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Abstract

GARP (glycoprotein-A repetitions predominant) is a type I transmembrane cell surface docking receptor for latent
transforming growth factor-β (TGF-β) that is abundantly expressed on regulatory T lymphocytes and platelets. GARP
regulates the availability of membrane-bound latent TGF-β and modulates its activation. For this reason, GARP
expression on immune and non-immune cells is involved in maintaining peripheral tolerance. It plays an
important role in preventing inflammatory diseases such as allergy and graft versus host disease (GvHD).
GARP is also frequently hijacked by cancer cells to promote oncogenesis. This review summarizes the most
important features of GARP biology described to date including gene regulation, protein expression and
mechanism in activating latent TGF-β, and the function of GARP in regulatory T cell biology and peripheral
tolerance, as well as GARP’s increasingly recognized roles in platelet-mediated cancer immune evasion. The
promise for GARP-targeted strategy as a novel immunotherapy of cancer is also highlighted.
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Background
Transforming growth factor-β (TGF-β) is a pleiotropic
cytokine expressed by the majority of cells and found in
all tissues [1]. It plays important roles in numerous
aspects of biological processes such as cell proliferation,
development, apoptosis, fibrosis, angiogenesis, wound
healing, cancer, and much more [2–4]. TGF-β’s produc-
tion and secretion consist of a series of tightly regulated
steps, as any dysregulation can lead to disease [5, 6].
Biochemically, TGF-β exists in at least four different
forms: (1) freely soluble TGF-β; (2) soluble TGF-β asso-
ciated with latency-associated peptide (LAP), known as
latent TGF-β (LTGF-β); (3) TGF-β-LAP-LTBP, latent
TGF-β associated with latent TGF-β-binding protein
(LTBP); and (4) membrane-associated latent form of
TGF-β [7, 8]. Three isoforms of TGF-β exist, TGF-β1,
TGF-β2, and TGF-β3, encoded by three different genes;
yet, TGF-β1 is the most studied among the three [9, 10].

Glycoprotein-A repetitions predominant protein (GARP)
has emerged as a critical regulator of latent TGF-β activa-
tion [11–14]. By binding to LTGF-β, GARP acts as a
docking receptor that concentrates LTGF-β on the cell
surface and enhances its final activation [15]. The function
of GARP has been extensively studied on regulatory T lym-
phocytes (Tregs), where it complexes with αVβ8 integrins
to release active TGF-β from the surface of the cells [16,
17]. Via this function, GARP was shown to be involved in
enhancing the suppressive phenotype of Tregs and in main-
taining Treg-mediated peripheral tolerance [12, 18, 19].
Since the discovery of GARP in 1992 [20], the scientific

literature regarding GARP can be divided into three
consecutive time periods; each of them emphasizes
research on a specific aspect of the protein (Fig. 1).
Initially, GARP gained attention between 1992 and 2006
because of its gene amplification in aggressive forms of
human metastatic carcinomas [21–23]. Subsequently,
GARP was identified as a latent TGF-β1 receptor
expressed on immune cells, specifically on Tregs and
megakaryocytes/platelets [15]. At this time, GARP was
identified as a Treg activation marker and for its ability to
regulate the bioavailability of TGF-β [11]. During the last
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3 years, several new aspects of GARP have been discovered.
For example, our recent findings established a strong
connection between GARP and cancer by describing the
pro-tumorigenic function of this protein in several human
malignancies [14] and the unexpected role of platelet
GARP in immune evasion and the cancer progression [24].
Moreover, GARP expression has been recently described
on human B cells in response to B cell receptor activation
and Toll-like receptor (TLR) 9 ligation [25] (Caroline Wal-
lace and Zihai Li, unpublished).

