° M LPS Decrease CCR2 [32]
NE 1078 M, 10°° M None Decrease BMM proliferation
NE 1078 M LPS Increase maturation
NE 1078 M, 107° M None Increase phagocytosis
NET0® M, 107°M LPS Increase TNF
Spleen, mouse NE 1078 M LPS Increase TNF [29,33]
Spleen, mouse NE 107 M LPS Decrease TNF [29,33]
Peritoneum, mouse Neuropeptide Y Increase HMGB1 [34]
Dendritic Bone marrow derived, 32-AR NOD2 Increase 1L6 [35]
cell mouse agonist
TLR2 agonist  Decrease IL-12
32-AR Increase 1L-33 [36]
a2-AR Increase in antigen uptake [371
Human cord blood NE 107° M LPS Decrease IL12p40, TNF, IL-6, IL.-23 [38]
T cell Spleen, mouse 32-AR None Increase Treg apoptosis [39]
32-AR Anti-CD3 Decrease IL-2 in CD4 + CD62L+ cells [40]
B2-AR None Increase in Treg mediated cell
suppression
CIA, mouse NE ConA Increase IFN-y [41]
Splenic naive T cells 32-AR Anti-CD3 Decrease IL-2 [42]
Anti-CD28
32-AR Anti-CD3 Increase IFN-y per Th1 cell [43]
Anti-CD28
IL-12
T cell clone Neuropeptide Y None Decrease IFN-y [44]
Increase IL-4
B cell CIA, mouse 32-AR Anti-CD40/  Increase IL-10 [45]
IL-4
32-AR Anti-CD40/  Inhibits IL-7 receptor signaling [46]
IL-4
Naive, splenic B cells 32-AR CD40L/IL-4 Increase 1gG1, IgE [4748]

AR, adrenoceptor; BMM, bone marrow-derived macrophages; CCR2, C-C chemokine receptor type 2; CIA, collagen-induced arthritis; ConA, Concanavalin A; HMGB1,
high-mobility-group-protein B1; IFN, interferon; Ig, immunoglobulin; IL, interleukin; LPS, lipopolysaccharide; NE, norepinephrine; NO2, nucleotide-binding
oligomerization domain-containing protein 2; Th1, T helper 1; TLR2, toll-like receptor 2; TNF, tumor necrosis factor; Treg, regulatory T cell.

Furthermore, it has been shown that the efferent arm of
the ‘anti-inflammatory reflex’ to lipopolysaccharide chal-
lenge is primarily the splanchnic sympathetic nerve act-
ing on immune cells in the spleen [58] (Figure 1).

Thus, there is no simple statement like ‘norepinephrine is
anti- or pro-inflammatory’. It is better to say ‘norepinephrine
modulates immune function in a context-dependent man-
ner’. It gets even more complex when the release of co-
transmitters, which is dependent on the firing rate of sympa-
thetic nerve fibers [59], and neuroanatomical facts are taken
into account, because all known co-transmitters like NPY,
ATP, and nitric oxide are potent immune modulators and,
thus, effects superimpose on each other. To answer the

question about the role of the SNS in inflammation, re-
search at the single cell level is important to understand
basic regulatory mechanisms. However, the complexity of
the interrelation between different factors is challenging. In
addition, it has to be respected that the SNS also interacts
with non-immune cells to modulate release of inflammatory
mediators. For example, endothelial cells can be stimulated
to increase release of IL-6 via NE and ATP from SNS nerve
terminals [60].

