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Translating genomics research into control of
tuberculosis: lessons learned and future prospects
Digby F Warner1,2,3 and Valerie Mizrahi1,2,3*
Abstract

Genomics research has enabled crucial insights into
the adaptive evolution of Mycobacterium tuberculosis
as an obligate human pathogen. Here, we highlight
major recent advances and evaluate the potential for
genomics approaches to inform tuberculosis control
efforts in high-burden settings.
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Introduction
Tuberculosis (TB) is a leading cause of death as a result
of an infectious bacterial agent, claiming 1.4 million lives
each year [1]. With an estimated global burden of 8.7
million incident cases per annum, TB remains a major
public health threat. In high-burden regions such as
sub-Saharan Africa, the TB epidemic is exacerbated by
co-morbidities, including HIV and diabetes, as well as
demographic, socioeconomic, and programmatic factors
[2]. The magnitude of the TB problem has been further
amplified by the evolution and global spread of strains
of Mycobacterium tuberculosis that are resistant to con-
ventional first- and second-line antitubercular drugs. Of
particular concern, drug resistance is worsening, having
progressed from multi-drug resistant (MDR), to exten-
sively drug resistant (XDR), to ‘functionally untreatable’
[3] TB - that is, disease for which no therapeutic options
remain. This progression has led to calls for ‘visionary
political leadership’ [4] and ‘increased funding to sustain
global control efforts, research and advocacy’ [3]. In
order to reach the aspirational goal of global TB elimin-
ation by 2050, TB incidence will need to be reduced by
approximately 16% each year for the next 40 years. In
* Correspondence: valerie.mizrahi@uct.ac.za
1MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of
Infectious Disease and Molecular Medicine, Faculty of Health Sciences,
University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South
Africa
2DST/NRF Centre of Excellence for Biomedical TB Research, Institute of
Infectious Disease and Molecular Medicine, University of Cape Town, Anzio
Road, Observatory, Cape Town 7925, South Africa
Full list of author information is available at the end of the article

© 2014 Warner and Mizrahi; licensee BioMed
for 12 months following its publication. After this
License (http://creativecommons.org/licenses/by
provided the original work is properly credited. T
org/publicdomain/zero/1.0/) applies to the data
spite of recent gains in the battle against TB, the current
rate of decline in TB incidence of 2% per annum falls far
short of this target [5]. This alarming situation under-
scores the urgent need for new tools to control this dev-
astating disease.
Fundamental TB research poses very specific practical

and financial challenges. As an infectious pathogen, M.
tuberculosis can only be manipulated in purpose-built

personnel. The construction and maintenance of such
facilities requires significant financial investment; more-
over, the running costs necessary to ensure continued
compliance with the stringent safety regulations are
high, and are incurred in addition to standard laboratory
operating expenses. From a practical perspective, M. tu-
berculosis is an intractable experimental subject: the ba-
cillus is notorious for its slow growth rate in vitro and
for its tendency to form aggregates in liquid media. As a
result, experiments are technically demanding, long in
duration and prone to contamination. The combined ef-
fect, therefore, is that the achievement of definitive re-
sults can be very slow.
Even more challenging are the scientific problems

posed by the natural lifecycle of M. tuberculosis as an
obligate human pathogen. By definition, all experiments
conducted outside infected individuals - whether in vitro
or in vivo - are performed in model systems that have
varying capacities to recapitulate specific aspects of the
host-pathogen interaction. Although advances in experi-
mental mycobacteriology have provided key insights into
the metabolic and regulatory pathways that are critical
for bacillary survival and pathogenesis, it remains ex-
tremely difficult to determine the precise physiological
status of tubercle bacilli during different stages of infec-
tion and in discrete anatomical and cellular (micro)envi-
ronments. As noted elsewhere [6], an important
consequence is that direct investigations of mycobacter-
ial function in the context of the complete biological
system - the M. tuberculosis-infected host - remain rare.
In turn, this means that the barriers to translating the
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observations from basic research into practical outcomes
are sizeable.
The application of genomics and other ’omics tech-