GARP: gene and protein structure
Lrrc32 gene
In their studies on gene amplification, Ollendorff and
colleagues identified a new independent unit designated
D11S833E in the telomeric region at 11q13-q14, which
they named GARP [20, 26]. In situ hybridization studies
revealed that the murine Lrrc32 gene is localized on
chromosome 7 in a region that is conserved between
human and murine genome [20]. Interestingly, Lrrc32
gene locus is part of a chromosomic region frequently
altered in human cancers [27]. Indeed, Lrrc32 specific
gene amplification was observed in human breast cancer
[28] and primary and metastatic neck lymph nodes in
oral squamous cell carcinoma [22]; moreover, in prostate
cancer, Lrrc32 amplification rate increases with the
decrease of hormone sensitivity [23]. Conversely, dele-
tion and rearrangement of Lrrc32 locus were described
in two cases of hibernoma, thus unveiling the ambiguous
behavior of Lrrc32 gene product in human malignancies
[29]. Nucleotide blasting analysis showed that human
and murine Lrrc32 gene have a similar structure, i.e.,
they share 81% of homology and both comprise of two

coding exons; in particular, the first exon encodes for
the signal peptide and nine amino acids, and the second
exon encodes for the majority of the coding region [30].

GARP gene regulation
Upon T cell receptor (TCR) engagement, GARP expression
is induced in Tregs; no significant surface expression of
GARP has been described in human or mouse conven-
tional T helper (Th) cells [31]. Haupt and colleagues
discovered that cell and context-specific expression of the
GARP gene is the result of the interplay of two alternative
promoters: upstream promoter 1 (P1) and downstream
promoter 2 (P2). Both promoters drive GARP gene tran-
scription; however, the variance in their methylation status
in different cell populations dictates where, and under what
conditions, GARP will be expressed. P2 is almost
completely demethylated in both Tregs and Th cells, yet
only in Th cells is the transcription initiation from P2
blocked by several methylated CpG islands present in the
downstream P1. Also, by inhibiting binding with tran-
scription factors, the methylated CpGs maintain P1 in a
closed chromatin configuration. In contrast, the less pro-
nounced methylation status of P1 in Tregs allowed the
binding of its nuclear master transcription factor forkhead
box P3 (FoxP3) that remodels the promoter region toward
an open configuration status. This allows the subsequent
binding of nuclear factor of activated T cells (NFAT) and
nuclear factor-κB (NF-κB) to drive the transcription of the
GARP gene [32]. A clear example of this FoxP3-mediated
GARP expression is the conversion of tumor-specific
Th17 cells to ex-Th17 FoxP3+ cells that show upregula-
tion of surface GARP as a transdifferentiation-associated
marker [33]. Accordingly, knocking-down of FoxP3 with

Fig. 1 Timeline of literature on the study of GARP. GARP literature can virtually be divided into three time windows; each emphasizes interests of
the field in a specific aspect of GARP function: the first round (green) of research focused on the characterization of the gene and the protein
structure; the second round (red) was dedicated to studying the GARP function on Treg cells and tolerance; research during the latest period
(light blue) analyzes GARP expression and function on platelets and cancer. The most pioneristic articles are indicated
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RNA interference in Tregs reduced surface GARP, yet
GARP silencing did not affect FoxP3 expression [34].
Tregs are not the only cell population that experiences
GARP-FoxP3 co-regulation; human and murine megakar-
yocytes and platelets constitutively express both FoxP3
and the surface GARP/LAP complex. Interestingly, upon
activation, platelets upregulate both GARP and FoxP3:
protease-activated receptor 4 activating peptide (PAR4-
AP) increases surface GARP, while phorbol ester myristate
acetate upregulates FoxP3 expression [15, 35, 36]. Al-
though the simultaneous upregulation of GARP and
FoxP3 needs to be demonstrated, these findings suggest
that platelets are another subset of cellular entities where
GARP and FoxP3 interdependence might occur. In
addition to lymphocytes and platelets, human melanocytes
simultaneously express FoxP3 and GARP [37], further
demonstrating this association.
Even though many reports are in favor of FoxP3 and