Another approach to understand the role of the SNS
in inflammation is to investigate the overall effect of
SNS activity on clinical outcomes. Well-known clinical
phenomena, like the reactivation or first occurrence of
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Figure 2 Catecholamine effects depend on the distance from catecholamine source. o- and 3-adrenoceptors (ARs) show different binding affinities for
catecholamines. Norepinephrine, the main neurotransmitter in the sympathetic nervous system (SNS), binds with higher affinity to a-ARs than 3-ARs.
Simultaneous expression of these receptors on immune cells (for example, macrophages (M®)) provides these cells with a passive means to determine
the distance to the next catecholamine source. In close proximity to the catecholamine source (for example, sympathetic nerve terminal or
catecholamine-producing tyrosine hydroxylase (TH)-positive cell) the concentration is high enough to activate 3-ARs, whereas at a greater distance
only a-ARs are activated. In the case of innate immune cells, like macrophages, this directly translates into anti-inflammatory (for example, increases in
interleukin (IL)-10 via 3-AR) or proinflammatory activity (for example, increases in tumor necrosis factor (TNF) via a-AR). Therefore, the simultaneous
expression of a-ARs and (3-ARs on immune cells provides a mean to regulate inflammatory processes dependent on the distance to the catecholamine
source. We hypothesize that the body uses this system to promote local inflammation by repulsion of sympathetic nerve fibers from inflamed areas

of anti-inflammation.

(zone of inflammation) and, at the same time, locally confines the inflammatory process by suppression of bystander activation in the zone

chronic inflammatory disorders like colitis or asthma
during or after episodes of psychological stress, have
been directly linked to the activation of the autonomic
nervous system [61,62]. Influence of the SNS on inflam-
mation at a systemic level has been demonstrated for
several disease models and entities like sepsis [17], colitis
[63], allergic asthma [47,61], chronic eye inflammation
[64], arthritis [51,65], endometriosis [66], T helper type
1-mediated skin diseases [67], influenza A [68], Chagas
disease [69], and chronic regional pain syndrome [70].
Evidence has also accumulated to show that chronic
activation of the SNS by changing function of immune
cells contributes to hypertrophy and fibrosis of the heart

[71]. Similarly, in a mouse model of primary biliary cir-
rhosis, blockade of sympathetic activity improved fibro-
sis [72]. It has been shown in a restraint stress paradigm
influenza model that the sympathetic component of the
stress response, possibly due to limiting otherwise detri-
mental specific effector cell activation, together with glu-
cocorticoids are responsible for better survival after
experimental infection [73].

There is also evidence that different forms of cancer
might be influenced by the SNS, including from experi-
mental animal data, epidemiological studies that show
the use of beta-blockers is beneficial for breast cancer
and melanoma, and studies showing that psychological
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stress might play a role in the pathogenesis of some can-
cers [74]. Taken together, these studies show that the
SNS plays an important role in several immune-
mediated or immune-related diseases.

Clinical models demonstrate that influencing the sym-
pathetic response impacts on the outcome. In a model
of acute septic inflammation, the adrenergic system has
a profound influence on cell proliferation, apoptosis, and
circulating immune cell subpopulations [75]. In a model
of polymicrobial sepsis by cecal ligation and puncture,
mechanisms through a-ARs increase mortality. In the
same system, it has been described that tyrosine hydrox-
ylase (TH) is markedly increased in sympathetic fibers of
the small intestine-associated SNS, resulting in enhanced
NE release [76]. Therefore, not only is response of im-
mune cells to SNS stimuli highly context-dependent, but
the nervous system itself also underlies plasticity de-
pending on the inflammatory context.

From our point of view, arthritis is the best investi-
gated disease entity concerning the influence of the SNS
on the inflammatory process. Therefore, the next section
focuses on this chronic disease to introduce current con-
cepts of SNS influence on inflammation.

The sympathetic nervous system and arthritis
Sympathectomy in patients with rheumatoid arthritis
was reported as early as 1927 (mentioned in [77]),
followed by several reports showing that pain as well as
joint swelling improved upon sympathectomy (for ex-
ample, [77]). In a double blind study in 1986, however,
overall pain decreased but no changes were recorded
with respect to morning stiffness or joint tenderness
[78]. This is in contrast to reports in animal models that
sympathectomy leads to less severe disease - for ex-
ample, in carrageenan-induced arthritis [79] or adjuvant
arthritis in rats [80]. In the latter model, spontaneous
hypertensive rats, which show higher activity of the SNS,
developed more severe arthritis [81]. It seems that this
proinflammatory effect of the SNS on early adjuvant
arthritis is caused by an increase in T helper type 1
lymphocyte (Thl) and Th17 responses [82].

