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Abstract

In a recent Letter to the Editor, Norris et al. questioned the validity of some of our data reported by Feria-Arroyo et al.
The main issue investigated by us was the potential impact of climate change on the probable distribution of the tick
vector Ixodes scapularis in the Texas-Mexico transboundary region. As an ancillary issue, an analysis of sequence data for
the intergenic spacer of Borrelia burgdorferi was conducted. In the present letter, we provide further evidence supporting
our original results, and advocate that extensive study of the population genetics of B. burgdorferi is needed in the
Texas-Mexico transboundary region.
Letter
We begin addressing the criticism expressed by Norris
et al. [1] that our intergenic spacer (IGS) data for Borre-
lia burgdorferi sensu stricto sequences does not support
the claim of B. burgdorferi tick infection rates in Texas
and northeastern Mexico. First and foremost, perspec-
tives like the one presented in our publication can help
address the gap in knowledge of Lyme disease (LD) con-
sidering that its geographical area is expected to spread
in the coming years [2]. Norris et al. [1] do not seem to
dispute that we found B. burgdorferi in the I. scapularis
collected in Texas and Mexico, but seem to question the
tick infection rates reported. In their criticism Norris
et al. [1] failed to relate our collective findings based on
eco-epidemiological data documenting a continuum in
the pathogenic landscape of LD in the Texas-Mexico
transboundary region. In addition, members of our
international research group collected nymph and adult
I. scapularis from wild mammals in forest zones at an
altitude of 1600–2670 meters above the sea level in the
Mexican state of Nuevo León. This allowed us to state
that northeastern Mexico meets ecological criteria to be
considered endemic for LD [3].
The most relevant issue addressed by Feria-Arroyo

et al. [4] consists of the potential impact of climate
change in the distribution model of the tick vector I.
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scapularis in the Texas-Mexico transboundary region,
based on present predictions of suitable habitat, as well
as forecasting to year 2050. The major motivation of this
study was the need to generate a current distribution
model for this tick vector, together with future distribu-
tion models that forecast any changes under different
climate change scenarios. These efforts will serve to
increase our knowledge of the ecology of B. burgdorferi
and its interaction with the competent vector I. scapu-
laris in Southern US, where the incidence of LD in
humans is very low. Norris et al. [1] disagree with the
levels of B. burgdorferi infection that we detected on I.
scapularis collected from non-human mammal hosts, al-
though they do concur that B. burgdorferi infection does
occur in Texas (http://www.cdc.gov/lyme/stats/). The
evidence used by Norris et al. [1], to question our find-
ings is based on data obtained by Williamson et al. [5].
Because the ticks on Williamson et al. study were ob-
tained from humans in a passive surveillance setting, we
do not consider a comparison of Williamson et al. [5]
data and ours appropriate. Contrary to what Norris and
collaborators wrongly state in their letter, our paper re-
ported B. burgdorferi infection levels in ticks exclusively
found in non-human-hosts or questing on vegetation.
The Feria-Arroyo et al. report does not include any ticks
recovered from humans. It is highly possible that infec-
tion levels on non-human hosts differ from infection
levels detected in humans, thus making both datasets
not comparable.
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Also, Norris et al. [1] affirm that “tick stage was not
reported” for our collections, but this information is ad-
dressed extensively in page 12, paragraph 2, where col-
lected adult ticks are described. Furthermore, they assert
that infection prevalence in these ticks removed from
animal hosts would likely be different from that of
questing nymphs that are more likely to infect humans,
further supporting our argument for the incompatibility
of contrasting these two datasets, ours and the one in
Williamson et al. [5]. It is worth mentioning that Norris
et al. [1] close that paragraph stating that our study “as
designed, would not provide a clear-cut indication of the
human risk for Lyme disease”, thus implying a goal that
was never mentioned in the Feria-Arroyo et al. [4]
paper. Nowhere in our paper do we address human risk
for LD in the Texas-Mexico transboundary region, nor
do we make any implications or conclusions in that dir-
ection. Our main model results are restricted to a pre-
dicted distribution for I. scapularis, which is based on a
presence-absence model with no assumptions being
made on the density of the different tick life stages.
Moreover, we clearly indicate the need for further com-
parative studies to better understand LD in different
ecological regions.
Infection levels using a second genetic marker (flaB),