nologies in developing a systems biology of TB is central
to global efforts towards the development of new vac-
cines, diagnostics and drugs for TB. The landmark pub-
lication in 1998 by Stewart Cole and colleagues [7] of
the first genome sequence of a strain of M. tuberculosis
ushered in a new era in TB research in which genome-
scale studies have provided crucial insights into the
ancient and modern evolutionary history of M. tubercu-
losis, the genomics of drug resistance, the biology of M.
tuberculosis as an intracellular pathogen, and the host
response to infection with this organism (Figure 1). In this
article, we highlight the major advances in TB research
that have been enabled by the genomics revolution. We
then identify key areas of research and development that
will be required in order to harness the full potential of
genomics approaches for the control of TB in endemic
regions, discuss some of the major challenges and obsta-
cles that will need to be addressed and overcome in this
endeavor, and conclude by considering the implications
of the lessons learned from TB in the context of other
infectious diseases.

The evolutionary history of M. tuberculosis
M. tuberculosis is one member of the M. tuberculosis com-
plex (MTBC), a collection of phylogenetically linked or-
ganisms comprising eight closely related lineages [8] and
the outlying M. canettii group, in which the so-called
‘smooth tubercle bacilli’ are situated [9]. M. tuberculosis
sensu stricto from lineages L1 to L4 and L7, together with
the Mycobacterium africanum lineages L5 and L6, are
human-adapted, whereas the L8 lineage - which includes
Mycobacterium bovis and the TB vaccine strain, BCG
(Bacille Calmette Guérin) - contains the animal-adapted
pathogens. The recent discovery of chimpanzee and mon-
goose bacilli [10,11] suggests, however, that there might be
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Figure 1 Timeline of key studies in tuberculosis genomics research.
much greater diversity within the MTBC. In turn, this im-
plies that existing scenarios for the evolution of the
human- and animal-adapted strains might be overly sim-
plistic, and limited by the availability of isolates, especially
from wild mammals [11]. Defining the point in time, as
opposed to the phylogenetic position, at which MTBC
strains originated from a last common ancestor has
proven very difficult [8,12,13]; nevertheless, both com-
parative genomics and bioarcheological evidence support
the extended co-evolution of M. tuberculosis with its
obligate host [14]. In turn, this implies the evolution of
a conserved host-pathogen interaction that enables repeti-
tive cycles of infection, disease, and transmission while
accommodating bacillary adaptation to major human
demographic shifts. Although not conclusive, evidence of
selective pressure on specific mycobacterial antigens pro-
vides some support for this idea [15], as does the observa-
tion that diverse M. tuberculosis strains engage a core
transcriptional response following macrophage infection,
while exhibiting hallmarks of lineage-specific adaptation
to geographically varied host populations [16]. Notably,
the interaction between a particular locally adapted
M. tuberculosis strain and its corresponding geographically
matched host appears to depend on a functional immune
response: these sympatric interactions are disrupted by
HIV co-infection [17].
Unlike most other bacterial pathogens, a defining char-

acteristic of M. tuberculosis is its reliance on chromosomal
rearrangements and mutations as drivers of genomic evo-
lution [14]. Horizontal gene transfer (HGT) certainly
played an important role in the evolution of M. tubercu-
losis as a human pathogen [14,18,19]; however, despite the
proposal that ongoing recombination provides a source of
genetic variation [20], there is very little evidence in sup-
port of a role for HGT in the modern evolution of this or-
ganism [21]. This feature is likely to result from the
ecological isolation of the bacillus as an obligate pathogen
that primarily targets the host pulmonary and lymphatic
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system [22], as well as from the severe bottlenecks im-
posed by aerosol-dependent transmission from infectious
individual to naïve recipient [23].

