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Abstract

Background: Development of emergency department (ED) triage systems that accurately differentiate and
prioritize critically ill from stable patients remains challenging. We used machine learning models to predict clinical
outcomes, and then compared their performance with that of a conventional approach—the Emergency Severity
Index (ESI).

Methods: Using National Hospital and Ambulatory Medical Care Survey (NHAMCS) ED data, from 2007 through
2015, we identified all adult patients (aged ≥ 18 years). In the randomly sampled training set (70%), using routinely
available triage data as predictors (e.g., demographics, triage vital signs, chief complaints, comorbidities), we
developed four machine learning models: Lasso regression, random forest, gradient boosted decision tree, and
deep neural network. As the reference model, we constructed a logistic regression model using the five-level ESI
data. The clinical outcomes were critical care (admission to intensive care unit or in-hospital death) and
hospitalization (direct hospital admission or transfer). In the test set (the remaining 30%), we measured the
predictive performance, including area under the receiver-operating-characteristics curve (AUC) and net benefit
(decision curves) for each model.

Results: Of 135,470 eligible ED visits, 2.1% had critical care outcome and 16.2% had hospitalization outcome. In the
critical care outcome prediction, all four machine learning models outperformed the reference model (e.g., AUC, 0.86
[95%CI 0.85–0.87] in the deep neural network vs 0.74 [95%CI 0.72–0.75] in the reference model), with less under-triaged
patients in ESI triage levels 3 to 5 (urgent to non-urgent). Likewise, in the hospitalization outcome prediction, all machine
learning models outperformed the reference model (e.g., AUC, 0.82 [95%CI 0.82–0.83] in the deep neural network vs 0.69
[95%CI 0.68–0.69] in the reference model) with less over-triages in ESI triage levels 1 to 3 (immediate to urgent). In the
decision curve analysis, all machine learning models consistently achieved a greater net benefit—a larger number of
appropriate triages considering a trade-off with over-triages—across the range of clinical thresholds.

Conclusions: Compared to the conventional approach, the machine learning models demonstrated a superior
performance to predict critical care and hospitalization outcomes. The application of modern machine learning models
may enhance clinicians’ triage decision making, thereby achieving better clinical care and optimal resource utilization.
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Background
Over the past two decades, the number of emergency
department (ED) visits has increased by approximately
50% in the USA, with 138 million visits in 2014 [1]. This
increase has contributed to ED crowding and delays in
care [2–4]. The literature has demonstrated that delay in
care results in greater morbidity and mortality for many
disease conditions [3–7]. ED triage presents the first op-
portunity to promptly identify high-risk patients and ef-
ficiently allocate finite ED resources. Among various
triage algorithms, the Emergent Severity Index (ESI) is
the most commonly used algorithm in US EDs [8–10].
Despite its wide adoption, it heavily relies on clinical
judgment, leading to high inter-rater variability and sub-
optimal predictive ability [9–13].
The advent of machine learning models has shown

promise to improve predictive ability in various condi-
tions (e.g., sepsis, unplanned transfers to intensive care
unit) [14–16]. These approaches offer advantages in that
they account for high-order, non-linear interactions be-
tween predictors and gain more stable prediction [17].
Recent studies have reported that the application of ma-
chine learning models may provide high predictive abil-
ity at ED triage in selected patient populations and
settings—e.g., children [18], patients with asthma and
COPD exacerbation [19], and in few urban EDs [11, 20,
21]. Despite this clinical and research promise, no study
has yet examined the utility of modern machine learning
models for predicting clinical outcomes in a large popu-
lation of adult patients in the ED.
To address this knowledge gap, we used large ED visit

data to develop machine learning models—by using rou-
tinely available triage data—to accurately predict clinical
outcomes after ED triage. We also examined the predict-
ive performance of these models in comparison to the
model using the conventional five-level ESI algorithm.

