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Abstract

Background: The integration of genomics with immunotherapy has potential value for cancer vaccine development.
Given the clinical successes of immune checkpoint modulators, interest in cancer vaccines as therapeutic options has
been revived. Current data suggest that each tumor contains a unique set of mutations (mutanome), thus requiring
the creation of individualized cancer vaccines. However, rigorous analysis of non-individualized cancer immunotherapy
approaches across multiple cancer types and in the context of known driver alterations has yet to be reported. We
therefore set out to determine the feasibility of a generalizable cancer vaccine strategy based on targeting multiple
neoantigens in an HLA-A/B subtype-directed manner.

Methods: A cancer gene-focused, hybrid capture-based genomic analysis was performed on 63,220 unique tumors.
Neoantigens were predicted using a combined peptide processing and MHC-I binding prediction tool (IEDB) for all
recurrent (>10 tumors) missense alterations and non-frameshift indels for the two most common HLA-A/B subtypes in
North American/European populations.

Results: Despite being overwhelmingly unique overall, many mutanomes (~45%) contain at least one mutation from
a set of ten mutations chosen to maximize the number of unique tumors. This held true for tumors driven by KRAS
G12C (n = 1799), PIK3CA E545K (n = 1713), or EGFR L858R (n = 478) alterations, which define distinct sample subsets. We
therefore hypothesized that sets of carefully selected mutations/neoantigens may allow the development of broadly
applicable semi-universal cancer vaccines. To test the feasibility of such an approach, antigen processing and MHC-I
binding prediction was applied for HLA subtypes A*01:01/B*08:01 and A*02:01/B*44:02. In tumors with a specific HLA
type, 0.7 and 2.5% harbored at least one of a set of ten neoantigens predicted to bind to each subtype, respectively.
In comparison, KRAS G12C-driven tumors produced similar results (0.8 and 2.6% for each HLA subtype, respectively),
indicating that neoantigen targets still remain highly diverse even within the context of major driver mutations.

Conclusions: This “best case scenario” analysis of a large tumor set across multiple cancer types and in the context
of driver alterations reveals that semi-universal, HLA-specific cancer vaccine strategies will be relevant to only a small
subset of the general population. Similar analysis of whole exome/genome sequencing, although not currently feasible
at scale in a clinical setting, will likely uncover further diversity.
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Background
Targeted cancer immunotherapies rely on antigens either
unique to or highly enriched on tumor cells. Historically,
efforts initially focused on self- or fetal antigens commonly
overexpressed in tumors, potentially offering broadly ap-
plicable, targeted immunotherapy options [1–6]. However,
targeting self-antigens alone was not able to stimulate a
therapeutic immune response and these efforts were
largely met with failure [7–9]. In contrast, somatic muta-
tions can produce neoantigens (i.e., non-self ) generating a
robust antigen-specific response but are difficult to iden-
tify and are not common across tumor types [10–12].
Thus, leveraging neoantigens therapeutically is extremely
challenging.
Next-generation sequencing provides the ability to iden-

tify somatically acquired mutations that have the potential
to generate neoantigens and has therefore revitalized
interest in cancer vaccines as a potential therapeutic strat-
egy [11]. However, broad sequencing efforts have also un-
covered immense genetic diversity both across and within
tumors [13]. The widespread inter-tumor heterogeneity
seen by The Cancer Genome Atlas and others suggests
individualized cancer immunotherapy strategies may be
required for a subset of patients with cancer. Early studies
integrating genomics with cancer vaccine development in
solid tumors show that individualized vaccines based, in
part, on MHC-I binding predictions can be generated to
elicit an immune response [11]. Yet despite these suc-
cesses, developing individualized therapies still remains
highly technical and difficult to scale. Mutanome engi-
neered RNA immunotherapy (MERIT) is an emerging
technology that aims to create rapidly deployed, individu-
alized, poly-neo-epitope mRNA vaccines [14]. A central
hallmark of MERIT is the extensive CD4+ T cell response
the authors found against the majority of nonsynonymous
mutations in murine tumor models. This suggests that
MHC-II neoantigens can be leveraged towards immuno-
therapies more readily than MHC-I neoantigens. However,
utilizing MHC-II prediction algorithms is difficult in a
prospective approach since they have suboptimal rates of
false positives and false negatives [15, 16]. It remains to be
seen if vaccines created against multiple neoantigens can
be combined in a “semi-universal poly-neoantigen” vac-
cine strategy applicable in a “non-individualized” manner.
Using a set of cancer gene-focused genomic profiles