Insights from diversity between lineages of the
MTBC
As noted above, the MTBC comprises eight closely re-
lated lineages [8] which can be distinguished according
to a lineage-defining single nucleotide polymorphism
(SNP) ‘barcode’ [24]. Until very recently, the functional
consequences of almost all of the differentiating SNPs
remained completely unexplored. In an important study
illustrating the power of integrating ’omics with myco-
bacterial genetics and chemical biology in experimental
models of TB infection, Christophe Guilhot, Roland
Brosch and colleagues demonstrated that SNPs which
are conserved in animal-adapted and M. africanum L6
strains are less transmissible and virulent in humans
than M. tuberculosis sensu stricto [25]. Guided by insights
from comparative genomics, these researchers homed in
on three separate SNPs that map to the promoter region
of phoP and codon 71 of phoR, genes which encode a two-
component system previously implicated in the virulence
and immunogenicity of M. tuberculosis. This system regu-
lates the synthesis and export of virulence factors that in-
clude the major secreted antigen, ESAT-6, as well as
polyacyltrehalose (PAT) lipids and sulfolipids (SLs). By
transferring any of three alleles - M. tuberculosis phoPR,
M. bovis phoPR, or a chimeric phoPR allele in which the
phoP (promoter) and phoR (coding region) SNPs were
split - into a phoPR null mutant of M. tuberculosis, the au-
thors demonstrated that the M. bovis phoR allele is associ-
ated with impaired expression of the PhoPR regulon. The
M. bovis phoPR allele was also found to impact negatively
on mycobacterial virulence in human macrophage and
mouse models of infection.
Armed with these data associating genotype with

phenotype, the authors then set out to characterize the
PhoPR system in a set of wild-type animal-adapted and
M. africanum L6 strains, as well as in matched deriva-
tives harboring the M. tuberculosis phoPR allele.
The levels of PAT and SL lipid families were compara-

tively low in the wild-type strains but markedly higher in
their counterparts that carry M. tuberculosis phoPR, but
the same was not true for ESAT-6, which was secreted
at comparable levels in the wild-type and recombinant
pairs. The animal-adapted and M. africanum L6 strains
therefore appear to have acquired compensatory muta-
tions that ameliorate the defect in ESAT-6 production
caused by the SNPs in phoPR, and so partially restore
virulence. In a further twist, convincing evidence was
obtained that implicates the insertion of an IS6110 elem-
ent upstream of phoPR in the hypervirulent phenotype
of M. bovis B - an MDR isolate of M. bovis responsible
for an outbreak of TB in Spain [26] - resulting from sup-
pression of the functional deficiencies of the M. bovis
phoPR allele.
Importantly, this study reinforces the need to sequence

additional panels of clinical M. tuberculosis isolates as
well as other MTBC strains [18] to identify evidence of
convergent evolution of functions that might impact ba-
cillary pathogenesis. In contrast to the M. canettii group,
whose larger genomes have been shaped by extensive
inter-strain recombination and horizontal transfer [9,18],
the population structure of the MTBC is clonal. It is
likely that this clonal restriction, which is evident in
the identification of 2,400 SNPs (at most) in a 4.4 Mb
MTBC genome, reflects the combined selective pressure
of obligate pathogenesis, as well as the close association
of MTBC with their natural hosts. In addition, the im-
pact on apparent diversity of strain sampling and labora-
tory propagation remains unclear. For this reason, the
recent use of shotgun metagenomics in clinical TB sam-
ples [27] is encouraging, as it suggests that ‘culture-free’
techniques might enable key insights into the mycobac-
terial population structure in specific anatomical com-
partments, while avoiding the biases inherent in existing
sample-collection techniques.

