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Profiling genome-wide DNA methylation
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Abstract 

DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and 
therefore a broad range of biological processes and diseases. DNA methylation is tissue‑specific, dynamic, sequence‑
context‑dependent and trans‑generationally heritable, and these complex patterns of methylation highlight the 
significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methyla‑
tion assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling 
techniques. The advances in microarray and sequencing technologies make genome‑wide profiling possible at a 
single‑nucleotide or even a single‑cell resolution. These profiling approaches vary in many aspects, such as DNA 
input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires 
knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in 
plants, animals and fungi. We present an overview of major experimental approaches to profiling genome‑wide DNA 
methylation and hydroxymethylation and then extend to the single‑cell methylome. To evaluate these methods, we 
outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increas‑
ing need to compute high‑throughput epigenomic data, we interrogate the computational pipeline for bisulfite 
sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review 
summarizes the experimental and computational concepts for profiling genome‑wide DNA methylation, followed by 
biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method 
suited to specific research questions.
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Background
DNA methylation, one of the most studied epigenetic 
modifications, involves the addition of a methyl group 
to the fifth carbon of cytosine (C), forming 5-methyl-
cytosine (5mC), catalyzed by DNA methyltransferases 
(Dnmts) [1]. DNA methylation predominantly occurs 
in CpG dinucleotides (CpGs) but is also found less fre-
quently in non-CpG contexts (e.g., CHG and CHH, 
where H = A, T or C). These contexts affect gene func-
tion and structure differently [2]. The de novo DNA 
methyltransferases Dnmt3a and Dnmt3b are responsi-
ble for catalyzing the methylation of Cs, and the mainte-
nance methyltransferase Dnmt1 enables the propagation 
of DNA methylation patterns during cell division [3–5]. 

DNA methylation has been associated with numerous 
cellular processes, such as transcriptional repression, 
X chromosome inactivation, embryonic development, 
genomic imprinting, the alteration of chromatin struc-
ture and transposon inactivation [6, 7]. The methyl marks 
are heritable, that certain methylation patterns have 
transgenerational effects [8]. The patterns of these marks 
are also dynamically remodeled during distinct repro-
gramming phases throughout the life cycle of an organ-
ism [9]. DNA methylation does not occur exclusively on 
C residues; methylation can also present as N6-methy-
ladenine (6mA) in Chlamydomonas reinhardtii (algae) 
[10], Caenorhabditis elegans (nematode) [11], Drosophila 
melanogaster (insect) [12] and vertebrates such as Xeno-
pus laevis, mouse and human [13]. In addition to 5mC, 
5-hydroxymethylcytosine (5hmC) is another epigenetic 
mark in the mammalian genome associated with DNA 
demethylation. 5hmC is produced via the oxidation of 
5mC catalyzed by the ten-eleven translocation (TET) 
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family of proteins, and subsequent oxidation results in 
the formation of 5-formylcytosine (5fC) and 5-carboxyl-
cytosine (5caC) [14].

DNA methylation patterns vary across organisms. 
The mammalian genome is usually highly methylated; 
in human embryonic stem cells (hESCs), DNA methyla-
tion occurs in up to 80  % of CpGs, with the remaining 
unmethylated CpG residues enriched in CpG islands 
(CGI) located at gene promoters [15]. Extremely low 
methylation levels have been reported in invertebrates 
such as Drosophila [16] and Bombyx [17]. In plants, the 
methylation level varies in the CpG and non-CpG sites; 
the levels were found to be 24 % CpG, 7 % CHG and 2 % 
CHH in Arabidopsis [18] and 86 % CpG, 74 % CHG and 
5  % CHH in unfertilized ears of maize [19]. Non-CpG 
methylation plays key roles in plants, in which this modi-
fication can silence exogenous DNA via an RNA-depend-
ent DNA methylation pathway (RdDM) [20]. In fungi, the 
methylation in black truffle is found exclusively in trans-
posons and is absent from genes [21].

Promoter methylation can potentially down-regulate 
gene expression by altering the chromatin structure and 
blocking transcription initiation [7]. For example, in 
mammals, most CGIs in promoters are unmethylated 
to facilitate binding between proteins and promoter 
DNA. Positive correlations between active transcription 
and gene body methylation have been observed in the 
active X chromosome [22, 23]. Gene body methylation 
may also function to silence repetitive DNA elements 
found within the gene body [24]. In addition, gene body 
methylation has been found to exhibit dramatic changes 
at intron–exon boundaries, suggesting an association 
with splicing [25]. Maunakea et  al. found that DNA 
methylation modulates alternative splicing by recruiting 
methyl-CpG-binding protein MeCP2 to promote exon 
recognition [26]. In maize, CpG methylation in tran-
scribed regions is positively correlated with transcrip-
tion, whereas CHG methylation is negatively correlated 
[27]. Methylation changes at the intron–exon bounda-
ries have also been observed, suggesting that maize 
DNA methylation is likely associated with alternative 
splicing [28].

These important findings regarding DNA methylation 
would not have been possible without the advancement 
of various profiling approaches, both experimental and 
computational. The accelerated development of array and 
sequencing technologies has significantly improved DNA 
methylation profiling, providing an unprecedentedly 
comprehensive view of the DNA methylation landscape. 
This review provides an overview of the major profiling 
approaches, with a focus on the recent and promising 
genome-wide methodologies (see Fig.  1 for a schematic 
of the major profiling methods).