from 63,220 unique tumors, we set out to characterize
genetic uniqueness for assessing the tenability of non-
individualized cancer vaccines. To provide a conservative
estimate of neoantigen production, we employed a multi-
step in silico prediction of peptide processing, export, and
MHC-I binding in a human leukocyte antigen (HLA)
subtype-specific manner. In a separate analysis, MHC-II
binding predictions were also employed. These data indi-
cate that semi-universal, poly-neoantigen cancer vaccines

containing realistic numbers of characterized cancer-
associated neoantigen targets (i.e., 10–100) will be relevant
to only a small subset of the general population. Thus,
successful broad implementation of neoantigen-based tar-
geted cancer immunotherapy strategies will be highly
dependent on integration of genomic profiling with indi-
vidualized therapies.

Methods
Tumor samples and sequencing
Samples were submitted to a CLIA-certified, New York
State-accredited, and CAP-accredited laboratory (Founda-
tion Medicine, Cambridge, MA, USA) for next-generation
sequencing-based genomic profiling. The pathologic
diagnosis of each case was confirmed by review of
hematoxylin and eosin stained slides and all samples
that advanced to nucleic acid extraction contained a
minimum of 20% tumor cells. The samples used in this
study were not selected and represent “all comers” to
Foundation Medicine genomic profiling. Samples were
processed in one of two broad protocols generally
defined by solid tumors or hematologic cancers as
previously described [17, 18]. For convenience, a brief
description is provided below.
For solid tumors, DNA was extracted from formalin-

fixed paraffin-embedded (FFPE) 10-micron sections.
Adaptor-ligated DNA underwent hybrid capture for all
coding exons of 287 or 395 cancer-related genes plus se-
lect introns from 19 or 31 genes frequently rearranged in
cancer.
For hematologic cancers, DNA and RNA were extracted

from either peripheral blood or bone marrow aspirate.
Adaptor-ligated DNA underwent hybrid capture for all
coding exons of 405 cancer-related genes. cDNA libraries
prepared from RNA underwent hybrid capture for 265
genes known to be rearranged in cancer.
Captured libraries were sequenced to a median exon

coverage depth of >500× (DNA) or approximately three
million unique reads (RNA) using Illumina sequencing,
and resultant sequences were analyzed for base substitu-
tions, small insertions and deletions (indels), copy num-
ber alterations (focal amplifications and homozygous
deletions), and gene fusions/rearrangements, as previ-
ously described [18]. Frequent germline variants from
the 1000 Genomes Project (dbSNP142) were removed.
To maximize mutation-detection accuracy (sensitivity
and specificity) in impure clinical specimens, the test
was previously optimized and validated to detect base
substitutions at a ≥5% mutant allele frequency (MAF),
indels with a ≥10% MAF with ≥99% accuracy, and fu-
sions occurring within baited introns/exons with >99%
sensitivity [17]. Known confirmed somatic alterations
deposited in the Catalog of Somatic Mutations in Cancer
(COSMIC v62) are called at allele frequencies ≥1% [19].

Hartmaier et al. Genome Medicine  (2017) 9:16 Page 2 of 9



Patients were not consented for raw data release. There-
fore, associated raw sequence data are not shared. How-
ever, variants from a subset of the samples used in this
analysis (>18,000) have been deposited in the Genomic
Data Commons (accession number phs001179).