GARP co-expression, other reports suggest that expres-
sion of FoxP3 and GARP is independent of each other.
For example, while FoxP3 shRNA affects GARP expres-
sion, GARP shRNA does not change FoxP3 expression
in expanded Tregs [34]. Furthermore, Helios, but not
FoxP3, has been described as the marker of activated
Tregs expressing GARP/LAP [38]. Additionally, GARP is
inducible on activated human CD19+CD20+ B cells
through B cell receptor (BCR) and TLR 9 engagement
by anti-immunoglobulin (Ig) M antibodies and unmethy-
lated bacterial DNA (CpG), respectively, where it en-
hances class switching recombination and production of
IgA [25] (Caroline Wallace and Zihai Li, unpublished).
Based on this last observation, it is reasonable to
hypothesize that TLR signaling induces GARP
expression via NF-κB, since GARP promoter has a puta-
tive NF-κB binding region as previously mentioned. All
these reports indicate that the interdependence of GARP
and FoxP3 expression remains an intriguing area that is
far from being completely understood [38].
In addition to FoxP3, signal transducer and activator of

transcription 3 (STAT3) is another transcription factor
that was found recently to regulate GARP gene expres-
sion; Interleukin (IL)-6 administration to CD4+ naïve T
cells is sufficient to restrain GARP transcription and ex-
pression via the STAT3 signaling pathway [39]. As will be
discussed later, GARP is a latent TGF-β receptor that en-
hances furin-mediated pro-TGF-β cleavage, yet the ex-
pression of GARP per se is independent of both TGF-β
and Furin [40].
Post-transcriptional regulation is another important

checkpoint in GARP expression. The distal part of the 3′
untranslated region (UTR) of GARP transcript is targeted
by six microRNAs (miRNAs) which decrease GARP pro-
tein expression. Among these six microRNAs, miR-142-3p
is expressed 2.5 times more in Th cells than in Tregs, and

upon TCR stimulation, miR-142-3p expression decreases
in both T cell populations [41]. MiR-142-3p facilitates the
formation of a complex that together with argonaute 2,
and GARP-mRNA controls GARP expression via post-
transcriptional regulation [42].

GARP protein
After gene isolation, human and mouse GARP protein
putative sequences were deciphered. GARP protein is a
type I transmembrane protein and can be divided into
three domains: the extracellular domain, which consti-
tutes approximately 70% of the protein; the hydrophobic
transmembrane domain; and the 15 amino acid residue
cytoplasmic tail (Fig. 2). As part of the leucine-rich re-
peats (LRR)-containing proteins family, the extracellular
domain of GARP contains 20 LRR motifs, divided into
two groups by a proline-rich region, and a C-terminal
LRR (LRRCT) [26, 30]. Among the extracellular LRR
proteins, GARP, together with TLRs, glycoprotein 1bα
and glycoprotein 1bβ, belongs to the LRR Tollkin sub-
family, a group of proteins involved in inflammation
[43]. Like TLRs, Zhang et al. showed that GARP requires
the master chaperone gp96 (GRP94) in the endoplasmic
reticulum for its folding and surface expression [44, 45].
The proline-rich region located between the LRR of
GARP resembles the hinge domain of the LTBP. This

Fig. 2 Structure of the membrane-bound GARP-latent TGF-β1 complex.
GARP protein is structurally divided into three domains based on its
primary sequence: the extracellular domain, the transmembrane domain,
and the intracellular domain. The extracellular domain contains two sets of
ten LRRs divided by a proline-rich domain and one C-terminal LRR (LRRCT).
Two conserved Cys residues (Cys-192 and Cys-331) are located on the 7th
and 12th LRR, respectively, and are responsible for two disulfide bond for-
mation between GARP and Cys-4 of LAP of latent TGF-β
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domain confers flexibility to the protein and suggests
that GARP might be involved in protein-protein inter-
action [46, 47]. Additionally, like LTBP, GARP cova-
lently disulfide links with LAP; site-specific
mutagenesis from Cys to Ala demonstrated that Cys-
192 and Cys-331, located on the 7th and 12th LRR
respectively, are responsible for the disulfide linkage be-
tween GARP and Cys-4 of LAP [11]. Despite the high
homology in the extracellular domain, murine and hu-
man cytoplasmic tails show a 33% difference in the
amino acid sequence, yet they both have a conserved
tyrosine residue. Of interest, other members of
LRR_Tollkin family, like TLRs, have a cytoplasmic
phosphorylated tyrosine involved in signal transduction,
suggesting a possible tyrosine phosphorylation-
dependent function for GARP [48].