Experimental techniques for DNA methylation 
profiling
Early studies of DNA methylation focused on determining 
the methylation status of the genes of interest and quan-
tifying the total amount of 5mC [29]. Due to the use of 
microarray hybridization technology, the study of DNA 
methylation was able to scale up to the genome-wide 
level. Next-generation sequencing platforms now allow 
the construction of genomic maps of DNA methylation 
at single-base resolution [30]. In the following review, we 
categorize these experimental approaches into enzyme 
digestion, affinity enrichment and bisulfite conversion and 
introduce the major methods with their advantages and 
disadvantages (see Table 1). We also include correspond-
ing biological examples for each method in Table 1 to help 
readers select suitable profiling methods. Figure 2 shows 
the workflow of the experimental pipelines with the DNA 
input requirements. Finally, we introduce the most recent 
development in the epigenomic profiling of a single-
cell methylome, 5hmC and the use of third-generation 
sequencing in detecting DNA methylation in real time. 

Restriction enzyme‑based methods
Restriction enzyme-based methods take advantage of 
the differential digestion properties of isoschizomers 
and neoschizomers. A pair of isoschizomers recognizes 
the same sequence and has the same point of cleav-
age but exhibit different sensitivities to the DNA meth-
ylation state. Methylation-sensitive restriction enzymes 
(MREs), such as BstUI, HpaII, NotI and SmaI, cleave only 
their unmethylated target sequences (see [31] for lists of 
MREs) and leave the methylated DNA intact. MRE diges-
tion has been coupled with sequencing technologies to 
predict genome-wide DNA methylation levels [32]. In 
the workflow of MRE digestion followed by sequenc-
ing (MRE-seq), the MRE cleaves the unmethylated CpG 
sites of genomic DNA, and the resulting DNA frag-
ments are size-selected and sequenced. The sequencing 
results reveal the locations of the unmethylated CpG sites 
within the recognition sites of the enzyme utilized [33]. 
MRE-seq allows the estimation of relative DNA methyla-
tion levels but has relatively low coverage of the genome 
because the CpG-containing recognition sites are limited.

Comprehensive high‑throughput arrays for relative 
methylation (CHARM)
The comprehensive high-throughput arrays for relative 
methylation (CHARM) method first uses McrBC, an 
enzyme that digests methylated DNA, to fractionate DNA 
and subsequently utilizes array hybridization [34]. McrBC 
recognizes RmC(N)55–103RmC and cleaves half of the meth-
ylated DNA and all the methylated CGIs [35], and thus, 
relatively unmethylated DNA will be size-selected and 
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hybridized to the array. Using CHARM, Irizarry et al. dis-
covered that most DNA methylation differences between 
colon cancer and adjacent normal tissues occurred in 
sequences up to 2 kb away from CGIs, termed CpG island 
shores (CGI shores) [36]. Unexpectedly, differentially 
methylated regions (DMRs) in CGI shores have a strong 
inverse relationship with differential gene expression. 
CHARM, as a restriction enzyme-based method, is able 
to detect DMRs at CGI shores, which are otherwise not 
detectable with CpG-directed enrichment methods such 
as methylated DNA immunoprecipitation (MeDIP).

Affinity enrichment‑based methods
Affinity enrichment-based methods use either methyl-
CpG-binding domain (MBD) proteins or antibodies 
specific for 5mC (as in MeDIP) to enrich methylated 
DNA regions. The results from an MBD protein-based 
approach, which relies on the capacity of MBD proteins 
to bind specifically to methylated DNA sequences, could 
be profiled using microarray (MBD-chip) or sequencing 
(MBDCap-seq/MethylCap-seq [37], methylated DNA 
capture by affinity purification) technologies. Serre et al. 

used MBDCap-seq to study 3 isogenic colon cancer cell 
lines, and the results confirmed known methylated loci 
and regions and identified differential methylation in 
ZEB1, VASH2 and PODXL2 between the HCT116 and 
DICER1-truncated DICERex5 cell lines [38].

Methylated DNA immunoprecipitation (MeDIP)
MeDIP utilizes an anti-methylcytosine antibody to immu-
noprecipitate DNA with methylated CpG sites [39]. The 
DNA fractions enriched by MeDIP can be evaluated using 
tiling arrays (MeDIP-chip) or high-throughput sequencing 
(MeDIP-seq) [40]. MeDIP-seq typically yields a resolution 
of 100–300 bp and could not discriminate methylation con-
text. This can be an issue when research topics are context-
specific. Because the methylation statuses of neighboring 
CpG sites are correlated, MeDIP-seq can be a cost-effec-
tive approach when single-base resolution is not desired 
[41] (Table 1). Taiwo et al. reported that a minimum of 1× 
coverage can cover up to 70 % of all CpGs in human, sug-
gesting that the majority of the methylated CpGs can be 
interrogated by MeDIP given that 60–80  % of the CpGs 
are methylated in a genome [42]. MeDIP-seq generates the 

Fig. 1 Commonly used methods for genome‑wide DNA methylation analysis. a The procedures may involve fragmentation of genomic DNA by 
restriction enzyme digestion or sonication. The genomic DNA can be subjected to MBD enrichment, antibody enrichment, bisulfite conversion or 
TET oxidation before analyzing by microarray or next‑generation sequencing platform. b Single‑cell DNA methylation analysis that involves the iso‑
lation of single cells allows the assessment of methylation heterogeneity in cell populations while other genome‑wide DNA methylation profiling 
methods using pooled heterogeneous cell populations are not capable to dissect the methylation heterogeneity. Blue concrete dots represent 5mC, 
and hollowed ones represent C. Each track represents 1 read
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relative enrichment of methylated DNA across the genome, 
instead of predicting the absolute DNA methylation level. 
MeDIP-seq is feasible with even a low amount of starting 
DNA material (as low as 1 ng); therefore, this method can 
be utilized to profile DNA methylation in minute DNA 
samples, rare cell types and microdissected tissues [39, 42].