confirmed the results originally obtained by the16SrRNA-
23SrRNA gene intergenic spacer (IGS) of B. burgdorferi. To
test for B. burgdorferi infection using flaB, a total of 11 tick
DNA samples were analyzed by PCR following the same
protocol described in Feria-Arroyo et al. [4]. For this new
analysis, we could only utilize samples from which we had
remaining aliquots to perform the flaB PCR and sequencing
reactions (samples BWTX12-16, BWTX17, BWTX24,
GEWMA9, GEWMA12 and GEWMA64). We also added
samples collected from white tailed deer (WTD) and gems-
bok (samples LPWMA14-15, MMWMA68, MMWMA69-
70, MMWMA80 and MMWMA161) from the same
locations used in our original study, but harvested at a later
time point. Thus, all tick samples used were collected from
wildlife. Two hundred and thirty nucleotide amplicons were
submitted for sequencing using forward and reverse primers
for flaB [6]. Sequences were cleaned individually before as-
sembly using MacVector Version 13.0.7 (MacVector Inc.,
North Carolina) as follows. First, the 5’- and 3’- ends were re-
moved from each sequence to avoid utilization of unclean
and noisy sections obtained during sequencing. After clean-
ing the ends, each peak in the chromatograms was checked
for accuracy of the corresponding nucleotide to make sure
listed nucleotides were correct. Once all sequencing re-
sults were cleaned, the forward and reverse sequences
were assembled using MacVector Assembler 13.0.7
(MacVector Inc., North Carolina). The consensus se-
quence produced was then used for further alignment
analyses with the same B. burgdorferi control strains
utilized by Norris et al. [1] (B31, N40 and 297) using
MacVector 13.0.7 (MacVector Inc., North Carolina). As
shown in Figure 1, the Texan flaB sequences show very
low variability. This low variability was also observed
when IGS sequences were used. Samples GEWMA64,
MMWMA69-70, MMWMA68 and MMWMA161 show
the highest variability (16, 2, 10 and 10 nucleotide
changes respectively). On the other hand, BWTX12-16,
a questing tick, has a significantly different sequence
from either of the controls or the other Texan samples,
suggesting that the degree of genetic variation of B.
burgdorferi in the regions sampled likely exceed the
values found by Feria-Arroyo et al., study [4], which only
sampled a limited number of potential vertebrate hosts.
Norris et al. [1] argued that the infected ticks reported

in our study were found infected with B. burgdorferi
likely due to contamination of the PCR reactions with
DNA from the strain B31 of B. burgdorferi, the positive
control used in the study. Nevertheless, B. burgdorferi
B31 flaB gene has a cytosine (C) at position 75 in this
alignment (Figure 1) while the Texas isolates had an ad-
enine (A). The A in the Texas isolate makes them more
similar to strains N40 and 297 than to B31. Contamin-
ation of our samples with strains N40 and 297 is impos-
sible, since these strains are not present in the laboratory
in which molecular analyses were carried out. The codon
in which this nucleotide change was detected translates
to Asparagine (Asn) in strains N40, 297 and in the
Texan strains, and to Threonine (Thr) in the B31 strain
(Figure 2). To date, no population genetic studies of B.
burgdorferi have been conducted in the Texas-Mexico
transboundary region, or in southern US. Consequently,
the level of genetic variation within B. burgdorferi and
its tick vector is unknown. In a recent study, Clark et al.
[7] detected B burgdorferi sensu stricto in four human
patients from Texas. In this study, the authors compared
the flaB sequence amplified from human Lyme patients
across the country and showed that flaB sequences in
Texas are very similar to that of the B31 strain. Interest-
ingly, the flaB sequences found in our study in non-
human hosts differed from the B31 strain, yet both we [4]
and Clark et al. [7] found low sequence variability in the
flaB gene within samples collected in Texas.
In order to further verify that the nucleotide differences

we observed between N40, 297, the Texas samples and B31
were not due to sequencing error, we evaluated whether or
not they encode for a functional FlaB polypeptide. To this
end, the translated sequences were generated. As shown in
Figure 2, none of the samples analysed contained stop
codons. Moreover, those containing higher sequence
variability (MMWMA69-70, MMWMA68, MMWMA161,
and BWTX12-16), translated into functional FlaB polypep-
tides with very limited amino acid changes. Further-
more, a phylogenetic tree (Figure 3) was generated and the
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Figure 1 (See legend on next page.)
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Figure 1 Multiple alignments for the flaB DNA sequence analysed from samples collected in the study presented by Feria-Arroyo et al. [4]
together with 5 more samples acquired from the same regions in Texas in different times of the year. In the alignment the corresponding
flaB sequences from B. burgdorferi strains B31, N40 and 297 were used as reference. Sequences were aligned using MacVector 13.0.7 (MacVector Inc.,
North Carolina). GE, LP and MM samples correspond with GEWMA, LPWMA and MMWMA samples.
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Texas samples grouped with the 297 strain rather than
with the B31 strain, suggesting that our previous results
were unlikely the result of strain contamination of PCR
reactions and unlikely caused by poor sequencing quality.
Taken together all the analyses generated throughout

our studies, and previous studies with human isolates of
B. burgdorferi sensu stricto from Texas [7], suggest little
genetic variability in the markers analyzed (flaB and
IGS) and support the fact that contamination during the
testing process was unlikely. The flaB sequences reported
in this letter have been published in GenBank (NCBI Na-
tional Center of Biotechnology Information, accession
numbers KM875668 through KM875675, http://www.
ncbi.nlm.nih.gov/genbank/).
Norris et al. stated in their letter that due to the low