Tissue distribution and cell type-specific
expression
In human tissues, GARP is expressed in the peripheral
blood, placenta [49], and pancreas [50]. In accordance
with the mRNA expression data, GARP protein is
expressed by human breast cancer, lung cancer, and
colon cancer cells, where higher GARP expression
correlates with worse clinical outcome [14]. GARP
expression has been reported in multiple human and
mouse cells—specifically on human activated B cells [25]
(Caroline Wallace and Zihai Li, unpublished), human
and mouse mesenchymal stromal cells [51], Tregs [15],
megakaryocytes/platelets [52], hepatic stellate cells [53],
and mouse LAP+ γδ T cells [54]. GARP is widely
expressed in the mouse lymphoid organs, including the
spleen, the mesenteric and peripheral lymph nodes, and
the thymus as well as the Peyer’s patches [40]. This is
not surprising because GARP-expressing Tregs are
abundantly present in these sites. We recently demon-
strated that GARP is strategically expressed on the med-
ial edge epithelial cells of the palate shelf during
embryogenesis, where it is critical for TGF-β3 activation
and signaling, and is thus indispensable for normal pala-
togenesis [55]. We showed that whole-body Lrrc32-null
mice do not survive 24 h after birth as a result of the de-
fect in the fusion of the palatal shelves, a phenotype in-
distinguishable from the Tgfb3-null mice [56].
The presence of soluble GARP as a result of shedding

from T cell membrane has also been reported [41]. The
possibility of a shedding process was first discussed by
Roubin and colleagues in 1996 when, describing a GARP
deduced amino acid sequence, they observed the
presence of a hydrophobic leader sequence. They
hypothesized that this domain might be the signal pep-
tide for targeting the protein to the secretory pathway
[30]. Soluble GARP indeed is present in human plasma

[57], yet the mechanism and significance of the protein’s
shedding or secretion is not clear.

GARP function in TGF-β maturation and activation
GARP is expressed on the cell surface where it was
thought initially to be the docking receptor only for
latent TGF-β1 [58]. Of interest, the association with
GARP is not uniquely limited to latent TGF-β1; latent
TGF-β2 binds to GARP with a much lower binding
affinity [15]. Importantly, the genetic and biochemical
evidence demonstrated that GARP is absolutely required
for the association to and activation of latent TGF-β3
[55]. Thus, GARP can bind to all three TGF-β isoforms.
As a very powerful cytokine, sometimes referred to as

a “beast” [59], TGF-β production and secretion consist
of multiple tightly regulated steps; interestingly, GARP
plays a role in each of them (Fig. 3). First, TGF-β is syn-
thesized and secreted through the secretory pathway as
inactive homodimeric pro-proteins that are cleaved by
furin-type proteases to generate a mature TGF-β. At this
stage, the newly synthetized molecule is both covalently
(through disulfide bonds) and non-covalently associated
with LAP, referred to as latent TGF-β [10]. A study from
Sophie Lucas’ laboratory demonstrated that GARP
increases the rate of pro-TGF-β cleavage in a furin-
independent manner [41].
Subsequently, latent TGF-β associates with the LTBP,

creating the large latent complex (LLC) [60]. GARP can
interfere with this association due to its higher binding af-
finity to latent TGF-β; when both GARP and LTBP are
co-expressed in 293 T cells, GARP outcompetes LTBP for
latent TGF-β binding. Interestingly, electron microscopy
analysis showed that GARP and latent TGF-β association
also can be mediated by non-covalent binding [11]. The
nature and function of this weakly associated complex
might mediate TGF-β activation upon surface shedding
[61], as discussed below.
Finally, the release of the biologically active mature