The affinity enrichment-based methods tend to exhibit 
biases associated with CpG density and copy number 
variation. For example, in MeDIP CpG-rich fragments 
are more likely to be enriched than CpG-poor ones, 
even when they are both fully methylated [43]. Hence, a 
computational correction such as BATMAN tool, which 
attempts to normalize CpG content across a wide range 
of CpG densities, is needed [44]. Moreover, CpG density 
might directly cause PCR bias due to the strong hydro-
gen bond between the CG pair [43]. Bock et  al. bench-
marked MeDIP-seq and MBDCap-seq [45] and found 
that MethylCap-seq covers more genomic regions than 
MeDIP-seq, and MBDCap-seq could detect nearly twice 
as many DMRs as MeDIP-seq at comparable sequencing 
depth. In CpG-poor regions, both MeDIP-seq and MBD-
Cap-seq show low statistical power to detect DMRs.

Bisulfite conversion‑based methods
Treating genomic DNA with sodium bisulfite deami-
nates unmethylated C to uracil (U), while methylated C 

residues remain unaffected [46]. The U eventually con-
verts to thymine (T) in a subsequent polymerase chain 
reaction (PCR). Bisulfite conversion-based methods pro-
vide single-base resolution and are commonly used to 
investigate specific DNA sequences when coupled with 
Sanger sequencing. This type of method is also used 
to study genome-wide methylation via a methylation 
array, whole-genome bisulfite sequencing (WGBS) and 
reduced-representation bisulfite sequencing (RRBS) (see 
Table 1; Figs. 1, 2).

Methylation array
Illumina’s Infinium HumanMethylation450 BeadChip 
(HM450K) protocol involves the bisulfite conversion 
of genomic DNA and amplification, followed by the 
hybridization of the converted DNA to arrays contain-
ing predesigned probes to distinguish between meth-
ylated and unmethylated Cs (Fig.  2). Each HM450  K 
BeadChip can interrogate more than 450,000 methyla-
tion sites that cover 96 % of the CGIs, 92 % of the CGI 
shores and 86 % of the CGI shelves (2–4 kb from a CGI) 
[47]. To date, HM450 K arrays dominate studies investi-
gating the cancer methylome [48] and other epigenome-
wide studies. For example, Bakulski et al. isolated 7 cord 
blood cell types, which were compared according to their 
specific methylation signatures; these authors found that 

Fig. 2 Schematic overview of genome‑wide DNA methylation profiling methods. a 5mC assays. b 5hmC assays. The actual sample requirement 
may vary according to the type of sample, genome size and number of PCR cycles
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nucleated red blood cells had the most pronounced dif-
ferences [49]. The most recent implementation of the 
Infinium® technology, Infinium MethylationEPIC Bead-
Chip, covers more than 850  K CpG methylation sites, 
including >90  % of the 450  K sites plus additional CpG 
sites in the enhancer regions identified by the ENCODE 
and FANTOM5 projects [50].

Whole‑genome bisulfite sequencing (WGBS)
WGBS (BS-seq; MethylC-seq) theoretically covers all 
the C information [51]. In this method, genomic DNA 
is purified and sheared into fragments. The fragmented 
DNAs are end-repaired; adenine bases are added to the 
3′ end (A-tailing) of the DNA fragments, and methyl-
ated adapters are ligated to the DNA fragments [52]. 
The DNA fragments are size-selected before sodium 
bisulfite treatment and PCR amplification, and the result-
ing library is sequenced. It should be noted that a high 
number of PCR cycles and inappropriate selection of a 
uracil-insensitive DNA polymerase may result in an over-
representation in the methylated DNA data [53]. Starting 
with sufficient genomic DNA may avoid a loss of infor-
mation from regions of interest and over-amplification. 
The major advantage of WGBS is its ability to assess the 
methylation state of nearly every CpG site, including low-
CpG-density regions, such as intergenic ‘gene deserts’, 
partially methylated domains and distal regulatory ele-
ments. It can also determine absolute DNA methyla-
tion level and reveal methylation sequence context. The 
first WGBS in 2008 reported the composition of CpG, 
CHG and CHH methylation in the Arabidopsis genome, 
the bulk methylation level within each context, and the 
global methylation pattern in wild-type and methyla-
tion-related mutants, as well as specific sites associated 
with gene expression [18, 54]. In 2013, two maize stud-
ies reported that the maize genome is highly methylated, 
and a specific ‘CHH island’ was found upstream of tran-
scription start sites (TSSs) [19, 28]. In addition to global 
pattern identification, users could determine regions or 
even loci with differential methylation between groups 
using bioinformatics tools. For example, Hsieh et al. com-
pared Arabidopsis endosperm and embryo methylomes 
and found that virtually the entire endosperm genome 
is demethylated, coupled with extensive local non-CpG 
hypermethylation of small interfering RNA-targeted 
sequences [55]. Lu et  al. performed WGBS of maize 
embryo and endosperm, and the results revealed hypo-
methylation in the endosperm compared to the embryo 
[27].