A proinflammatory activity of the SNS was also shown
in the collagen type II model of arthritis [51]. In this
model, proinflammatory CD4 + CD25 + FOXP3- cells in-
duced this effect [83] (Figure 3). These results in human
and animal studies seem to be contradictory. However,
these divergent results can be explained by the import-
ance of the time point of sympathetic intervention. This
was clearly shown in the collagen type II model of arth-
ritis in DBA/1 mice, where early sympathectomy leads
to less severe disease, but late sympathectomy in the
chronic phase of the disease clearly has the opposite ef-
fect, resulting in increased disease activity [51]. How can
one explain this dichotomy?
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It has long been known that innervation, which is usu-
ally dense in synovial tissue, is lost during experimental
inflammation and in chronic inflammatory conditions
[84]. However, more recent studies showed that the loss
of innervation is a specific process and affects mainly
sympathetic nerves fibers, whereas sensory nerves re-
main in the inflamed region [85], an observation repro-
ducible in many inflammatory conditions of humans and
rodents. Recent research demonstrates an active process
possibly involving specific nerve repellent factors [86].

As a compensatory mechanism for this deprivation of
sympathetic neurotransmitters in the joint, cells that are
capable of producing neurotransmitters accumulate [87].
These TH-positive catecholamine-producing cells modu-
late inflammation dependent on the model used. In a
model of lung injury, a2-dependent proinflammatory ef-
fects of catecholamine-producing phagocytes were pos-
tulated [88]. On the other hand, in multiple sclerosis
[89] and human and experimental arthritis [87,90,91],
catecholamine-producing cells have anti-inflammatory
potential. These TH-positive cells are sensitive to sym-
pathectomy with 6-hydroxydopamine (a neurotoxin) or
anti-dopamine beta hydroxylase antibodies [90]. Since
TH-positive cells dominate the later phase of collagen
type Il-induced arthritis in the joint (they are also
present in synovial inflammation in chronic rheumatoid
arthritis), it is not surprising that depletion of these cells
by sympathectomy leads to aggravation of arthritis in
the late phase [51]. At the moment, however, the mech-
anism of anti-inflammatory action has not been fully
established in arthritis. Possibly, cCAMP content in TH-
positive cells is increased by autocrine mechanisms. In
this respect, it has been shown for regulatory T cells
(Tregs) that cAMP can be used as a direct immunosup-
pressive agent by transferring cAMP molecules from
Tregs via gap junctions into target cells [92]. Due to high
concentrations of neurotransmitters in the vicinity of
TH-positive cells, however, stimulation of $2-ARs on in-
nate immune cells might be the dominant immunosup-
pressive mechanism (Table 1, Figures 3 and 4).

An influence on adaptive immune cells like B cells has
also been shown. In the collagen-induced arthritis
model, B cells expressing IL-7 receptor are proinflam-
matory [46]. However, stimulation of f2-AR on B cells
results in loss of proinflammatory activity by inhibiting
IL-7 receptor downstream signaling (Figure 3). Another
possible explanation for the anti-inflammatory effects of
TH-positive cells is increased anti-inflammatory func-
tion, which is augmented by catecholamines in an auto-
crine or paracrine manner via ARs. In collagen type II-
induced arthritis, it has been shown that a subpopula-
tion of B cells might play a role in this respect [45]. NE
via f2-AR increased IL-10 production from B cells from
arthritic animals (Figure 3), and these cells were anti-
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Figure 3 Current model of sympathetic nervous system influence in arthritis. In early arthritis (left panel), the sympathetic nervous system (SNS)
supports inflammation in the joint through a proinflammatory influence on adaptive immune cells; for example, increased specific antibody production by B
cells and increased proinflammatory activity of T cells. The SNS also inhibits innate immune cells via stimulation of 32 adrenoceptors (3,ARs), although the
net outcome of SNS influence in the early phase is proinflammatory. Then, during the transition phase, we hypothesize that the influence of the SNS
changes from pro- to anti-inflammatory. In the later stages, central regulation of the inflammatory process is less important, since sympathetic nerve fibers are
repelled from the inflamed area and secondary lymphoid organs. However, local sympathetic influence becomes increasingly important, indicated by the
appearance of catecholamine-producing, tyrosine hydroxylase-positive (TH+) cells, which have a dominant anti-inflammatory effect. Possible mechanisms of
action are paracrine and autocrine in manner; for example, inhibiting proinflammatory interleukin (IL)-7 receptor-positive B cells, increasing the activity of
IL-10-producing anti-inflammatory B cells, or inhibiting innate immune cells via 3,AR-mediated effects. AR, adrenoceptor; CAMP, cyclic adenosine
monophosphate; CD, cluster of differentiation; FoxP3, forkhead box P3; IFN, interferon; MHC, major histocompatibility complex; pSTAT5, phosphorylated-signal
transducer and activator of transcription 5; TCR, T-cell receptor; Th1, T helper 1 cell.