Understanding the genomics of TB drug
resistance
In no other area of TB research has the impact of gen-
omics been more profound than in establishing the
mechanisms that enable the resistance of M. tuberculosis
to TB drugs. Like analogous research on other bacterial
pathogens, elucidation of the genetic basis of resis-
tance of M. tuberculosis to the first-line drugs for the
treatment of TB - isoniazid, rifampicin, ethambutol and
pyrazinamide - pre-dated the introduction of routine
whole-genome sequencing (WGS) of resistant mutants
[28]. The discovery that the majority of rifampicin
resistance-conferring mutations found in clinical isolates
map to an 81-bp region within the rpoB gene enabled the
development and implementation of the new molecular
diagnostic, Xpert MTB/RIF. This test allows for rapid iden-
tification of M. tuberculosis within clinical specimens and
simultaneous identification of rifampicin resistance - a key
genetic marker of MDR-TB [29,30]. Assessing the medical,
public health and economic impacts of this potentially
‘game-changing’ technology [31] is the subject of intense
investigation in South Africa, where an ambitious program
to roll-out Xpert MTB/RIF nationally is underway [32].
More recently, WGS has been used to analyze strains of

M. tuberculosis with varying drug susceptibility profiles
from collections of clinical isolates, as well as drug-resistant
mutants isolated in the laboratory [33]. In addition to
identifying both canonical resistance-conferring mutations
and compensatory mutations, the comparative genomic
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analyses of Farhat et al. [34] and Zhang et al. [35] identified
a significant number of new resistance-associated muta-
tions not previously implicated in genetic drug resistance
[36]. Their observations suggest that the development of
drug resistance in M. tuberculosis is a more complex
biological phenomenon than previously thought - a notion
consistent with emerging trends in other areas of anti-
microbial drug resistance [37]. However, the impact of
these potentially novel resistance-associated mutations on
mycobacterial pathogenesis, and their functional contribu-
tion to TB drug resistance, is poorly understood. Validation
of the association between genotype and phenotype re-
quires transfer of the resistance-associated mutations into
a defined genetic background by means of allelic exchange,
a laborious and time-consuming exercise not routinely
applied in the TB field, even in the case of resistance-
conferring mutations [38]. Therefore, although new tech-
niques such as recombineering offer promise of improved
throughput for targeted allelic mutagenesis [39], the genetic
validation of resistance-linked mutations is likely to
remain a significant challenge. Attempts to confirm
inferred associations between specific mutations and
observed decreases in drug susceptibility are further
complicated by the increasing awareness of the signifi-
cant capacity of mycobacterial populations for pheno-
typic heterogeneity in the response to applied drugs
[40]. In addition, recent evidence of strain-specific tran-
scriptional phenotypes suggests that genetic background
might be of crucial importance in determining the func-
tional consequences of specific mutations [41].
In an impressive illustration of the application of WGS

in analyzing the genomics of TB drug resistance, Casali
et al. [42] investigated the mechanisms underlying the
evolution and transmission of TB drug resistance in
Russia by sequencing 1,000M. tuberculosis isolates col-
lected prospectively from clinical TB patients. Notably,
the major Beijing lineage clades in this collection of strains
were found to contain combinations of resistance and
compensatory mutations that conferred TB drug resis-
tance while retaining fitness and transmissibility. Tra-
ditionally, public health strategies to counter the threat of
drug-resistant TB have focused almost entirely on pro-
grammatic issues; however, in highlighting the importance
of (micro)biological factors in the persistence and spread
of MDR and XDR strains within a population [42], this
study added a disturbing new dimension to an already
daunting challenge.
Another area in which WGS analysis of resistant iso-

lates has been applied is in the identification of putative
targets of novel anti-mycobacterial agents discovered
by screening compound libraries for whole-cell activity
against M. tuberculosis. This method was successfully
used to identify the targets of bedaquiline (the AtpE sub-
unit of ATP synthase), the benzothiazinone BTZ043 (the
DprE1 epimerase), and the imidazopyridine amide Q203
(the QcrB subunit of the respiratory cytochrome bc1
complex) [43]. However, as mutations that compromise
drug efficacy frequently map to other resistance-linked
genes (such as those encoding efflux pumps) rather than
the target, the utility of this method for target identifica-
tion in M. tuberculosis is somewhat limited [39].