TGF-β requires the separation and release of the mature
form of TGF-β from the LAP. Multiple mechanisms
have been evoked to describe this critical step, where cell
surface integrins are the main orchestrators. αVβ6 and
αVβ8 can activate latent TGF-β through proteases-
dependent and protease-independent mechanisms. In
the protease-independent manner, αVβ6 and αVβ8
integrins bind to the latent TGF-β and, after deforming
the surface LAP, they mediate the release of the mature
form of TGF-β. In the protease-dependent mechanisms,
integrins recruit metalloproteinases or serine proteases
that cleave LAP and, subsequently, liberate TGF-β [62,
63]. For example, thrombin mediates the activation of
latent TGF-β bound to αVβ6 in a murine pulmonary
injury model [64]. Recent findings demonstrated that
membrane-bound GARP facilitates the protease-
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independent TGF-β activation via the formation of a
complex together with αVβ6 integrins and latent TGF-β.
Intriguingly, the association of the GARP/latent TGF-β
complex with integrins does not disrupt the ring-like
structure of the pro-TGF-β, suggesting that the integrin
interaction is essential, yet it is not sufficient for secretion
of mature TGF-β [11]. This may indicate that similarly to
latent TGF-β alone, integrin binding to LAP predisposes
the complex for the release of the active peptide; however,
extra tensile force is required for the removal of the
“straightjacket” elements of LAP [65]. This might explain
why active TGF-β released from GARP/latent TGF-β
complex is not always detectable, yet it is still able to acti-
vate TGF-β signal transduction, as shown in Tregs [12], B
cells [25], and some TGF-β reporter cell lines [11].
Integrin contribution has also been described for acti-

vated Tregs; αVβ8 integrins are responsible for the release
of latent TGF-β from the cell surface and for the forma-
tion of biologically active TGF-β as indirectly measured by
Th17 induction [16]. Recent studies indeed demonstrated
that on the Treg surface, GARP relies on the interaction
with αVβ8 integrins to release active TGF-β [17]. Intri-
guingly, integrins and membrane tensile forces do not ex-
plain the release of mature TGF-β from soluble GARP
(sGARP). This conundrum was partially unveiled by

Fridrich and colleagues when they observed that mature
TGF-β can be released from sGARP only when GARP
and latent TGF-β are non-covalently associated [61].
However, the underlying mechanism is still obscure.

GARP and peripheral immune tolerance
As discussed above, the GARP promoter has a binding
site for FoxP3, indicating that Treg-specific transcription
factor is required for GARP expression. Accordingly, si-
lencing FoxP3 in human Tregs reduces surface GARP
upon TCR stimulation [34]. On the other hand, enforced
GARP expression in human Th cells endows cells with
suppressive capability by upregulating several Treg and
TGF-β signature genes including FoxP3, CD25, and
CTLA4 [31, 66]. These findings suggest that the tolero-
genic Treg phenotype might be reinforced by a positive
feedback loop between GARP and FoxP3. Accordingly,
in Treg cells that are differentiated in vitro, silencing of
GARP partially impairs their suppressive ability [34]. In
this regard, we demonstrated that mice lacking surface
GARP on Tregs, due to a Treg-specific deletion of a mo-
lecular chaperone gp96, developed a fatal multi-organ
inflammatory disease [44]. In these mice, indeed, GARP
folding and surface expression were completely abro-
gated, thus preventing the formation of GARP/LTGF-β

Fig. 3 GARP functions in TGF-β maturation and activation. TGF-β is synthetized as an inactive homodimeric pro-protein that is cleaved by a furin-like
protease to yield the formation of latent TGF-β. GARP enhances furin-dependent cleavage and associates with latent TGF-β. The master chaperone
gp96 in the lumen of the endoplasmic reticulum (ER, not depicted) ensures the proper folding of GARP and its surface expression. On the cell surface,
GARP/latent TGF-β complex associates with alpha-beta integrins (αVβ6 and αVβ8) to release the mature TGF-β peptide. Mature TGF-β interacts with
TGF-β receptors on the cell surface in both an autocrine and paracrine fashion. In some cases, GARP/latent TGF-β complex can also be released from
the cell surface, but how TGF-β is activated from the soluble complex is not clear
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complex on activated Tregs and consequently the acqui-
sition of the suppressive phenotype. Thus, gp96 deletion
abolished the expression of cell surface GARP-LTGF-β as
well as the mechanism of LTGF-β activation. Accordingly,
this fatal phenotype can be partially rescued by exogenous
active TGF-β administration [44]. It is noteworthy to men-
tion that gp96 serves as a chaperone for numerous client
proteins such as TLRs [67, 68] and multiple α and β integ-
rin subunits [45, 69, 70], indicating that the inflammatory
phenotype observed in Treg-specific gp96-deficient mice
cannot be attributed to GARP deletion alone. Indeed, it
has been recently shown that the final release of TGF-β
from the GARP-LTGF-β complex requires the interaction
of the complex with αVβ8 integrins, which are also cha-
peroned by gp96 [71].
The tolerogenic roles of GARP might give a mechanis-