WGBS has become the standard profiling method in 
major epigenome consortiums, such as NIH Roadmap 
[56], ENCODE [57], Blueprint [58] and IHEC [59]. For 
studies interested in regions outside of CGIs, targeted 

approaches such as reduced-representation bisulfite 
sequencing (RRBS), MeDIP and MethylCap are not 
applicable, and the best choice is likely to be WGBS.

Reduced‑representation bisulfite sequencing (RRBS)
To investigate the mammalian methylome at a lower cost, 
Meissner et  al. developed RRBS, which integrates Msp1 
restriction enzyme digestion, bisulfite conversion and 
next-generation sequencing for the analysis of methyla-
tion patterns of specific fragments [60]. A size selection 
of MspI-digested fragments between 40 and 220 bps was 
found to cover 85 % of CGIs, mostly in promoters, which 
compose only 1–3 % of the mammalian genome, thereby 
significantly decreasing the amount of sequencing [51, 
61]. RRBS-based protocols are more cost-effective than 
WGBS because these methods focus on the enrichment 
of CpG-rich regions in close proximity to the restriction 
enzyme’s recognition sequence; however, these protocols 
may exhibit a lack of coverage at intergenic and distal 
regulatory elements that are relatively less studied.

RRBS has been widely used in profiling large-scale 
samples. Orozco et  al. performed RRBS in 90 inbred 
mouse strains, conducted an integrative analysis that 
included genome-wide expression levels, proteom-
ics, metabolomics, and 68 clinical traits, and performed 
epigenome-wide association studies (EWAS) [62]. They 
found associations with numerous clinical traits, includ-
ing bone density, insulin resistance, expression, and pro-
tein and metabolite levels. RRBS has also been used in 
non-mammalians, such as zebrafish [63], wasp [64], oak 
populations [65] and Brassica rapa [66].

Commercial DNA methylation assay kits
Another concern for BS-seq is that a large amount of 
high-quality genomic DNA, e.g., usually 5 μg, is required 
for WGBS, and RRBS requires 0.01–0.3  μg [51] (see 
Fig. 2). To study samples with a preciously small amount 
of DNA, e.g., primordial germ cells (PGCs) and can-
cer cells, commercial kits for ultralow input were devel-
oped. The Ovation® Ultralow Methyl-Seq Library System 
requires only 10  ng of DNA to construct the WGBS 
library [67], and the Ovation® RRBS Methyl-Seq Library 
System requires 100 ng of DNA for RRBS.

For targeted bisulfite sequencing, the SeqCap Epi Sys-
tem from Roche enables the enrichment of a small frac-
tion of the genome containing regions of interest after 
bisulfite conversion [68]. In addition, the SeqCap Epi 
CpGiant Enrichment Kit allows the interrogation of more 
than 5.5 million CpGs in the human genome with a start-
ing DNA input of 1 µg. Roche also provides customiza-
tion of probe pools according to the type of organism and 
regions of interest. The SureSelectXT Methyl-Seq Target 
Enrichment Kit from Agilent Technologies involves the 
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hybridization and enrichment of sequencing libraries 
with oligonucleotide baits before bisulfite conversion 
[69]. This platform supports the enrichment of an 84-Mb 
target covering 3.7 million CpG sites with a DNA input 
as low as 1 µg.

Single‑cell methylome
Most genome-wide DNA methylation profiling tech-
niques have common limitations: the need for bulk cell 
populations as starting materials and the inability to 
assess methylation heterogeneity among individual cells 
[70, 71]. To address these issues, single-cell bisulfite-
based techniques have been developed. First, single-cell 
reduced-representation bisulfite sequencing (scRRBS) 
integrates the steps of MspI digestion to bisulfite con-
version into one tube of cell lysate to minimize DNA 
loss and to provide methylation information on approxi-
mately 1 million CpG sites within an individual mouse or 
human cell [70]. Another single-cell DNA methylation 
analysis method, namely single-cell bisulfite sequencing 
(scBS-seq), is a modified post-bisulfite adapter tagging 
(PBAT) protocol [72, 73]. PBAT circumvents the issue 
of a massive bisulfite-induced loss of sequencing tem-
plates in WGBS by performing bisulfite treatment ahead 
of adapter tagging, thereby enabling the use of a lower 
starting amount of DNA (only 100  ng) and eliminating 
the need for global amplification [73]. scBS-seq enables 
the measurement of DNA methylation at up to 48.4 % of 
the CpG sites and was reported to achieve higher recov-
ery rates than scRRBS [71, 72]. Farlik et al. described sin-
gle-cell whole-genome bisulfite sequencing (scWGBS) of 
human and mouse cells and bioinformatics inferences for 
epigenomic cell-state dynamics in pluripotent and dif-
ferentiating cells [74]. These single-cell techniques can be 
applied in studies involving limited cell amounts and het-
erogeneous cell populations [71, 72] and are particularly 
useful for specific cell types that play important roles in 
early development, such as sperm cells, oocytes, PGCs 
and embryonic stem cells (ESCs).