Insights from genome-wide phenotypic profiling
of M. tuberculosis
As in other fields of microbiology [44], the advent of
functional genomics has led to major advances in under-
standing the biology of M. tuberculosis through global
phenotypic profiling. This has allowed associations be-
tween genotype and phenotype to be uncovered, and has
enabled the systematic identification of genes which are
required for bacillary growth and survival under condi-
tions that are thought to prevail during human infection.
The early application of array-based methods such as
transposon site hybridization (TraSH) [45] and signature-
tagged mutagenesis [46] provided key insights into the
genetic requirements for growth of M. tuberculosis in vitro
[47,48], in macrophages [49], and in animal tissue [50-54].
Recently, these methods have been superseded by trans-
poson sequencing (Tn-Seq), an example of the numerous
‘multiletter acronym’ or ‘MLA-seq’ applications [55] that
have transformed post-genomic research. In the context of
TB, these applications have enabled global phenotypic
profiling at significantly higher resolution (Figure 2).
Tn-Seq has been used to refine the list of genes required
for the growth of M. tuberculosis under standard in vitro
conditions, and to identify the genes needed for growth
on cholesterol, a critical carbon source during infection
[56]. In an exciting new study that elegantly illustrates
the power of this approach, Zhang et al. [57] used Tn-Seq
to identify sets of genes which the tubercle bacillus
engages in order to survive host immunity - so-called
‘counteractomes’ - thereby uncovering a key role for de
novo tryptophan biosynthesis in preventing the killing of
M. tuberculosis by CD4 T cells.
Global phenotypic profiling has been powerfully rein-

forced by genome-wide transcriptional profiling of M.
tuberculosis in various experimental models [59-61] and
from clinical samples [62,63]. Initially, most analyses uti-
lized DNA microarrays, but RNA sequencing (RNA-Seq)
has now largely been adopted as the preferred technique
[64-66]. A complex picture is emerging of the manner in
which the bacillus modulates its transcriptome in re-
sponse to environmental cues such as the stresses en-
countered in the phagosome [67] and the metabolic
disturbances caused by chemical inhibition of cellular
metabolism [68]. At a practical level, transcriptional pro-
filing has provided a useful tool for categorizing the
mechanisms of action of novel anti-mycobacterial agents
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[68,69]. From the broader drug discovery perspective,
however, the results are ominous: the metabolic flexibil-
ity suggested by the various genome-wide transcriptional
profiling studies indicates that M. tuberculosis is likely to
be a difficult target for novel chemotherapies [6]. RNA-
Seq has simultaneously uncovered an abundance of non-
coding RNAs (ncRNAs) whose expression depends on
both physiological stimuli and strain genetic background
[41,64]. It seems likely, therefore, that these ncRNAs
play a crucial role in the biology of TB infection, as
suggested by recent work implicating the PhoP-dependent
ncRNA, Mcr7, in regulating the secretion of a key myco-
bacterial antigen [70].
Comparing genome-wide essentiality and transcrip-

tomic datasets has produced some surprising results: for
example, very little overlap was found between the genes
required for survival of M. tuberculosis in primary mac-
rophages and those regulated by the intracellular envir-
onment, suggesting that gene expression screens may
have limited value in identifying virulence genes in path-
ogens such as M. tuberculosis [49]. Nevertheless, the
application of these and other genome-scale tools (for
example, chromatin immunoprecipitation sequencing
(ChIP-Seq) [70,71]), and their integration into systems
biology approaches [59], promises to enable a systems-
level understanding of the biology of M. tuberculosis as
an exquisitely adapted human pathogen (Box 1). Im-
portantly, concurrent advances in mycobacterial genet-
ics, chemical biology, cell biology, and imaging have
created a powerful platform for the development of



Box 1. Towards systems biology for tuberculosis

A definition of systems biology

The term 'systems biology' is generally used to describe the interacting components of a biological system. Through iterative

testing and validation, a mathematical model of the system is constructed, modified, and

re-constructed using experimental data obtained from

diverse sources. These sources are primarily ’omics applications such as genomics, transcriptomics, proteomics and

metabolomics, but also include ‘classic’ approaches such as molecular biology, genetics, and microbiology. Critically, the

model must be able to predict the emergent properties of the system, as well as the impact on the system of external factors

and stimuli that might alter specific components or groups of components.