Neoantigen prediction
All missense single nucleotide variants (SNVs) and non-
frameshift indel variants occurring in at least ten tumor
samples were used for neoantigen prediction. A cutoff of
ten tumors represents only 0.016% (10/63,220) of the
sample set. Since neoantigen prediction is dependent on
HLA subtype and the most common HLA subtype
population frequency in North Americans is ~10%, it is
unlikely to find any shared neoantigens below this fre-
quency. The flanking ±25 amino acids surrounding each
missense SNV and non-frameshift indel variant were ob-
tained similarly for both the wild type (WT) and variant.
Frameshift events were excluded since they are un-

commonly shared across tumors (the most common
frameshift alteration is found in ~0.5% of tumors). The
potential for novel peptides is limited since most frame-
shift alterations (~50%) result in a stop codon within 15
amino acids (data not shown) and these will often result
in transcript degradation prior to peptide translation.
For these reasons, without direct validation of peptide
MHC-I binding we felt the risk of false positive neoanti-
gens outweighed the likelihood of shared frameshift vari-
ants producing neoantigens.
For MHC-I, an end-to-end peptide processing and

MHC-I binding predictor (IEDB) [20] was used for
both WT and variant peptide fragments (via the API;
http://tools.iedb.org/main/tools-api/). This tool pro-
duces an overall antigen estimate by combining predic-
tions for proteosomal processing (using “immuno”
proteasome type), TAP transport, and MHC-I binding.
For MHC-I binding, NetMHCpan was used with spe-
cific HLA-A/B subtypes. HLA-specific binding thresh-
olds were utilized to dichotomize each peptide as an
MHC-I binder or a non-binder, as described previously
[21]. Finally, all variant peptide MHC-I binders were fil-
tered against WT MHC-I binders. This enriched for
predicted binders specific to the variant while also
allowing for the inclusion of novel peptide fragments
created, for example, by the disruption of peptide cleav-
age sites.
For MHC-II, an MHC-II binding prediction tool (IEDB)

using the “consensus method” (as previously described
[15, 16]) was used for both WT and variant peptides for
the most common HLA-DRB, HLA-DQA, HLA-DQB,
and HLA-DPA subtypes. Since binding thresholds for
MHC-II are not well established, a “low affinity” and a
“high affinity” threshold were used (IC50 values of 500
and 50 nm, respectively). To avoid false positives, MHC-II

binding peptides were required to have a predicted IC50
binding affinity less than this threshold in both the SMM
and NN methods within the “consensus method”. Simi-
larly to MHC-I binders, mutant-specific MHC-II peptide
binders were determined by filtering against all WT pep-
tide MHC-II binders for each specific MHC-II HLA
subtype.
All HLA subtype population frequencies were obtained

via the Allele Frequency Net Database [22].

HLA typing for neoantigen prediction
Since HLA loci are captured as part of the hybrid-capture
panel, sequence-based HLA typing was possible. Neoanti-
gen prediction using population-wide HLA assumptions
was compared to tumor-derived HLA types in a subset of
tumors. Specifically, tumor-derived HLA type neoantigen
predictions were performed for a randomly selected set of
40 lung adenocarcinomas harboring a KRAS G12C
alteration. Sequence-derived HLA-A/B/C typing was con-
ducted by back-converting BAM files to fastq, then per-
forming HLA realignment and typing using OptiType
[23]. All variants within each tumor were then utilized
with the corresponding tumor-derived HLA type for
neoantigen prediction as described above.