Genome‑wide 5‑hydroxylmethylation profiling
The TET family of dioxygenases catalyze the oxidation 
of 5mC to 5hmC. The detection of 5hmC gained much 
attention recently after this C modification was identi-
fied as an epigenetic mark in mammals (mouse brain 
and ESCs), and 5hmC has been reported to be an inter-
mediate in DNA demethylation [75, 76]. The detection 
of 5hmC is technically more challenging than that of 
5mC due to the low abundance of 5hmC, and stand-
ard bisulfite sequencing does not distinguish between 
5mC and 5hmC because both are resistant to bisulfite 
treatment [77]. Hydroxymethylated DNA immunopre-
cipitation (hMeDIP), which is modified from MeDIP, 

characterizes the relative abundance of 5hmC at spe-
cific loci or throughout the entire mammalian genome. 
hMeDIP involves immunoselection and immunoprecipi-
tation using anti-5hmC antibodies and subsequent analy-
sis by qPCR, microarray hybridization or next-generation 
sequencing [78].

Oxidative bisulfite sequencing (OxBS‑seq)
A modified bisulfite sequencing technique, oxidative 
bisulfite sequencing (OxBS-seq) distinguishes between 
5mC and 5hmC via the highly selective chemical oxida-
tion of 5hmC to 5fC [79]. After bisulfite treatment, 5fC 
is converted to U and is read as T in the sequencing 
stage. Unlike 5hmC, 5mC does not undergo oxidation 
upon bisulfite treatment and will be detected as C after 
sequencing. The 5hmC level can be quantified by com-
paring the data from BS-seq (which identifies both 5hmC 
and 5mC) and the data from OxBS-seq (which identifies 
5mC). The disadvantages of this technique are the oxida-
tive degradation of DNA and the requirement for multi-
ple bisulfite treatments to completely deaminate 5fC [80].

TET‑assisted bisulfite sequencing (TAB‑seq)
TET-assisted bisulfite sequencing (TAB-seq) has been 
used to generate genome-wide 5hmC profiles at a sin-
gle-base resolution in human and mouse ESCs [81]. In 
TAB-seq, 5hmC is protected from TET protein-medi-
ated oxidation by the addition of glucose to 5hmC using 
β-glucosyltransferase (β-GT) to generate β-glucosyl-5-
hydroxymethylcytosine (g5hmC). 5mC is oxidized by 
the Tet1 enzyme to 5caC. 5caC and unmethylated C are 
susceptible to bisulfite conversion and thus are sequenced 
as T, whereas 5hmC is sequenced as C. TAB-seq meas-
ures 5hmC directly, and information regarding 5mC can 
be obtained using the same analysis pipeline as BS-seq. 
Highly active TET proteins are required for the efficient 
conversion of 5mC to 5caC (more than 96 %), or else the 
incomplete conversion of 5mC might lead to false identifi-
cation as 5hmC sites [81]. Both oxidative bisulfite conver-
sion and TET-assisted bisulfite conversion are compatible 
with microarray and sequencing platforms to generate the 
5hmC methylation profile for a whole genome or targeted 
regions [82]. The relatively low levels of 5hmC and the 
subtraction step demand an increase in the sequencing 
coverage and the number of replicates. A study of human 
PGC epigenome used TAB-seq to reveal the demethyla-
tion   during epigenetic reprogramming between 57 and 
113 days, and the heterogeneity of 5hmc in both individ-
ual loci and at individual cells has been identified [83].

Third‑generation sequencing
Emerging third-generation sequencing technologies [84], 
including single-molecule real-time sequencing (SMRT) 
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and Oxford Nanopore technology, have been recently 
adopted in epigenetics research.

Single‑molecule real‑time sequencing
Developed by Pacific Biosystems, SMRT allows the 
direct detection of base modifications by monitoring 
the activity of DNA polymerase during the incorpora-
tion of different fluorescently labeled nucleotides into 
complementary DNA strands [85, 86]. The direct detec-
tion of various base modifications involves the measure-
ment of the kinetics variation in the time between base 
incorporations. This technology has the following advan-
tages over second-generation sequencing: (1) minimal 
chemical modification during library preparation; (2) 
the requirement for DNA amplification is eliminated; 
(3) reduced requirement for input DNA; (4) the ability to 
generate longer reads (average read length of 3000  bp); 
and (5) the ability to detect different types of epigenetic 
modifications [86, 87]. SMRT has been used in the iden-
tification of 6mA in C. elegans, and the recently devel-
oped SMRT of chromatin immunoprecipitation enriched 
DNA (SMRT-ChIP) has resulted in the identification 
of 6mA  and associated demethylase ALKBH1 in mouse 
ESCs [11, 88].

Nanopore sequencing
In nanopore sequencing, single-stranded DNA is pulled 
by a phage DNA polymerase through a bacterial pore in 
single-nucleotide steps, and the ion current through the 
pore is recorded [89]. C can be distinguished from 5mC 
and 5hmC based on differences in the current traces. 
Although the detection of 5mC and 5hmC using nanop-
ore sequencing yielded encouraging results for the DNA 
methylation profiling of a single locus, the application of 
this method to genome-wide DNA methylation profiling 
has yet to be established.