Systems biology of TB

The lifecycle of M. tuberculosis is driven entirely within the context of human infection: transmission from an infected

individual, infection of a new recipient, development of active disease or establishment of a clinically latent state that is able

to reactivate, and transmission to a new host. As a result, TB as a disease within an individual might be considered an

emergent property of multiple interactions that occur over a range of timescales and at different levels - anatomical, cellular,

and molecular - all of which involve elements derived from both bacillus and host. At the

level of host populations, systems epidemiology seeks to elucidate the factors - demographic, social, and systemic - that en-

able the propagation of select M. tuberculosis lineages and mutants that are able to survive in the face of control programs

and in competition with other genotypes.

Some approaches that might be adopted

Direct investigations of mycobacterial function in the context of the complete biological system - the M. tuberculosis-infected

host - are rare, but will be crucial if the barriers to translating the observations from basic

research into practical outcomes are to be overcome. A suite of ’omics techniques must be applied to clinical samples to

capture the full diversity of metabolic, proteomic, transcriptomic, and genomic features that characterize the diversity of

potentially heterogeneous mycobacterial populations within discrete host compartments and anatomical loci. For example:

• Comparative genomics could be used to identify

evidence of convergent evolution in clinical M. tuberculosis isolates - both independent of, and associated with,

drug resistance.

• Combining and comparing genotypic, epigenetic, and phenotypic data from bacilli captured at different stages of infection -

for example, aerosol-encapsulated organisms

released by individuals who have active TB versus sputum-based organisms induced for standard clinical diagnostics, pauciba-

cillary populations in immunologically inactive

lesions versus bacilli obtained from TB pneumonia, and so on. In all cases, these data should be overlayed with the

diversity of host cellular and immunopathological phenotypes.
• Corresponding data should be obtained from experimental models in order to identify the disease-relevant phenotypes and

functional interactions that each model system is best able to recapitulate.
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novel anti-mycobacterial agents, as well as of diagnos-
tics and biomarkers.

Host responses to and biomarkers of M.
tuberculosis infection
In a parallel approach, post-genomic tools have also
been applied in analyzing the response of the human
host to infection with M. tuberculosis. In a landmark
study published in 2010, Ann O’Garra and colleagues
[72] identified a 393-gene transcriptional signature in
peripheral blood that was able to discriminate patients
with active TB from the majority of latently infected and
healthy controls. The neutrophil-driven interferon signa-
ture correlated with the extent of disease in those with
active TB, as determined by chest X-ray [72], and dimin-
ished significantly after only two weeks on standard anti-
tubercular therapy, reverting towards that observed in
healthy controls [73]. The key findings of this study have
been independently validated in different clinical settings
and in diverse geographic locations [74-76]. More re-
cently, gene expression signatures have also been identi-
fied that distinguish TB from other diseases prevalent in
HIV-infected adults [77,78] and in children [79,80]. To-
gether, these observations underscore the potential
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utility of blood transcriptional signatures as biomarkers
for application in TB diagnosis and in monitoring of re-
sponse to therapy.
Genomics research also promises to enable significant