Results
Tumor mutanomes are unique
We first examined the set of genomic alterations from
each tumor (mutanome) across all samples to under-
stand the extent and context of tumor uniqueness.
Uniqueness was defined by the set of alterations in a
tumor in three ways: (1) at the gene level (i.e., KRAS);
(2) at the variant type level (i.e., KRAS SNV, KRAS
copy number, etc.); and (3) at the variant level (i.e.,
KRAS G12C). Inspection of this relatively narrow por-
tion of the coding genome revealed that the majority
of tumors contained unique mutanomes for “gene” to
“variant” level uniqueness (range 72–95%). This was simi-
lar for subsets of tumors with known driver mutations, in-
cluding KRAS G12C (78–93%) and EGFR L858R (77–
95%). Non-unique mutanomes tended to have fewer alter-
ations, sometimes containing only a single driver muta-
tion. We thus examined whether a subset of mutanomes
are shared across samples by identifying genes with alter-
ations frequently co-occurring in a maximally cumulative
manner (cumulative “and” alterations). A tile plot for the
top ten genes across all 63,220 tumors revealed that al-
though these genes are frequently mutated, few samples
have more than two to three altered genes in common
(Fig. 1a). For example, only ~5% of samples contain al-
terations in TP53, KRAS, and APC (Fig. 1b). KRAS
G12C tumors show a similar pattern, albeit with dis-
tinct genes: TP53, CDKN2A/B, and secondary KRAS
variants (Fig. 1c). A breakdown of tumor types within
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“and” alterations (tumors which contain all alterations from left to right) for b all tumors or c KRAS G12C-driven tumors. d, e The overlap of the top three
alteration types across d all tumors or e KRAS G12C-driven tumors
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these groups is shown in Additional file 1: Figure S1.
EGFR L858R lung adenocarcinomas similarly share
few alterations between tumors. Variant type level
uniqueness for the top three alterations further estab-
lish the minimal overlap between tumors (Fig. 1d, e).
Together, these data suggest that tumors have re-
markably few shared alterations with other tumors,
even in the context of major driver alterations and in
specific disease types.

Small sets of alterations are found across many tumors
We next asked whether at least one alteration in a rela-
tively small set of alterations (picked in a way to maximize
unique tumors) can be found across many tumors. This
has implications for cancer immunotherapy development
since many antigens could be targeted (even if they are
not all present in a given tumor), thereby making a single
cancer vaccine broadly applicable [24]. Alterations maxi-
mizing the number of unique tumors with at least one
alteration were therefore identified (additive “and/or” al-
terations). At the level of “gene uniqueness”, across the
63,220 tumors, over 75% possess an alteration in at least
one of ten genes (Fig. 2a, “Gene”). Although this dropped
precipitously for missense SNVs, ~25% of tumors contain
at least one of a set of only ten variants (Fig. 2a, “Missense
SNVs”). These data suggest the possibility of identifying
relatively small sets of variants for the creation of broadly
applicable, non-individualized cancer immunotherapies.
To fully evaluate the tenability of this approach, rigorous
neoantigen predictions were employed.

Identification of neoantigens
Antigen presentation begins with peptide cleavage and
transport to the endoplasmic reticulum and concludes
with binding to MHC-I molecules for presentation.
Each of these steps involves enzymes or molecules with
non-random peptide preferences. HLA genes are highly
polymorphic, resulting in vastly different peptide binding
affinities. In fact, analysis of all unique missense SNVs
across the 12 most common North American/European
HLA-A/B subtypes revealed that MHC-I binding is highly
dependent on HLA subtype (Additional file 1: Figure S2)
and most presented antigens are restricted to a single
HLA type. Thus, neoantigen prediction must be done in
an HLA-specific manner.
With this in mind, an end-to-end neoantigen prediction

pipeline combining peptide processing, TAP transport,
and MHC-I binding [20] was implemented for the two
most common North American/European HLA-A/B
subtypes, A*01:01|B*08:01 and A*02:01|B*44:02 (Fig. 2b).
Epitope prediction was performed for both WT and mu-
tant peptide sequences from all coding missense variants
and non-frameshift indels found in ≥10 tumors. Mutant
specific antigens (neoantigens) were identified by filtering

against predicted WT epitopes. For the two HLA-A/B sub-
types, 62 and 348 mutant-specific MHC-I epitopes were
predicted to be generated as a consequence of 62 and 395
alterations, respectively. These data indicate that in this
dataset, 2% (62/2833) and 12% (348/2833) of recurrent
missense SNVs and non-frameshift indels are predicted to
produce a unique neoantigen for A*01:01|B*08:01 and
A*02:01|B*44:02 subtypes, respectively.