Taken together, these applications of third-generation 
sequencing open doors to more discoveries of different 
epigenetic modifications and potentially reveal the novel 
functions of these epigenetic marks in gene expression. 
Despite its many promising features, the broad applica-
tion of third-generation sequencing is still limited by a 
higher error rate, higher cost and lower throughput than 
second-generation sequencing technologies [90]. The 
throughput and accuracy must be substantially improved 
before applying these approaches to studies involving 
complex genomes.

Bioinformatics analysis of WGBS and RRBS
The general workflow for the bioinformatics analysis 
of DNA methylation data includes data processing, the 
quantification of DNA methylation levels, general profil-
ing, the identification of DMRs and the visualization of the 

methylome [91]. Array-based data, such as that from Illu-
mina’s HM450K, are fluorescence intensities that quantify 
the relative abundance of methylated and unmethylated 
loci. The data from other non-bisulfite-conversion meth-
ods, such as MRE-seq and MeDIP-seq, are usually ana-
lyzed by comparing the relative abundance of fragments. 
Bisulfite-converted data, such as those from WGBS and 
RRBS, involve methylation calling at individual Cs, and 
statistical testing is required to assess differential methyla-
tion. In this section, we focus on the bioinformatics analy-
ses of bisulfite-converted data, in particular WGBS and 
RRBS (see Fig. 3 for a general bioinformatics pipeline).

Aligning bisulfite‑converted reads and data visualization
The bisulfite sequencing data are generally processed with 
several steps, including adapter trimming [92], a quality 
assessment of reads [93–95], aligning reads to the reference 
genome [96–101] and methylation calling [102]. In particu-
lar, mapping bisulfite-converted reads is challenging due 
to reduced sequence complexity, asymmetric C to T align-
ments, and the fact that the bisulfite-converted Watson and 
Crick strands are not complementary to each other because 
bisulfite conversion occurs only at Cs (not G’s) [96, 103]. 
To address these issues, a number of alignment and post-
alignment analysis tools have been developed (see Table 2 
for a list of alignment tools and software for post-alignment 
analysis). Bisulfite sequencing aligners are mostly based 
on one of two algorithms: wild cards and three-letter algo-
rithms. Wild card aligners substitute Cs with Ys in the ref-
erence genome, and reads with both Cs and Ts can then 
be aligned. This method results in higher genomic cover-
age together with a bias toward higher methylation levels 
[91]. However, the three-letter aligners convert all Cs in the 
reference genome and the read into Ts, and thus, stand-
ard aligners with lower mappability can be adopted due to 
reduced sequence complexity. For example, in the analysis 
of black truffle methylome, the bisulfite-treated reads were 
mapped 15–25 % less, comparing to the untreated [21]. In 
Table 2, we list 7 major bisulfite sequencing aligners along 
with their features. For example, BS Seeker 2 is a three-
letter aligner that supports the local alignment and com-
putational removal of potentially unconverted reads. The 
alignment profile can be visualized with tools such as the 
UCSC genome browser [104], WBSA [105], IGV [106] and 
Methylation plotter [107], which results in greater clarity at 
a single-base resolution across the genome.

Post‑alignment data analysis
Bisulfite aligners will output aligned reads along with the 
methylation calling information of each C with sequence 
context information, e.g., the CGmap file in BS Seeker 2 
[98]. Users can filter out sites with coverage, calculate the 
average methylation level and generate informative plots. 
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Table 2 lists 5 post-alignment analysis tools, and each of 
these tools has specific functions, e.g., BSPAT can detect 
allele-specific methylation [108], SAAP-RRBS can extract 
the annotation of each C [94] and MethGo can convert 
context methylation levels into average and genome-wide 
plots, as well as extract SNP and CNV profiles [109].

Detection of differentially methylated loci and regions
WGBS and RRBS generate methylation calls at each C as 
an estimate of the percentage of cells with methylation. 
Statistical tests are employed to identify differentially 

methylated loci in comparisons. For studies without rep-
licates, Fisher’s exact test is generally adopted. A compar-
ison with no replicates completely ignores within-group 
variations, resulting in an overstatement of the dif-
ferences and a high false-positive rate. Hansen et  al. 
described the need for biological replicates and devel-
oped BSmooth to effectively use low-coverage data with 
biological replicates and to determine DMRs [110].

DMRs are genomic regions that exhibit a different 
methylation status between two groups of samples. For 
example, Choufani et  al. assessed genome-wide DNA 

Fig. 3 Computational pipeline for genome‑wide bisulfite sequencing data analysis. Reads from bisulfite sequencing are first aligned to the refer‑
ence genome. The alignment data may be visualized in different tracks for comparison. After methylation calling, the bulk methylation level and 
genome‑wide methylation level are calculated and plotted, and DMRs are determined. To perform an integrative analysis, DNA methylation data are 
coupled with gene expression, e.g., differentially expressed genes (DEGs), to delineate the regulatory role of DNA methylation
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methylation maps in human uniparental samples, a 
mature cystic ovarian teratoma (MCT) carrying the 
maternal genome and an androgenetic complete hyda-
tidiform mole (AnCHM) carrying the paternal genome, 
as references to identify imprinted genes and DMRs. The 

comparison between the MCT and AnCHM successfully 
identified AXL as a new imprinted gene [111].