advances in the discovery of biomarkers and the devel-
opment of point-of-care diagnostics. The elucidation of
a blood transcriptional signature that can identify active
TB cases [72] offers the possibility of significantly redu-
cing the diagnostic delay that has been implicated in in-
creased M. tuberculosis transmission and the emergence
of drug resistance [81]. As noted elsewhere [82], the dis-
tinction between active TB and subclinical infection in
this transcriptional assay is not absolute, which suggests
that this test might be usefully applied to determine the
extent of pathology (or bacterial burden) in latently in-
fected individuals, and so might enable identification of
those individuals most likely to progress to active dis-
ease. To our knowledge, the strength of the transcrip-
tional signature has not been correlated with disease (or
bacterial burden). It seems, therefore, that applying an
equivalent assay in a non-human primate model [83]
might enable calibration of the transcriptional signature
against bacillary load and disease pathology. Whether a
transcription-based assay of this nature can be applied
in resource-limited, disease-endemic regions is cur-
rently uncertain; nevertheless, the diagnostic resolution
enabled by such approaches suggests that further devel-
opment is warranted. An additional consequence of
these and other transcriptional analyses of host re-
sponses to M. tuberculosis infection is that fundamental
questions have been raised about type I interferon sig-
naling and its role in influencing the outcome of TB in-
fection. As a result, the foundation has been established
for systems immunology [84] approaches to under-
standing the immunopathogenesis of TB, and to devel-
oping vaccines and biomarkers through integration with
mechanistic studies in cell-based and animal models of
infection [85-87].

Understanding the genotypic diversity of M.
tuberculosis within and between hosts
Advances in high-throughput DNA-sequencing technology
have transformed modern bacteriology [88], and their
impact on TB genomics has been equally profound [89].
WGS of clinical M. tuberculosis isolates has enabled
high-resolution insight into strain diversity [6,10], lineage-
specific adaptation to host populations [11,12], and micro-
variation within hosts and communities [13-15]. In addition
to providing strong evidence that bacillary genetics - and,
therefore, function - are a significant element in determin-
ing the heterogeneous outcomes of infection, these obser-
vations suggest that WGS might be profitably incorporated
into field trials of new-generation TB interventions, includ-
ing drugs and vaccines. In one example, a retrospective
observational study [90] that assessed patients from the
REMoxTB trial of moxifloxacin-containing drug regimens
[91] demonstrated the superiority of WGS over traditional
genotyping methods for differentiating cases of relapse and
re-infection. This study also confirmed a role for WGS in
defining endpoints of clinical trials conducted in high-
burden settings. In another example, recent work investi-
gating the intra-patient evolution of M. tuberculosis in
MDR patients undergoing longitudinal treatment demon-
strated long-term co-existence of different bacillary sub-
populations [92]. Notably, this study also documented the
presence in individual patients of clonal sub-populations
that possess different combinations of drug-resistance
alleles, a result that has profound implications for pheno-
typic and molecular drug-resistance testing algorithms,
which have traditionally assumed a monomorphic infecting
M. tuberculosis population.
The growing evidence for genotypic diversity in M. tu-

berculosis impacts epidemiological analyses of strain
prevalence and transmission, too. For example, a recent
study has shown that the extent of genotypic diversity
characterizing bacilli isolated from a single patient can
be as great as that observed between samples obtained
from patients along a transmission chain [93]. Consist-
ent with earlier evidence from resected lungs [94] and
sputum samples [95], the paper by Perez-Lago et al. [93]
detected intra-patient diversity at both extrapulmonary
and respiratory sites, which was interpreted as evidence
that variability can be transmitted. As the authors sug-
gest, this result raises important questions about the
threshold that should be applied to differentiate related-
ness among M. tuberculosis isolates for epidemiological
analyses, and so renders the inference of transmission
events inherently problematic.
To some extent, this difficulty is alleviated in low-

incidence settings, especially where bacterial samples are
accompanied by thorough clinical and epidemiological
metadata. As an example, a retrospective observational
study used WGS of archived samples to infer transmis-
sion directionality in household outbreaks of TB in the
UK Midlands [96]. Again, the authors identified both
intra-patient and between-host strain diversity, but the
degree of variation was sufficiently limited to enable a
framework to be established for the use of WGS data in
field epidemiology. Importantly, these results suggested
the possible use of WGS data to inform contact tracing,
as well as to identify potential ‘super-spreaders’ - that is,
M. tuberculosis-infected individuals who might be re-
sponsible for a disproportionate number of secondary
cases. Even though high-burden settings are likely to
pose a special challenge to the application of genomic
epidemiology, there is evidence to support the potential
of high-resolution genotyping in defining transmission
chains independent of drug resistance [97]. This study
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from China appears to be the only one of its kind to date
in a TB endemic region, but it does suggest the utility of
genomic epidemiology, especially where augmented by
good clinical, demographic, and social data [98].