Identification of shared neoantigens for non-individualized
targeted cancer immunotherapies
To examine the applicability of non-individualized poly-
neoantigen cancer immunotherapies, sets of neoantigen-
producing alterations maximizing the number of unique
tumors were determined (additive “and/or” alterations).
This was conducted across all tumors focusing on ten pre-
dicted neoantigen producers and in the context of a major
driver alteration (KRAS G12C) for two major HLA-A/B
subtypes (A*01:01|B*08:01 and A*02:01|B*44:02). Since
these neoantigens have not been empirically validated and
the tested HLA-A/B subtypes are common, this repre-
sents a “best-case scenario” for the generalizability of this
approach. Across all tumors with a specific HLA subtype,
only 0.7–2.5% of tumors contain one or more alteration
from a set of ten predicted neoantigen producers (Fig. 3).
Taking into account HLA subtype population frequencies
(A*01:01|B*08:01 = 12.6%; A*02:01|B*44:02 = 10.8%), this
translates to less than ~0.3% of the general population
(A*01:01|B*08:01 = 0.7% × 12.6% = 0.09%;
A*02:01|B*44:02 = 2.5% × 10.8% = 0.31%). Similar results
were observed for KRAS G12C-driven tumors. Further-
more, including all variants producing neoantigens across
all tumors only slightly expanded these numbers for each
HLA-A/B subtype (1.3 and 9.3%) and for the general
population (0.2 and 1.0%). These data indicate that few
tumors share variants that lead to HLA-specific neoanti-
gens and that any non-individualized semi-universal can-
cer immunotherapy strategy will only be applicable to an
extremely limited portion of the population.
These analyses rely on assumed HLA type based on

general population frequencies. To test whether the re-
sults hold true for patient-specific HLA types, HLA
types were determined for a set of 40 lung adenocarcin-
omas with a KRAS G12C alteration. Neoantigens were
then identified based on the specific variants identified
and tumor derived HLA type. The only neoantigen
identified in more than one tumor was KRAS G12C,
which produces a neoantigen for a single HLA type
(HLA-A*11:01; US population frequency = 10.4%). Of
the 40 KRAS G12C tumors examined for tumor-derived
HLA neoantigen prediction, eight were HLA-A*11:01.
This did not significantly differ from that expected util-
izing population-based HLA frequencies (p = 0.35 by
Fisher’s exact test). Thus, tumor-derived HLA type
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neoantigen prediction supports the more general ana-
lysis that shared neoantigens are rare.
To examine the impact of MHC-II-presented neoanti-

gens, a similar approach was undertaken using MHC-II
peptide binding predictions (Additional file 1: Figure S3).
However, MHC-II peptide binding has much more uncer-
tainty than MHC-I predictions, especially with respect to
binding thresholds. Using a “high” and a “low” binding
affinity threshold (50 and 500 nM, respectively) across
two “consensus” prediction algorithms produced a large
variation in the number of predicted neoantigens. Thus,
without further refinement or validation of predicted
MHC-II targets, the utility of this form of neoantigen
presentation remains unclear.

Discussion
Our data reveal that inter-individual tumor genomic het-
erogeneity is extensive, even in the context of known
driver mutations, and suggest that targeted cancer vac-
cines may need to be generated specifically for each pa-
tient. However, it is currently not feasible to scale these
technologies to large populations. We thus sought to ex-
plore the tenability of non-individualized targeted im-
munotherapies by focusing on poly-neoantigen targeting
strategies. In summary, sets of neoantigens were identified
in an HLA subtype-specific manner that could be used to
generate cancer vaccines applicable to subsets of the can-
cer population. However, in a “best-case scenario” analysis,

each set of neoantigens would be relevant to less than
~0.3% of the population. Surprisingly, this was not im-
pacted by the presence of a major driver mutation or by
examining specific diseases, and maximizing the number
of neoantigens per set to >100 had only a modest impact.
Although this is already a small proportion of tumors, it is
likely a substantial overestimation for the following
reasons.
First, our analysis was based solely on alterations iden-