The identification of DMRs relies on both computa-
tional power for genome-wide screening and statistical 
testing. In Table  2, we included tools for implementing 

Table 2 Bioinformatics tools for bisulfite sequencing data analysis

BRAT-BW Bisulfite-treated Reads Analysis Tool (Burrows–Wheeler transform), UCSC genome browser University of California Santa Cruz Genome Browser, WBSA web 
service for bisulfite sequencing data analysis, BSPAT bisulfite sequencing pattern analysis tool, GBSA genome bisulfite sequencing analyser, IGV integrative genomics 
viewer, SAAP-RRBS streamlined analysis and annotation pipeline for RRBS data, SMAP streamlined methylation analysis pipeline

Function(s) Software Features References

Quality trim Cutadapt Removes adapter sequences [92]

Bisulfite sequencing aligner Bismark Three‑letter aligner; supporting both Bowtie and Bowtie2 [96]

BRAT‑BW Three‑letter aligner for mapping and methylation calling [97]

BS Seeker 2 Three‑letter aligner; supporting local alignment, and computational 
removal of unconversion reads

[98]

MethylCoder Three‑letter aligner to be used with Bowtie or GSNAP [99]

GSNAP Wild card aligner [100]

LAST Wild card aligner wrapped in a general‑purpose alignment tool [101]

Data visualization UCSC Genome Browser Web‑based genome browser allowing visualizing DNA methylation 
data (https://genome.ucsc.edu)

[104]

WBSA Web service for comprehensive analysis of WGBS and RRBS data and 
DMR finding (http://wbsa.big.ac.cn/)

[105]

Integrative Genome Viewer (IGV) Graphical genome browser to run locally on the user’s computer [106]

Methylation plotter Web‑based tool that plot up to 100 samples in lollipop or grid style 
(http://gattaca.imppc.org:3838/methylation_plotter)

[107]

Post‑alignment data analysis BSPAT  Summarizing and visualizing DNA methylation co‑occurrence patterns
 Detecting allele‑specific methylation
 Performing integrative analysis with genomic features such as histone 

modification

[108]

GBSA  Sequencing quality assessment
 Methylation level scoring
 Data management and visualization

[93]

MethGo  Calculating and plotting global methylation level
 Genome‑wide methylation plot
 Calculating methylation level in different genomic regions
 Extracting SNP and CNV information from BS‑seq data
 Profiling methylation at transcriptional factor binding sites

[109]

SAAP‑RRBS  Read quality assessment
 Alignment and methylation calling
 CpG annotation and reporting for high coverage and quality CpGs 

that could be visualized with IGV

[94]

SMAP  Read quality assessment
 Alignment and methylation calling
 Differentially methylated cytosine detection with Chi‑square test and 

DMR calling by Fisher’s exact test
 Detecting SNPs and allele‑specific methylation

[95]

Identifying DMR BSmooth A pipeline includes alignment, quality control and data analysis; the 
DMR finding function adapts bump hunting on smoothed t‑like score; 
supporting multiple testing correction

[110]

methylKit R package for clustering, sample quality visualization and DMR finding 
with logistic regression; supporting multiple testing correction

[112]

methylSig R package for DMR finding with likelihood ratio test; supporting multi‑
ple testing correction

[113]

methylPipe R package for DMR finding with Wilcoxon or Kruskal–Wallis paired non‑
parametric test; supporting multiple testing correction

[114]

BiSeq R package for DMR finding with Wald test; performing comprehensive 
RRBS data analysis; supporting multiple testing correction

[115]

https://genome.ucsc.edu
http://wbsa.big.ac.cn/
http://gattaca.imppc.org:3838/methylation_plotter
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statistical methods in DMR screening [110, 112–115]. 
Generally, the DMR detection algorithm adopts a sliding 
window across the genome to survey candidate DMRs, 
and the most common approach is to perform Fisher’s 
exact test CpG-wise. To detect DMR, as the coverage 
of each sample may be different, only sites covered by 
all samples are comparable. To enable the comparison, 
the comparing statistics such as methylation difference, 
T-score from T test or P value is needed in the testing. 
In the BSmooth software, a beta-binomial is assumed to 
be the suitable model for replicated bisulfite sequencing 
data. The observation is assumed to be binomially dis-
tributed, whereas the methylated proportion at a par-
ticular site can vary across samples. The differences at an 
individual site could be small but may expand and per-
sist across a region, which is a candidate DMR. There-
fore, DMRs are determined with greater statistical power 
and are more informative. When comparing methylomes 
with weak differences, extending the testing scale from 
one C to a cluster of neighboring Cs can reduce the num-
ber of hypothesis tests to improve the statistical power 
[91] (e.g., BiSeq takes spatial correlation into account in 
DMR prediction [115]). Weak DNA methylation differ-
ences can be better measured by estimating the stand-
ard deviation from biological replicates to obtain more 
robust P values [91].

Multiple testing in DMR detection
In addition, multiple testing is increased when many sites 
are simultaneously tested. In Table 2, we include a list of 
software that enables a correction for multiple testing.

Schmitz et  al. performed a large-scale WGBS analy-
sis in which DMRs from many Arabidopsis methylomes 
were detected [116]. They used the R package methylPipe 
to scan the genome with 100-bp windows [114], and the 
methylation level of the sites within a window was com-
pared across all samples using a Kruskal–Wallis test. The 
P values were then adjusted for multiple testing using 
the Benjamini–Hochburg method, and only DMRs with 
an adjusted P value less than 0.01 were selected. In addi-
tion to the adjusted P value, a second criterion is used to 
ensure the differences, and the DMR has to exhibit an 
eightfold methylation difference between the two groups.