Methods
Study design and setting
We used combined data from the ED component of the
2007–2015 National Hospital and Ambulatory Medical
Care Survey (NHAMCS) [22]. NHAMCS collects a na-
tionally representative sample of visits to non-institu-
tional general and short-stay hospitals, excluding federal,
military, and Veterans Administration hospitals, in the
50 states and the District of Columbia. The survey has
been conducted annually since 1992 by the National
Center for Health Statistics (NCHS). For example, a total
of 21,061 ED visits were surveyed in 2015 and submitted
electronically from 267 EDs, equivalent to a weighted
national sample of 137 million ED visits. The details of
the NHAMCS methods and procedures may be found in
the NHAMCS data file [22]. We followed the reporting
guideline from the TRIPOD (Transparent Reporting of a

multivariable prediction model for Individual Prognosis
Or Diagnosis) statement [23]. The institutional review
board of Massachusetts General Hospital waived the re-
view of this study.

Study samples
We identified all adult ED visits (aged ≥ 18 years) re-
corded in the 2007–2015 data. The study period was
chosen because the information on respiratory rates and
oxygen saturation levels were not available before 2007.
We excluded patients with death on ED arrival, those
who left before being seen or against medical advice,
and those with missing information or data inconsisten-
cies (i.e., systolic blood pressure > 300 mmHg, diastolic
blood pressure > 200 mmHg, pulse rate > 300/min, re-
spiratory rate > 80/min, oxygen saturation > 100%).

Predictors
As the predictors for the machine learning models, we in-
cluded routinely available information at ED triage set-
tings—i.e., patient age, sex, mode of arrival (walk-in vs.
ambulance), triage vital signs (temperature, pulse rate, sys-
tolic and diastolic blood pressure, respiratory rate, and
oxygen saturation), chief complaints, and patient comor-
bidities. Chief complaints were reclassified according to
the Reason for Visit Classification for Ambulatory Care
provided [22]. As the comorbidity classification, we
adopted 30 Elixhauser comorbidity measures using the
data of the International Classification of Diseases, Ninth
Version, Clinical Modification (ICD-9-CM) codes [24, 25].

Outcomes
The primary outcome was critical care outcome, defined
as either direct admission to an intensive care unit
(ICU) or in-hospital death, as done in previous studies
[11, 12, 19, 26]. The prompt and accurate prediction of
the critical care outcome at ED triage enables clinicians
not only to efficiently allocate ED resources but also to
urgently intervene on high-risk patients. The secondary
outcome was hospitalization, defined as either an admis-
sion to an inpatient care site or direct transfer to an
acute care hospital [11, 12, 19].

Statistical analysis
In the training set (70% randomly selected samples), we
developed a reference model and four machine learning
models for each outcome. As the reference model, we
fitted a logistic regression model using the conventional
ESI as the predictor. NHAMCS uses the five-level ESI
algorithm: immediate (level 1), emergent (level 2), urgent
(level 3), semi-urgent (level 4), and non-urgent (level 5)
[8]. While 7% of the EDs participating in the NHAMCS
did not use this classification, NCHS systematically
recoded all data into these five levels [22]. We also fitted
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logistic regression models using demographic and
physiologic variables in the NHAMCS data (i.e., age,
mean blood pressure, heart rate, and respiratory rate)
and APACHE II scoring system [27] as physiologic
score-based models.
Next, using machine learning approaches, we devel-