inflammatory when re-injected into arthritic animals
[45]. One might speculate that these B cells, which can
be TH-positive, are stimulated by catecholamines pro-
duced by TH-positive cells in the joint in an autocrine/
paracrine manner (Figure 3).

The purpose of activating the sympathetic
nervous system in inflammation - exemplified by
synovial inflammation

So far, we introduced a new model of neuroimmune regu-
lation specified in arthritis. All these elaborate mechanistic
and structural adaptations during inflammation need to
serve some purpose, however, otherwise they would not
have been positively selected during evolution. In recent
hypothetical modeling, a framework was developed that
tries to explain the underlying meaning.

An activated immune system needs a significant amount
of energy above that required for the normal non-
inflamed state [93]. The activation of the SNS and the
HPA axis at the beginning of inflammation helps to pro-
vide enough energy, because activation of these axes mo-
bilizes energy-rich fuels mainly by increasing lipolysis,
glycogenolysis, muscle protein breakdown, and gluconeo-
genesis (Figure 4). At the beginning of an inflammatory
innate immune response, the SNS but also HPA axis sup-
port inflammation by non-specific means; for example,
mobilization of leukocytes [22,26], increasing blood pres-
sure and heart rate, increasing lymph flow [21], plasma
extravasation [94], antigen uptake and presentation [37]
(Figure 4). In this initial phase of inflammation, SNS
activity also ‘programs’ adaptive immune cells via 2-AR -
for example, B cells to produce increased amounts of
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Figure 4 Morphologic adaptation to persistent inflammation. Centrally controlled increase of sympathetic nervous system (SNS) activity is a basic
response to inflammation. The constant increase in SNS activity supports inflammation in several ways; for example, increasing blood flow, lymph flow,
antigen presentation, and liberation of energy-rich fuels like lipids and glucose from adipose tissue and liver. However, the specific interaction with
immune cells in secondary lymphoid organs and at local sites of inflammation (for example, joints) shows a net anti-inflammatory effect. Therefore, to
mount an effective immune response, non-specific support of inflammation on a systemic level is maintained, while the anti-inflammatory influence
on a local level is decreased and uncoupled from central regulation through repulsion of sympathetic nerve fibers and the appearance of tyrosine
hydroxylase (TH) + catecholamine-producing cells during the inflammatory process. In the end, a systemic proinflammatory configuration is
established, which helps to optimally clear the antigen. However, if inflammation persists, like during chronic inflammation, this constant increase in
SNS activity and resultant catabolic state is detrimental to the body and results in known disease sequelae of chronic inflammatory conditions, like
cachexia, diabetes, hyperlipidemia, high blood pressure, increased cardiovascular risk, and so on.
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antibodies and T cells to produce more or less cytokines
dependent on the context of activation [95]. This mainly
proinflammatory action takes place on a systemic level in
secondary lymphoid organs like the spleen and lymph
nodes, where immune cells are programmed and then re-
leased to attack the intruder.