tified from DNA sequencing. It is likely that some of the
alterations do not create neoantigens because the gene
(or variant allele) is not transcribed/translated. Second,
neoantigen prediction will produce some false positives
that are impossible to identify without direct validation.
Third, clonality, which has been shown to influence the
neoantigen immune response [25], was not incorporated
into this analysis. Fourth, selective pressures may reduce
the number of neoantigens present in a given HLA
subtype. Fifth, sequencing was done without matched
normal samples. Although variants were heavily filtered
for known germline polymorphisms, it is possible some
of the neoantigens identified are rare germline events
not appropriate for targeted immunotherapies. Sixth, the
bulk of the analysis relied on assumed HLA frequencies
rather than measured HLA types. Incorporation of mea-
sured HLA types into this analysis would likely further
reduce the fraction of shared neoantigens. In support of
this, genomically determined HLA type neoantigen
prediction was performed across 40 tumors with similar
results. This raises the possibility of targeting KRAS
G12C in HLA-A*11:01 patients. However, overall these
data suggest limited applicability for non-individualized
targeted immunotherapies.
An important limitation of this analysis is that it is

based on targeted sequencing data. We cannot exclude
the possibility that critical variants producing neoanti-
gens across many tumors exist in un-sequenced regions
of the exome. Further, since it has been shown that
neoantigens are less likely to occur in cancer-associated
genes [26], the rate of neoantigens across the remainder
of the exome could be significantly higher than we ob-
served. However, variants in non-cancer-associated genes
are unlikely to be recurrent across tumors. Our inclusion
of all benign and uncharacterized variants helped reduce
the impact of biological selective pressure on neoantigen
identification. Further, exome sequencing in lung adeno-
carcinoma [27] revealed few shared mutations predicted
to produce neoantigens based on patient-specific HLA
type MHC-I binding predictions. Importantly, our analysis
implemented a refined definition of “shared neoantigens”
based on unique peptides, not mutations, which likely fur-
ther reduced the number of shared neoantigens. This is
important for cancer vaccine development since a given
mutation can produce many distinct peptides, each with
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Fig. 3 Applicability of poly-neoantigen, non-individualized targeted
cancer immunotherapies using peptide processing, and MHC-I binding
predictions. Top additive “and/or” alterations predicted to produce an
MHC-I neoantigen are shown for all tumors (left) and KRAS G12C-
driven tumors (right) for two common HLA-A/B subtypes, A*01:01/
B*08:01 (top) and A*02:01/B*44:02 (bottom)
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their own MHC-I affinities. Thus, the main conclusions of
this study are unlikely to be significantly altered by the re-
liance on targeted sequencing data.
Another important limitation is the exclusion of

frameshift alterations. These alterations were excluded
because of the high likelihood for early stop codons and
subsequent transcript degradation by nonsense-mediated
degradation. Although these alterations have the poten-
tial to create novel peptides for neoantigen targeting, the
risk of false positive neoantigens was deemed too great
without direct validation of peptide MHC-I binding.
Thus, we cannot exclude the possibility that our analysis
missed bone fide shared neoantigens produced from
frameshift alterations.
Our analysis was also focused on predicted MHC-I anti-

gen binding due to a wide degree of uncertainty in pre-
dicting the binding threshold of MHC-II peptides.
Although MHC-II plays an important role in antigen pres-
entation, in silico MHC-II antigen prediction is currently
not as reliable to inform immunotherapy strategies. How-
ever, MHC-II-presented peptides have the potential to
produce a large number of neoantigens and should con-
tinue to be examined as identification efforts improve.

Conclusions
It is possible to identify a set of alterations shared across
patient tumors for the production of a non-individualized,
poly-neoantigen cancer vaccine in an HLA subtype-
specific manner. However, with current neoantigen pre-
diction methodologies, this approach will be applicable to
only a small proportion of the population.
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