oped four additional models: (1) logistic regression with
Lasso regularization (Lasso regression), (2) random for-
est, (3) gradient boosted decision tree, and (4) deep
neural network. First, Lasso regularization is one of the
models that shrinks regression coefficients toward zero,
thereby effectively selecting important predictors and
improving the interpretability of the model. Coefficients
of Lasso regression are the values that minimize the re-
sidual sum of square plus shrinkage penalty [17, 28, 29].
We used a 10-fold cross-validation to yield the optimal
of regularization parameter (lambda) minimizing the
sum of least square plus shrinkage penalty by using R
glmnet package [28, 30]. Second, random forest is an en-
semble of decision trees from bootstrapped training
samples, and random samples of a certain number of
predictors are selected to tree induction. We used R ran-
ger and caret packages to construct random forest
models [31, 32]. Third, gradient boosted decision tree is
also an ensemble method which constructs new tree
models predicting the errors and residuals of previous
models. When adding the new models, this model uses a
gradient descent algorithm to minimize a loss function
[33]. We used R xgboost package to construct gradient
boosted decision tree models [34]. Lastly, deep neural
network model is composed of multiple processing
layers. Outcomes are modeled by intermediate hidden
units, and each hidden unit consists of the linear com-
bination of predictors which are transformed into
non-linear functions [17]. We used six-layer feedforward
model with adaptive moment estimation optimizer and
tuned hyperparameters (e.g., the number of hidden
units, batch size, learning rate, learning rate decay, and
dropout rate) using R Keras package [35, 36]. In these
machine learning models, we used several methods to
minimize potential overfitting—e.g., (1) Lasso
regularization, (2) out-of-bag estimation, (3)
cross-validation, and (4) dropout, Ridge regularization,
and batch normalization in each model. To examine the
importance of each predictor in the random forest
models, we used permutation-based variable importance
that is determined by the normalized average value of
difference between prediction accuracy of the out-of-bag
estimation and that of the same measure after permutat-
ing each predictor. In the gradient boosting decision tree
models, we also computed the importance that is
summed over iterations [32].
In the test set (the remaining 30% sample), we com-

puted the prediction performance of each model that

was derived above. As the prediction performance, we
computed (1) the area under the
receiver-operating-characteristics curve (AUC), (2) net
reclassification improvement, (3) confusion matrix re-
sults (i.e., sensitivity, specificity, positive predictive value,
and negative predictive value), and (4) net benefit
through decision curve analysis. To compare the
receiver-operating-characteristics curve (ROC) between
models, Delong’s test was used [37]. The net reclassifica-
tion improvement was used to quantify whether a new
model provides clinically relevant improvements in pre-
diction [38]. The decision curve analysis incorporates
the information about the benefit of correctly triaging
patients (true positives) and the relative harm of the
over-triages (false positives)—i.e., the net benefit—over a
range of threshold probability of the outcome (or clinical
preference) [39–42]. We graphically demonstrated the
net benefit of each model through a range of threshold
probabilities of the outcome as a decision curve. All ana-
lyses were performed with R version 3.5.1.

Results
During 2007–2015, the NHAMCS recorded 209,800
adult ED visits. Of these, we excluded 97 ED visits with
death on arrival, 6350 visits who left before being seen,
or against medical advice, 67,674 visits with missing in-
formation, and 209 visits with data inconsistencies, leav-
ing the analytic cohort of 135,470 ED visits. The patient
characteristics between the analytic and non-analytic co-
horts were generally similar (Additional file 1). In the
analytic cohort, the median age was 46 years (IQR 29–
60 years) and 43.1% were women (Table 1). Overall,
2782 ED visits (2.1%) had critical care outcome; pneu-
monia, chest pain, acute cerebrovascular disease, and
congestive heart failure are the most common diagnoses
(Table 2). Additionally, 22,010 ED visits (16.2%) had
hospitalization outcome; nonspecific chest pain, abdom-
inal pain, pneumonia, and other lower respiratory dis-
eases are the most common diagnoses.

Predicting critical care outcome
In the prediction of critical care outcome, the discrimin-
atory abilities of all models are shown in Fig. 1a and
Table 3. Compared with the reference model, all four
machine learning models demonstrated a significantly
higher AUC (all P < 0.001). For example, compared to
the reference model (AUC 0.74 [95%CI 0.72–0.75]), the
AUC was higher in the gradient boosted decision tree
(0.85 [95%CI 0.83–0.86]) and deep neural network (0.86
[95%CI 0.85–0.87]) models. Likewise, compared with the
reference model, all machine learning models also
achieved significant net reclassification improvement
(e.g., P < 0.001 in the deep neural network model).
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Additionally, compared with the reference model, all
machine learning models demonstrated a higher sensi-
tivity—e.g., 0.50 [95%CI 0.47–0.53] in the reference
model vs. 0.86 [95%CI 0.83–0.88] in the random forest
model; Table 3. As a trade-off, the specificity of the ref-
erence model appeared higher than that of machine
learning models—e.g., 0.82 [95%CI 0.82–0.86] in the ref-
erence model vs. 0.68 [95%CI 0.68–0.71] in the random

forest model. Given the low prevalence of the critical
care outcome, all models had high negative predictive
values—e.g., 0.988 [95%CI 0.988–0.988] in the reference
model vs. 0.996 [95%CI 0.996–0.996] in the random for-
est model. The AUC of the physiologic score-based
model was 0.75 [95%CI 0.74–0.77]. Other predictive per-
formance measures included sensitivity of 0.68 [95%CI
0.65–0.71] and specificity of 0.72 [95%CI 0.71–0.72].