tic explanation for atopic dermatitis manifested by pa-
tients with gene mutations in the Lrrc32 gene locus that
prevents GARP surface expression [72]. Conversely,
other reports indicate that FoxP3 is not required for
GARP expression on Th cells upon TCR stimulation
and that FoxP3+ Tregs maintain the same suppressive
phenotype even in the absence of GARP [40].
The importance of GARP in peripheral tolerance is

also indicated by the results of meta-analyses of
genome-wide association studies which showed a strong
correlation between Lrrc32 gene locus expression and
conditions like Crohn’s disease, ulcerate colitis [73], and
allergic diseases [74]. In line with the findings of the
genome-wide association studies, sGARP has been
proven to be useful as an anti-inflammatory therapeutic
agent by sustaining Treg immune-modulatory activity in
a xenogeneic graft versus host disease (GvHD) model
and in an allergen-specific gut inflammation system [19,
75]. In addition, allergic airway inflammation is miti-
gated by sGARP administration in a TGF-β-dependent
manner [18]. On the other hand, Eschborn and
colleagues showed that, while sGARP mitigates allergen-
specific gut inflammation, injections of anti-GARP
blocking antibody reduce the therapeutic effect of acti-
vated Tregs [75]. Additionally, blocking IL-6 signaling in
the presence of TGF-β polarized Tregs to high GARP
and LAP expression which are able to maintain oral tol-
erance in a delayed type hypersensitivity (DTH) model
[39]. Furthermore, monoclonal GARP/latent TGF-β
antibody blocks the autocrine production of active TGF-
β in Tregs, restraining their immunosuppressive activity
in a xenogeneic model of GvHD [12].

GARP and cancer immune evasion
Although GARP offers an important protective role for
the host in inflammation-driven pathological conditions,
the tolerogenic FoxP3/GARP/TGF-β axis is a mediator
of the immunosuppressive microenvironment that

enhances tumor growth. For example, human ovarian
cancer ascites are infiltrated with FoxP3+GARP+ Treg
cells [33]. Higher frequency of GARP+FoxP3+ expression
in Tregs positively correlates with an elevated immuno-
suppressive and more aggressive phenotype in advanced
hepatocellular carcinoma [76].
As suggested by Lrrc32 gene amplification, GARP pro-

tein is expressed on human cancer cells where it mediates
the accumulation and subsequent activation of the circu-
lating latent TGF-β [14]. GARP supports cancer cell
growth and dissemination by providing an excellent reser-
voir of TGF-β that functions in the tumor microenviron-
ment (TME) by regulating the innate and adaptive
immune components and favoring tumor immune
evasion. With regard to innate immunity, TGF-β inhibits
natural killer (NK) cells cell and dendritic (DC) cells mat-
uration [77, 78]. The role of TGF-β is also well studied in
the non-resolving inflammation that facilitates cancer ini-
tiation [79, 80]. Tumor-derived TGF-β polarizes macro-
phages into tumor-associated macrophages (TAM) [81].
This cell population is a cancer therapeutic target because
of its secretion of pro-inflammatory cytokines like IL-6,
IL-23, and IL-17. Additionally, TGF-β derived from TAMs
is one of the major drivers of the epithelial to mesenchy-
mal transition [81–83]. Furthermore, tumor-derived TGF-
β drives the formation of cancer-associated fibroblasts
(CAFs), which in turn exert a strong pro-tumorigenic ac-
tivity on epithelial cells by secreting their own TGF-β [84].
CAFs’ pro-tumorigenic properties have been reported for
many malignancies such as prostate cancer [85], non-
small cell lung carcinoma [86], and colorectal carcinoma
[87]. Similarly, TGF-β impairs the adaptive anti-tumor im-
munity by directly inhibiting the clonal expansion and
cytotoxicity of the CD8+ cytotoxic T cells (CTLs) [88, 89].
Finally, TGF-β indirectly attenuates CTLs by inducing the
expression of Foxp3, which confers a regulatory and im-
mune suppressive phenotype to CD4+ T cells [90].
Human malignant melanocytes express and secrete