variability observed in the IGS from the Texas samples
most, if not all of them, were likely to have been origi-
nated from the same clone which they assume could be
the product of contamination with the B31 strain. We
disagree with the interpretation put forward by Norris
et al. and instead think it is more likely that the lack of
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Figure 3 Neighbor-Joining phylogenetic tree of the flaB sequences analysed in this study. For the phylogenetic analyses, ClustalW2 [8] generated
preliminary multiple sequence alignments for both the DNA sequences (A) and their respective putative amino acid sequences (B, obtained through
the NCBI’s blastx program). These alignments were fed into jModeltTest 2.1.7 [9] and ProtTest 3 [10], programs that perform maximum likelihood (ML)
optimization to assess the best-fit models for nucleotide substitution and amino acid substitution, respectively. These results informed the parameter sets
to be used in RAxML v1.1 [11], a randomized, accelerated ML phylogenetic tree search program. These ML searches were conducted through
100 inferences of 100 distinct, randomized trees using the general time-reversible (GTR) model with gamma distributed rate heterogeneity for
nucleotide data and the LG model with rate heterogeneity for amino acid data. The phylogenetic trees were visualized using FigTree v1.4.2 [12].
Figure Xa demonstrates that BWTX12-16 possesses a widely divergent nucleotide sequence from that of the other sequences, yet Figure Xb
shows that the BWTX12-16 amino acid sequence is nested with the other sequences.
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of B. burgdorferi is present on ticks feeding on non-
human hosts in the Texas-Mexico transboundary region
sampled areas. It is not uncommon for bacteria to show
different levels of genetic variation at different geo-
graphic locations [14,15]. Variation in sequence diversity
among different geographic regions can be explained
by different selection regimes, local adaptation, recent
colonization events, and/or genetic drift. Currently sev-
eral ecological factors associated with LD transmission
in the Texas-Mexico transboundary region are unknown.
Without further research on the ecology of competent
and potential vectors and hosts, it is difficult to pinpoint
the reasons for the variability observed in IGS and flaB
sequences with a high degree of accuracy. The fact that
B. burgdorferi sequences differ widely in genetic diversity
between B. burgdorferi samples collected from ticks
feeding on non-human and human-hosts from different
regions is a clear indication that this needs further re-
search. Although this was not the main topic of our
paper we conclude that additional studies should explore
the reasons explaining the observed IGS and flaB B.
burgdorferi sequence homogeneity in the Texas-Mexico
transboundary region [4,7] as compared with what has
been observed in the Northeastern and Midwestern US.
Our team supports the fact that Texas is a low incidence

state for human cases of LD [16-19]; however, the ecology
of this disease in the Texas-Mexico transboundary region
is understudied. Given that this region is a completely dif-
ferent environment, as compared to Northeastern and
Midwestern US, it is highly likely that LD ecology will fol-
low a different dynamic. Variation in tick ecology, tick
questing behaviour, and vertebrate host communities be-
tween these regions that have considerable differences in
climate, species diversity and composition, are likely to in-
fluence the ecology of LD as well as its transmission po-
tential to humans. Thus, extrapolations based on findings
from the Northeastern and Midwestern US may not be ac-
curate enough to understand LD transmission and ecology
in other regions. Our research team is interested in eluci-
dating the ecological factors that explain the low human
infection incidence reported in the southern US and
northern Mexico to better understand the dynamics of
this tick borne disease across its distribution range.
Norris et al. suggest that the Feria-Arroyo et al. [4]

publication is advocating a high LD risk in Texas and
Mexico but this cannot be further from the truth. Unlike
publications that have aimed to create disease risk maps
based on questing infected nymphs [16,17,19] the Feria-
Arroyo et al. [4] presents a habitat suitability model for
the presence of the vector in the studied area, and no
predictions are made in regards to the density and
prevalence of infected ticks. We agree with Norris et al.
that it is unfortunate that the “Feria-Arroyo et al. [4] has
been publicised as an indication of a significant Lyme
disease risk in Texas” but misinterpretations of that paper
in media outlets are not the responsibility of the authors.
Throughout the Discussion section of Feria-Arroyo et al.
[4] it is stressed that a direct correlation between vector
presence and human disease cannot be made because of
the lack of knowledge about the disease ecology for this
pathogen in the studied region.
Norris et al. go a step further and even ask for the

paper to be removed from the literature, but we claim
this move is unwarranted for two main reasons. First, it
will be naïve to think that a whole public health strategy
will be swayed based on a study that does not address
human risk for the disease. Secondly, the main findings
of the Feria-Arroyo et al. paper [4], which are the vector
distribution models, remain unchanged independently of
the disputed B. burgdorferi prevalence rates. Removing
the contribution of these vector distribution models
from the literature would be a step backwards for the
continued study of tick-borne illnesses in the southern
United States, a goal that we agree with Norris et al. is
worthy of further academic work.
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