Table 1 Predictor variables and outcomes in 135,470 adult emergency department visits

Variable n = 135,470

Age (year), median (IQR) 46 (29–60)

Female sex 58,450 (43.1)

Mode of arrival

Ambulance 26,820 (19.8)

Emergency Severity Index

1 (immediate) 2628 (1.9)

2 (emergent) 16,908 (12.5)

3 (urgent) 65,917 (48.7)

4 (semi-urgent) 41,007 (30.3)

5 (non-urgent) 9010 (6.7)

Vital signs

Temperature (F), median (IQR) 98.1 (97.6–98.5)

Pulse rate (bpm), median (IQR) 85 (74–97)

Systolic blood pressure (mmHg), standard deviation (SD) 136 (23.2)

Diastolic blood pressure (mmHg), standard deviation (SD) 79 (14.5)

Respiratory rate (per min), median (IQR) 18 (16–20)

Oxygen saturation (%), median (IQR) 98 (97–99)

Common chief complaints

Musculoskeletal-related complaints 21,499 (15.9)

Gastrointestinal-related complaints 20,947 (15.5)

General complaints (e.g., fever) 20,581 (15.2)

Injuries 16,731 (12.4)

Respiratory-related complaints 13,539 (10.0)

Neurological-related complaints 9828 (7.3)

Urological-related complaints 6869 (5.1)

Psychiatry-related complaints 4379 (3.2)

Treatment-related complaints (e.g., side effects) 3368 (2.5)

Eye and ear-related complaints 2952 (2.2)

Skin-related complaints 2902 (2.1)

Intoxication 1980 (1.5)

Elixhauser comorbidity measures (≥ 1) 18,249 (13.5)

Clinical outcomes

Critical care outcome* 2782 (2.1)

Hospitalization outcome† 22,010 (16.2)

Data are presented as number (percentage) of visits unless otherwise indicated
Abbreviations: ED emergency department, IQR interquartile range, SD standard deviation
*Direct admission to intensive care unit (ICU) or in-hospital death
† Admission to an inpatient care site or direct transfer to an acute care hospital
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With regard to the number of actual and predicted
outcomes stratified by ESI level (Table 4), the reference
model correctly predicted critical care outcomes in the
triage levels 1 and 2 (immediate and emergent: 49.6% of
all critical care outcomes). However, it also over-triaged
a large number of patients in these high-acuity categor-
ies and failed to predict all critical care outcomes in the
levels 3 to 5—i.e., under-triaging 50.4% of critically ill
patients. In contrast, the machine learning models suc-
cessfully predicted 71.3–81.6% of the actual outcomes in
the triage levels 3 to 5. Likewise, the decision curve ana-
lysis (Fig. 1b) also demonstrated that the net benefit of
all machine learning models surpassed that of the refer-
ence model throughout the threshold ranges, indicating
machine learning-based prediction would more accur-
ately identify patients at high risk with taking the
trade-off with over-triages into consideration.