membrane-bound GARP and sGARP, respectively, that
skew macrophages toward a polarized M2 phenotype and
constrain the proliferation CTLs and their ability to pro-
duce cytokines [37]. In addition, GARP has been found to
be highly expressed in human breast, colon, and lung can-
cers where GARP/TGF-β axis sustains primary tumor
growth and distant metastasis. Intriguingly, a monoclonal
antibody that blocks the binding between latent TGF-β
and GARP was shown to be effective therapeutically in a
murine syngeneic mammary carcinoma model [14]. Be-
yond blocking the GARP and latent TGF-β interaction on
tumor cells, novel antibody-based strategies are emerging
to block GARP/latent TGF-β complex on the surface of
Tregs, thus preventing the secretion of active TGF-β. As
reported above, a monoclonal human GARP antibody
produced and tested in Sophie Lucas’ laboratory has been
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shown to inhibit the immunosuppressive activity of Tregs
by blocking GARP in complex with latent TGF-β [12]. Al-
though the efficacy of this antibody was tested on xeno-
geneic GvHD, the authors suggested that this antibody
might be useful for cancer immunotherapy, a notion that
remains to be tested. In line with this consideration, how-
ever, LAP blocking antibody has been proven to reduce
tumor growth in animal models of melanoma, colorectal
carcinoma, and glioblastoma by decreasing the number of
GARP+LAP+ Tregs [91].
Albeit the role that GARP plays on cancer cells and on

Tregs has been carefully studied, more research is required
to understand how the cancer cells induce GARP expres-
sion and influence its function. The only stimuli described
until now that trigger surface GARP are the BCR and TLRs
engagement on human CD19+CD20+ B cells [25] (Caroline
Wallace and Zihai Li, unpublished). This finding in com-
bination with the study on the regulation of GARP pro-
moter [32] might suggest that GARP expression requires
the engagement of the MyD88 and NF-κB pathway. It is
well known that chronic inflammation sets the stage for
cancer development by triggering NF-κB signaling in im-
mune and non-immune cells [92]. In this regard, it is inter-
esting to notice that many cancers upregulate surface
receptors to amplified NF-κB signaling as a surviving
mechanism. For instance, in ovarian cancer, TLR2 [93] and
lysophosphatidic acid (LPA) receptor [94] are associated
with cancer stem cell renewal and cell invasion, respect-
ively. The sustained NF-κB signaling might be one mechan-
ism exploited by cancer cells to induce surface GARP
expression. However, this hypothesis needs to be tested.

Platelet GARP
As mentioned previously, GARP protein was first identi-
fied on activated Tregs and platelets [15]. Despite the in-
creasing knowledge about the role of GARP in Tregs, little
attention has been paid until recently to the role of GARP
on platelets [24]. It is not entirely clear whether GARP
plays a role in platelet activation and function since two
different studies in two different animal models describe
conflicting findings. The first study performed in Danio
rerio (zebrafish) demonstrated that GARP is important for
thrombus initiation and hemostasis; knockdown of the
Lrrc32 gene resulted in increased spontaneous bleeding
events [95]. A second study, performed in a genetic mouse
model where Lrrc32 is specifically knocked out from
platelets and megakaryocytes, shows that GARP is not ne-
cessary for thrombus formation and clot retraction, which
is also confirmed by our own unpublished observations.
Interestingly this last study shows that ex vivo platelet ac-
tivation triggers increase in GARP surface expression, in-
dicating that GARP might play a role in activating
platelets [35]. Using the same platelet-specific GARP
knockout mouse model, we recently demonstrated that