Challenges and perspectives
As an obligate pathogen, M. tuberculosis is distinguished
from many other infectious organisms (bacterial, viral,
and parasitic) which have recourse to non-human reser-
voirs. Nevertheless, the application of modern genomics
techniques in these diverse systems reinforces the poten-
tial to elucidate functions and properties that are essential
to pathogenesis [99], or which drive the rapid emergence
of outbreak strains [100] and ensure their long-term circu-
lation within host populations [101]. High-resolution
genotyping, in particular, has revealed that the diversifica-
tion of clonal infecting strains into ‘clouds of diversity’
[88] is a feature of many different pathogenic organisms.
Determining the extent to which intraspecific diversity is
crucial for pathogenesis therefore represents a key re-
search question, and will require the development of sys-
tems biology approaches to determine the emergent
properties of microdiverse infecting populations.
For TB, it will be useful to consider the immediate re-

search priorities in the context of the major lifecycle
stages - active disease, clinical latency, and transmission -
and to prioritize genomics applications that are most likely
to inform future drug and vaccine development programs
(Box 2). The application of advanced ’omic tools is key to
novel approaches such as systems epidemiology [102] that
aim to combine high-resolution epidemiological data with
Box 2. Translational priorities

Identifying and intervening in transmission chains

Can we develop WGS-based methods to identify transmission ‘ho

tions to limit the spread of virulent and/or

drug-resistant strains?

Identifying the factors that impact infection outcomes

Can we apply systems biology methods to determine the bacillar

specific individuals?

Drug treatment

Can we utilize WGS-based methods to identify mixed

M. tuberculosis infections prior to initiation of treatment?

Can we exploit host transcriptional profiling to determine the res

Latent infection and vaccinology

Can we use host transcriptional profiling to identify (and treat) la

progressing to active disease?

Can knowledge about mycobacterial diversity be used to guide vac

Mycobacterial population biology and genomics

Can we determine the impact of intraspecific diversity on disease
systems biology. Nevertheless these techniques must also
be harnessed in developing methods for predictive epi-
demiology that can enable genuinely transformative inter-
ventions in TB incidence. As outlined above, the use of
WGS to enable definitive differentiation of relapse from
re-infection has very significant implications for trials of
experimental drug regimens [90]. This is a particularly im-
portant consideration in high-burden settings where the
force of infection is elevated [2], mixed infections com-
mon [103], and a large percentage of recurrent TB is due
to exogenous re-infection [104]. Moreover, the potential
for epigenetic modifications, such as DNA methylation, to
alter bacillary physiology [105] suggests that novel sam-
pling methods and sequencing technologies [100] will be
useful in determining the spectrum of physiological states
adopted by M. tuberculosis within the host and which
might impact drug efficacy. Similarly, establishing whether
prior infection with one bacillary genotype might predis-
pose to re-infection with a separate genotype following
chemotherapeutic elimination [90] is essential, not only
for control programs but also for TB vaccine development
strategies.
In summary, genomics research will continue to drive

efforts to understanding the evolutionary processes that
have enabled the adaptation of M. tuberculosis as a hu-
man pathogen. Translating the exciting advances pro-
vided by genomics into new tools that can radically
transform TB control will require significant and sus-
tained resourcing. It is incumbent upon the TB research
community to ensure that there is sufficient political will
to make this happen.
tspots’ and transmission chains to enable real-time interven-

y and host genetic factors that drive disease progression in

ponse to treatment?

tently infected individuals with a high probability of

cine development and use in TB-endemic regions?

progression and the emergence of drug resistance?
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