Predicting hospitalization outcome
In the prediction of hospitalization outcome, the dis-
criminatory abilities of models are shown in Fig. 2a and
Table 3. Compared with the reference model, all four
machine learning models demonstrated a significantly
higher AUC (P < 0.001). For example, compared to the

reference model (AUC 0.69 [95%CI 0.68–0.69]; Table 3),
the AUC was higher in the gradient boosted decision
tree (0.82 [95%CI 0.82–0.83]) and deep neural network
(0.82 [95%CI 0.82–0.83]) models. Likewise, compared
with the reference model, all machine learning models
achieved significant net reclassification improvement
(e.g., P < 0.001 in the random forest model).
While all the machine learning models demonstrated a

lower sensitivity (e.g., 0.87 [95%CI 0.86–0.87] in the ref-
erence model vs. 0.71 [95%CI 0.70–0.72] in Lasso re-
gression, Table 3), they yield a higher specificity (e.g.,
0.42 [95%CI 0.39–0.43] in the reference model vs. 0.76
[95%CI 0.75–0.77] in Lasso regression model). The AUC
of the physiologic score-based model was 0.71 [95%CI
0.71–0.72]. Other predictive performance measures in-
cluded sensitivity of 0.63 [95%CI 0.62–0.65] and specifi-
city of 0.69 [95%CI 0.68–0.69].
With regard to the number of actual and predicted

outcomes stratified by ESI (Table 4), the reference model
over-triaged a large number of patients in the triage
levels 1 to 3 and failed to predict all hospitalization out-
comes in the levels 4 and 5—i.e., under-triaging 13.4% of
hospitalized patients. In contrast, the machine learning
models successfully predicted 64.2–72.4% of the actual

Table 2 The 20 most common emergency department diagnoses for critical care and hospitalization outcome

Critical care outcome Hospitalization outcome

CCS* Diagnostic category n CCS* Diagnostic category n

122 Pneumonia 161 102 Nonspecific chest pain 1836

102 Nonspecific chest pain 161 251 Abdominal pain 900

109 Acute cerebrovascular disease 138 122 Pneumonia 892

108 Congestive heart failure (non-hypertensive) 133 133 Other lower respiratory diseases 732

133 Other lower respiratory diseases 125 108 Congestive heart failure (non-hypertensive) 626

153 Gastrointestinal hemorrhage 101 127 Chronic obstructive pulmonary disease and bronchiectasis 570

106 Cardiac dysrhythmias 95 245 Syncope 556

131 Respiratory failure, insufficiency, and arrest 90 259 Residual codes (unclassified) 554

2 Septicemia 90 657 Mood disorders 535

259 Residual codes (unclassified) 86 197 Skin and subcutaneous tissue infections 531

55 Fluid and electrolyte disorders 82 106 Cardiac dysrhythmias 530

127 Chronic obstructive pulmonary disease and bronchiectasis 70 109 Acute cerebrovascular disease 483

100 Acute myocardial infarction 64 153 Gastrointestinal hemorrhage 466

101 Coronary atherosclerosis and other heart disease 62 159 Urinary tract infections 463

50 Diabetes mellitus with complications 57 55 Fluid and electrolyte disorders 459

233 Intracranial injury 53 659 Schizophrenia and other psychotic disorders 391

242 Poisoning by other medications and drugs 45 101 Coronary atherosclerosis and other heart disease 319

251 Abdominal pain 43 660 Alcohol-related disorders 285

245 Syncope 40 252 Malaise and fatigue 270

159 Urinary tract infections 40 246 Fever of unknown origin 258

Abbreviation: CCS Clinical Classification Software
*The principal diagnoses (> 14,000 ICD-9-CM diagnosis codes) were consolidated into 285 mutually exclusive diagnostic categories using the Agency for
Healthcare Research and Quality Clinical Classifications Software (CCS) [50], as done previously [51]
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outcomes in the levels 4 and 5. Likewise, the decision
curve analysis (Fig. 2b) also demonstrated that the net
benefit of all machine learning models surpassed that of
the reference model throughout the threshold ranges.

Variable importance
To gain insights into the relevance of each predictor,
Figs. 3 and 4 summarize the 15 most important predic-
tors of random forest and gradient boosted decision tree
models for each outcome. In the random forest models,
ambulance use, age, vital signs, and comorbidities (e.g.,
congestive heart failure) were most important predictors
for the critical care (Fig. 3a) and hospitalization (Fig. 3b)

outcomes. The variable importance was similar in the
gradient boosted decision tree models (Fig. 4).