At the local site of inflammation, however, SNS activity
contributes primarily to anti-inflammatory mechanisms,
mainly by direct influence of neurotransmitters on immune
cells [4]. Besides the local promotion of regulatory B cells
(see above), also macrophages stimulated via the f2-ARs ac-
quire an anti-inflammatory M2 phenotype [96] and 32-AR
stimulation also inhibits TNF production [97] (Figure 2). On
the other hand, stimuli via a-ARs are proinflammatory: for
example, o2-AR stimulation increases reactive oxygen

species in macrophages [98]. Therefore, the net outcome of
stimulating ARs on immune cells strongly depends on the
receptor engaged and, therefore, on the receptor expression
pattern (which might change during the course of inflam-
mation [4,45]) and neurotransmitter concentration, because
NE binds preferentially to a-ARs, only binding to p-ARs at
high concentrations (for example, [99]). However, why do
some immune cells, like macrophages, express both a-ARs
and -ARs, which will counteract each other in terms of im-
munoregulation? One possible explanation is that, due to
the different binding affinities of NE to these AR subtypes,
this system can be used as a distance detector to the source
of catecholamines.

In this respect, repulsion of sympathetic nerve fibers
from inflamed tissue makes sense, since it is not favorable
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to inhibit the immune response (high concentrations of cat-
echolamines preferentially stimulate anti-inflammatory -
ARs) before the antigen is cleared (Figure 4). Therefore, this
distance detector system (simultaneous expression of a-AR
and -AR on immune cells) provides a means for the body
to define sites of permitted inflammation (low SNS fiber
density, low catecholamine concentration) and, on the other
hand, prevent uncontrolled spreading of inflammation by
preventing bystander activation (high SNS fiber density, high
catecholamine concentration) (Figure 2).

To get an impression of the contribution of SNS to local
anti-inflammatory mechanisms, the eye is a good example.
The eye is known as an exceptional immune-privileged site,
dominated by anti-inflammatory mechanisms. It has been
shown that sympathetic denervation of the eye leads to a
decrease in anti-inflammatory molecules, like tumor
growth factor-, which results in a complete loss of the
immune-privileged status [100]. Therefore, repulsion of
SN fibers from inflamed tissue is an effective means to in-
crease local inflammation (Figures 2 and 4). This has been
positively selected during evolution to clear invading mi-
crobes but not to serve chronic autoimmune inflammation.

We hypothesize that catecholamine-producing cells
start to play a role in the later inflammatory phase, pos-
sibly as a compensatory mechanism for the local loss of
SNS fibers. These TH-positive cells can be anti-
inflammatory as described above. One might argue that
it is easier to just shut down SNS activity at the systemic
level than to repel nerve fibers from local inflamed tis-
sue, but SNS activity stays high during many chronic in-
flammatory conditions (for example, [101]). Concerning
the energetic aspect discussed above, this is beneficial in
terms of providing enough energy to feed the activated
immune system on a systemic level. In contrast to the
SN activity, which is still high in chronic inflammation,
HPA axis activity is relatively reduced, not down to nor-
mal, but to a level without immunosuppression, to not
disturb the local immune response (Figures 3 and 4).

Overall, the system takes on an ‘inflammation config-
uration’, including repulsion of sympathetic nerve fibers
from local inflamed tissue to create an area of permitted
inflammation, high SNS activity on a systemic level, and
reduced HPA activity without local immunosuppression,
but provision of energy-rich fuels is still maintained and
important (Figure 4).