GARP enhances the activation of latent TGF-β released
by platelets [24]. Serum active TGF-β was drastically re-
duced in these mice, and interestingly, the similar pheno-
type was not observed in mice with platelet-specific
deletion of Tgfb1 gene, indicating that platelet GARP acti-
vates latent TGF-β1 secreted by cells other than by platelets
[24]. Importantly, the same study demonstrated that the
platelets contribute dominantly to the activity of TGF-β in
the tumor environment. Among platelet-derived soluble
factors, TGF-β is one of the main mediators for the
platelet-dependent tumor growth [96, 97], which was once
again confirmed by an unbiased biochemical and biophys-
ical strategy [24]. Accordingly, platelet-specific deletion of
GARP potentiated protective immunity against both mur-
ine models of melanoma and colon cancer [24]. This study
also provides a mechanistic explanation as to why throm-
bocytosis is consistently associated with poor outcome in
cancer [98]. Intriguingly, blocking platelet activation
pharmacologically with aspirin and clopidogrel was shown
to significantly enhance the adoptive T cell therapy of mur-
ine melanoma [24], which correlated with increased persist-
ence and functionality of transferred donor T cells. This
study lays a strong foundation for combining anti-platelet
agents and immunotherapy as a novel strategy for cancer
care in the future.
Beyond TGF-β, each activated platelet releases up to

80 α-granules secreting platelet-derived growth factors
(PDGFs) in the tumor proximity which contribute to the
platelet-cancer interaction [96, 99]. Activated platelets,
for example, secrete vascular endothelial growth factor
(VEGF) that induces angiogenesis and cell migration
[100]. Additionally, multiple inflammatory cytokines are
released by activated platelets such as IL-1, IL-6, gran-
ulocyte macrophage colony stimulating factor (GM-CSF)
[101], and CD40L [102]. It is not known whether GARP
plays a role in the release and/or activation of any other
growth factor or cytokines produced by active platelets
other than TGF-β, this intriguing possibility deserves
further investigation.

Conclusions and future perspective
Cancer immunotherapy, including the PD-1/PD-L1 im-
mune checkpoint-targeted strategy, represents an exciting
paradigm shift in oncology which aims to treat the
immune system and not the cancer per se [103, 104]. A
combination strategy with checkpoint inhibitors and other
immune intervention is being pursued to overcome the
resistance and lack of responsiveness observed in a major-
ity of patients. GARP is a docking receptor for latent
TGF-β and is involved in its activation. The function of
GARP-TGF-β in Treg biology has been a topic of increas-
ing interest. More recently, the tolerogenic roles of GARP
expression by cancer cells and platelets have gained atten-
tion due to the belief that GARP represents an attractive
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target, either alone or in combination with immune
checkpoint blockers, for cancer immunotherapy. Blocking
the GARP-latent TGF-β complex on Tregs represents two
possible advantages compared to the other strategies that
either block TGF-β [105–107] or deplete Tregs with anti-
CD25 antibody [108]. Blocking TGF-β systemically could
cause undesired consequences due to the pleiotropic roles
of this cytokine. GARP is mainly expressed by tumor cells,
Tregs, and platelets present in the TME. Thus, targeting
GARP has the advantage of blocking TGF-β activation
only where it plays a pro-tumorigenic role. Since effector
T cells express CD25 but not GARP, GARP-based deple-
tion of Tregs shall be more advantageous over CD25-
targeted approach [109]. However, any GARP-targeted
strategy must be preceded with caution to not comprom-
ise the number and function of platelets.
For GvHD, reactive airway diseases or other inflamma-

tory conditions, soluble GARP might find its role as a novel
therapeutic agent. The full potential of the GARP-targeted
strategy awaits more fundamental studies of GARP biology
in relation to its biochemistry, cancer biology, and immun-
ology. The strategic importance for GARP to be expressed
by platelets in immune tolerance calls for further study of
platelets, the last cellular entity in the blood to be discov-
ered, in a wide range of diseases including their underap-
preciated roles in cancer immune evasion.
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