Discussion
Based on the data of 135,470 adult ED visits, we applied
four modern machine learning approaches (i.e., Lasso re-
gression, random forest, gradient boosted decision tree,
and deep neural network) to the routinely available tri-
age information. Compared to the conventional model,
based on ESI algorithm [8], these machine learning
models demonstrated a superior performance in predict-
ing critical care and hospitalization outcomes, including
improved AUCs and net reclassification. Additionally,

Fig. 1 Prediction ability of the reference model and machine learning models for intensive care use and in-hospital mortality in the test set. a
Receiver-operating-characteristics (ROC) curves. The corresponding values of the area under the receiver-operating-characteristics curve (AUC) for
each model are presented in Table 2. b Decision curve analysis. X-axis indicates the threshold probability for critical care outcome and Y-axis
indicates the net benefit. Compared to the reference model, the net benefit for all machine learning models was larger over the range of
clinical threshold
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the machine learning models had a higher sensitivity for
the critical care outcome with a reduced number of
under-triaged critically ill patients, and had a higher spe-
cificity for the hospitalization outcome with fewer
over-triages. Moreover, the decision curve analysis re-
vealed that all machine learning models yielded a larger
net benefit—the trade-off between appropriate triages
and over-triages—throughout the wide range of thresh-
olds. To date, this is the first investigation that has com-
prehensively examined the utility of modern machine
learning models for predicting clinical outcomes in a
large population of adult patients in the ED.

The major goals of ED triage are to accurately differ-
entiate high-risk patients from more-stable patients and
to efficiently allocate finite ED resources. Prior studies
have documented that current triage algorithms (e.g.,
ESI) have a suboptimal predictive ability to identify crit-
ically ill patients, low inter-rater agreement, and high
variability within a same triage level [9–13]. While the
use of a complete set of information—such as detailed
data on past and present illnesses, physical examina-
tions, and repeated measurements during the ED
course—may improve prediction abilities, it is impracti-
cal at ED triage settings because of the limited

Fig. 2 Prediction ability of the reference model and machine learning models for hospitalization in the test set. a Receiver-operating-
characteristics (ROC) curves. The corresponding values of the area under the receiver-operating-characteristics curve (AUC) for each model
are presented in Table 2. b Decision curve analysis. X-axis indicates the threshold probability for hospitalization outcome and Y-axis
indicates the net benefit. Compared to the reference model, the net benefit for all machine learning models was larger over the range
of clinical threshold
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information and time available. An alternative approach
to enhance clinicians’ prediction abilities is to utilize ad-
vanced machine learning models. Recently, the machine
learning models have been applied to outcome predic-
tions in diverse medical fields—e.g., mortality in patients
with sepsis [14], cardiac complications in patients with
acute chest pain [43], rehospitalization in patients with
congestive heart failure [44], critical care and
hospitalization outcomes in children [18] and in adults
with asthma and COPD exacerbation [19], and un-
planned transfer to ICU [15]. The current study corrob-
orates the promise suggested by these recent studies and
extends them by demonstrating superior predictive
abilities of modern machine learning models over the
conventional model in a large population of adults in
the ED.

ED triage systems seek for an optimal balance between
under-triages and over-triages. The present study
showed that, compared to the conventional ESI ap-
proach, our machine learning models demonstrated a
higher sensitivity in predicting ICU admission and
in-hospital mortality. Indeed, the models correctly iden-
tified critically ill patients who would be inappropriately
under-triaged into lower-acuity ESI levels (levels 3 to 5),
supporting the advantages of machine learning-based
prediction at the ED triage where rapid identification of
patients at high risk is paramount. By contrast, patients
who are going to be admitted do not always need exces-
sive recourse in the ED (e.g., patients with cellulitis who
are admitted to an ED observation unit). Therefore, pre-
dictions of hospitalization outcome using a
high-sensitivity (and low-specificity) model would lead