These processes are positively selected during evolu-
tion to serve short-term acute inflammation [93,102]. If
these processes persist for too long, they cause harm be-
cause the body is in a constant state of catabolism and
volume overload. Known disease sequelae in chronic in-
flammatory conditions can be explained by this constant
activation of the SNS and HPA axis and the resultant
catabolic state, like cachexia, high blood pressure, insulin
resistance, and so on [93,102].
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Potential clinical and therapeutic implications for
chronic inflammatory processes

From the current conceptual and experimental know-
ledge, certain hypotheses can be derived about potential
clinical and therapeutic approaches that might improve
clinical practice. Clinical data applying the current
knowledge specifically on sympathetic regulation of in-
flammation is scarce. However, one promising approach
that underscores the importance of sympathetic down-
stream signaling in anti-inflammation is the inhibition of
phosphodiesterase (PDE)4, an enzyme that degrades
cAMP. Increasing cAMP by inhibiting this enzyme
shows promising results in psoriatic arthritis, which led
to the approval of the PDE inhibitor apremilast for this
disease entity [103]. PDE inhibitors are also currently be-
ing tested for several other clinical entities; for example,
psoriasis, rheumatoid arthritis, and Behcet’s syndrome
[103]. Taking into consideration that a general increase
in cAMP might also support detrimental effects as dis-
cussed above, it is noteworthy that PDE4 is the predom-
inant PDE isoform expressed in immune cells [104].
However, whether increasing cAMP by pharmacologic
PDE inhibition will support disease sequelae is not clear
at the moment and further research is needed. Right
now, neuroimmunology in the sense presented in this
review is on the verge of clinical translation. In terms of
sympathetic control of inflammatory arthritis a possible
approach is to follow the success seen in animal models
and put effort into developing novel cellular therapies;
for example, after induction of TH in certain immune
cells or treatment of B cells with sympathetic stimuli to
increase their regulatory potential. On the other hand,
the systemic permanent overactivation of the SNS as
discussed above could also be a potential target for inter-
vention; for example, by psychological or pharmaco-
logical means. However, clinical data are missing at the
moment and further research is warranted. For this re-
search an approach to support local activation of sympa-
thetic mechanisms, like increasing cAMP in immune
cells (for example, PDE4 inhibition) but on the other
hand decreasing systemic SNS activation to prevent dis-
ease sequelae, needs to be the focus.

Conclusion

Inflammation causes increased activity of the SNS with
release of NE and co-transmitters in lymphoid organs
and inflamed local sites. Immune cells carry receptors
(for example, ARs) to detect and process signals from
the SNS. The reaction of the immune cell to neurotrans-
mitters is variable depending on the context of receptor
engagement (activation state of the cell, expression pat-
tern of neurotransmitter receptors, microenvironment,
cytokine milieu, and distance from the catecholamine
source (concentration)).
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On a systemic level, the signals from the SNS are proin-
flammatory in the initial phase of inflammation, whereas
anti-inflammatory effects are dominant in the late or
chronic phases of an inflammatory response, at least in
collagen-induced arthritis. Upon initiating an inflammatory
process, the body adopts an ‘inflammatory configuration’
with increased systemic SNS and HPA axis activity. This re-
action can be interpreted as an ‘energy appeal reaction’
resulting in the provision of enough energy-rich fuels, like
glucose and free fatty acids, to fulfill the needs of an acti-
vated immune system.

If inflammation becomes chronic, as in chronic inflam-
matory illness, the system changes into a ‘chronic inflam-
matory condition’ that is characterized by 1) still increased
systemic activity of the SNS, 2) still increased activity of
the HPA axis but without immunosuppression (gluco-
corticoid receptor desensitization and inadequacy), and 3)
local repulsion of SNS fibers from inflamed tissue, includ-
ing lymphoid organs, to create zones of permitted inflam-
mation. The immune response is more or less uncoupled
from central regulation to avoid the anti-inflammatory in-
fluence of the brain. All mechanisms ensure an optimal
fight against an antigen.

These adaptations are evolutionarily positively selected
to clear the antigen, usually an intruding microbe. How-
ever, if a ‘chronic inflammatory configuration” persists, as
in autoimmunity, the effects are detrimental because of
the persistently increased SNS activity, HPA activity, and
the resultant chronic catabolic state. This leads to known
comorbidities in chronic inflammatory disease, like cach-
exia, high blood pressure, insulin resistance, and increased
cardiovascular mortality. The challenge is now to translate
this conceptual knowledge into clinical benefit.
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