Gkountela et al. devised an in-house method to identify 
DMRs between each developmental stage during human 
PGC development [83]. In their comparisons among the 
ICM (inner cell mass), PGCs and AGCs (advanced germ 
cells), these authors identified candidate DMRs with at 
least an 80 % methylation difference in 200-bp windows. 
To evaluate the FDR, they generated simulated methyl-
omes with the same read coverage per site as the real 
samples and reproduced the methylation level per site. 
The methylation levels were generated from a binomial 

model in which the parameters were the same for all the 
samples, i.e., all the simulated methylomes were equally 
methylated in both comparison groups. Any DMRs 
identified from the simulated methylomes were consid-
ered false positives. In total, Gkountela et al. found 3445 
DMRs between PGCs and AGCs with an FDR < 0.001 %.

Robinson et  al. reviewed some of the major DMR 
tools and discussed how the statistical significance was 
assessed [117]; users were advised to select the tool that 
satisfies their experimental design and data format. For 
example, most of the tools have been developed based 
on human and mouse studies; therefore, users studying 
other organisms should take the flexibility of the tools 
into account. The accommodation of different data types 
should also be considered, e.g., BiSeq supports RRBS 
only, whereas methylPipe supports RRBS and WGBS, as 
well as low-resolution DNA methylation data.

Conclusions
This review provides an overview of the current tech-
niques for the assessment of genome-wide DNA meth-
ylation and the identification of DMRs. The commonly 
used techniques are primarily based on restriction 
enzyme digestion, affinity enrichment and bisulfite 
treatment, coupled with either microarray or sequenc-
ing technologies. Because each technique has its own 
advantages and disadvantages, we summarize in Table 1 
a comprehensive evaluation of each technique. In Fig. 2, 
we provide an overview of these experimental pipelines 
and their required DNA input amounts. The selection of 
a technique strongly depends on the research questions, 
cost, amount of input DNA and the expected degree of 
methylation changes [118]. In Table  1, readers can also 
learn from the biological examples in which the profiling 
techniques were used to determine the experiments that 
best fit their research topic. For example, for mammalian 
studies with large-scale samples, one should consider a 
targeted approach, such as MeDIP or RRBS rather than 
WGBS, which would allow multiple sample comparisons 
with limited cost and provide sufficient information from 
CpG-rich regions. If the study aims to investigate the 
first methylome of an organism, then WGBS with deep 
sequencing would be a more suitable method to obtain 
detailed information in coding regions and intergenic 
regions. The input DNA amount should also be consid-
ered when rare cell types or tissues are studied. To reveal 
the methylation state of undifferentiated stem cells with-
out heterogeneity, single-cell approaches would be the 
best choice. The sequencing depth is a key parameter in 
DMR discovery; the greater the depth, the more power 
to discover DMRs. However, for studies with a large sam-
ple size such as disease-centered research studies, the 
distribution of limited resources should be considered, 



Page 13 of 16Yong et al. Epigenetics & Chromatin  (2016) 9:26 

e.g., sequencing a few samples deeply or more samples 
less deeply. A balance may be reached by considering the 
profiling technique coupling with the data analysis that 
would provide precise and accurate DMR prediction with 
low coverage requirements.

The discovery of various forms of C modifications, 
namely 5hmC, 5fC and 5caC, further expand the efforts 
to map and quantify these low-abundance bases in dif-
ferent cell and tissue types [76]. The emerging SMRT 
and nanopore sequencing technologies have enabled the 
direct reading of C modifications without the pre-treat-
ment of DNA and amplification; however, the through-
put and accuracy must be substantially improved before 
these techniques become contenders against second-gen-
eration sequencing technologies [14].

In addition to providing underlying biological insights, 
DNA methylation assays have great potential for applica-
tion to different fields, particularly medicine and forensic 
sciences [119, 120]. In medicine, these methodologies aid 
in the identification of epigenetic-based biomarkers for 
cancer and other epigenetic-related diseases, which serve 
as measurable indicators of biological conditions for 
predicting the presence or severity of a disease state or 
treatment response and further contribute to the devel-
opment of clinical treatments and personalized medicine 
throughout life [120–124]. DNA methylation has been 
applied to the discrimination of fetal and maternal DNA 
in circulating cell-free DNA to obtain more pure fetal 
DNA for downstream analyses, such as chromosomal 
abnormality [125]. With improvements in low-input 
bisulfite sequencing and single-cell techniques, methyl-
omes at an early embryonic developmental stage during 
pregnancy could be obtained to identify an abnormal 
fetus. Regarding applications in forensic sciences, DNA 
methylation analysis may be useful in the verification of 
DNA samples, body fluid identification and the estima-
tion of ages and phenotypic characteristics [119]. The 
ongoing advancements in technology allow the devel-
opment of more accurate and affordable methods for 
methylation analysis, such as with the application of sin-
gle-cell noninvasive prenatal tests, and further enhance 
our understanding of the roles of DNA methylation and 
its underlying mechanism in disease progression and the 
modulation of DNA methylation in response to different 
environmental cues in different cell and tissues types.
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