Fig. 3 Variable importance of predictors in the random forest models. The variable importance is a scaled measure to have a maximum value of
100. The predictors with a variable importance of the top 15 are shown. a Critical care outcome. b Hospitalization outcome
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to over-triages and excessive resource utilization. How-
ever, our machine learning models yielded a higher spe-
cificity in predicting hospitalization with a reduced
number of over-triaged patients, particularly in the
higher-acuity ESI levels (levels 1 to 3), who may not
utilize excessive resource. Additionally, the utility of ma-
chine learning-based prediction is further buttressed by
the greater net benefit observed in the decision curve
analysis—which incorporates the trade-off between over-
and under-triages [39, 45]—across the wide range of
clinical thresholds.
The reasons for the improvement in predictive abilities

observed in the machine learning models are likely
multifactorial. First, the ESI algorithm heavily relies on
subjective clinical assessment of anticipated ED resource

use that leads to modest performance and large variabil-
ities between providers [8–10]. Second, advanced ma-
chine leaning approaches are adept at handling
high-order interactions between the predictors and
non-linear relationships with the outcome [17, 28].
Third, while overfitting in conventional models is often
problematic, our machine learning models adopted mul-
tiple rigorous approaches to mitigate overfitting, such as
regularization, cross-validation, and dropout. Although
our machine learning models achieved the superior pre-
dictive ability, the performance was not perfect. This is
attributable, at least partly, to the limited set of predic-
tors, subjectivity of data (e.g., visit reasons), various clin-
ical factors after ED triage (e.g., quality and timeliness of
ED management and patients’ clinical responses),

Fig. 4 Variable importance of predictors in the gradient boosted decision tree models. The variable importance is a scaled measure to have a
maximum value of 100. The predictors with a variable importance of top 15 are shown. a Critical care outcome. b Hospitalization outcome
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differences in patients’ health behaviors, providers’ prac-
tice patterns, and availability of ED resources. Yet, in the
era of health information technology, machine
learning-based prediction has a scalable advantage—e.g.,
updating prediction models through an automated ex-
traction of electronic health record data and integration
with digital images, natural language processing, and
continuous monitoring of physiological data [46–48].
This scalability had been unattainable in the conven-
tional models where decisions were made based on fixed
rules encoding knowledge. Taken together, our findings
and recent developments suggest that machine learning
approaches are indispensable next-generation assistive
technology to further advance clinical decision-making
abilities [49].
The current study has several potential limitations.

First, we excluded samples with missing information.
Yet, the analytic and non-analytic cohorts were generally
comparable in the patient demographics, ED presenta-
tion, and outcomes. These similarities argue against sub-
stantial selection bias. Second, the quality of data is
important in data-driven machine learning-based predic-
tion. Although survey data may have some misclassifica-
tion and ascertainment bias, NHAMCS has a coding
error rate of < 1% in their 10% quality control sample
[22]. Third, NHAMCS data do not collect some helpful
clinical variables (e.g., chronic medications, socioeco-
nomic status, health behaviors). However, the goal of the
present investigation is not to develop prediction models
using a broad set of predictors but to derive machine
learning models using a limited set of predictors that are
routinely available at current ED triage settings. Finally,
the indication and clinical threshold of ICU admission,
hospitalization, and hospital transfer depend on the local
healthcare resource and may vary between different EDs
and clinicians. However, the decision curve analysis
demonstrated that the net benefit of all machine learn-
ing models was consistently greater than that of the ref-
erence model across the wide range of threshold
probabilities (or clinical preferences). This finding sup-
ports the generalizability of prediction models.

Conclusions
Based on the analysis of 135,470 adult ED visit data, we
developed the machine learning models using ED triage
data. These models yielded a superior performance in
predicting critical care and hospitalization outcomes
over the conventional ESI-based model. Particularly, the
machine learning models would reduce the number of
critically ill who are under-triaged by the conventional
approach. Furthermore, the models would also decrease
over-triaging hospitalization outcomes that lead to ex-
cessive resource allocation to less-sick patients. More-
over, the machine learning models also yielded a greater

net benefit across wide ranges of threshold probabilities.
While external validations are necessary, the current
study lends substantial support to the application of ma-
chine learning-based predication to ED triage as a deci-
sion support technology. Machine learning models—as
assistive technologies—offer new avenues for enhancing
the clinician’s ED triage decision making, which will, in
turn, improve patient care and optimize resource
utilization in already-stressed emergency care systems.
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