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Abstract

Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional
deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing
sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens.
Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression
that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently
focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI
patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery,
including novel approaches spanning from omics-based approaches to imaging and machine learning as well as
the evolution of established techniques.
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Traumatic brain injury (TBI) affects an estimated 1.7
million people in the United States each year and is the
leading cause of death in young adults and children in
industrialized countries [1–4]. Individuals with TBI are
likely to develop cognitive and sensorimotor impair-
ments, such as decreased processing time, memory loss,
and difficulties using fine motor coordination [5–7]. Fur-
thermore, individuals with TBI are more likely to acquire
neurodegenerative diseases such as Alzheimer’s Disease
(AD) and Parkinson’s Disease (PD) later in their lifetime
[8–10]. In the United States alone, the direct (hospital
treatments) and indirect (loss of productivity, lost wages)
costs of TBI in 2010 were estimated at $76.5 billion [11].
Thus, TBI is of major public and economic concern.
TBI should be viewed as not a single pathophysiological

event, but a cascade that involves two separate injury
phases (Fig. 1). The initial insult triggers the primary injury
process, which results in tissue deformation, necrosis, and
shearing of neurons, axons, and glial cells [12]. The mech-
anical force disrupts the blood-brain barrier (BBB), typically
reaching maximum permeability within a few hours of the
initial insult [13, 14]. Glutamate released from damaged

nerves then trigger a secondary injury cascade, which
causes edema, increase of pro-inflammatory cytokines, and
ischemia [12, 15]. This secondary cascade persists for weeks
to months after the initial insult, causing an accumulation
of cell damage and death [16, 17]. This heterogeneous en-
vironment varies on a case by case basis dependent upon
anatomical site of the injury, injury phenotype (e .g., closed
head trauma vs penetrating brain injury), severity, and age
of patient at time of injury [18–20].
Since the complexities of the injury microenvironment

are still not fully elucidated, this heterogeneous pathology is
a primary barrier to developing sensitive diagnostic tools.
The Glasgow Coma Scale (GCS), a commonly used survey
in emergency room settings, diagnoses TBI with a battery
of observations such as patient’s eye and motor response to
stimuli. Despite being a hallmark of TBI diagnosis, the GCS
has been found to be a poor predictor of patient outcome
and is not appropriate for patients with prior neurological
conditions [18, 21, 22]. Similarly, traditional computerized
tomography (CT) and magnetic resonance imaging (MRI)
scans are reliable for visualizing fractures, hematomas, and
edema, but may have difficulty capturing more mild charac-
teristics of brain trauma [18, 23]. Diagnostic inaccuracy is
detrimental to patient well-being, as patients who are incor-
rectly diagnosed may receive sub-optimal treatments as
their quality of life decreases.
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Researchers are now turning to biomarkers, objective
molecular signatures of injury, as a platform for developing
more sensitive and specific TBI treatment and diagnosis
tools. Identification and quantification of biomarker expres-
sion provides the basis for producing these technologies.
For example, a biosensor targeting TBI biomarkers can po-
tentially work to both diagnose TBI patients and monitor
the severity of their disease progression. Further, these tools
may provide insight on treatment efficiency by assessing
changes in biomarker expression. Several biomarkers for
TBI have been identified, mostly located in serum or
cerebral spinal fluid after injury, including indicators of in-
flammation, necrosis, apoptosis, and astrocytosis [18, 24].
There have been several clinical trials analyzing the reliabil-
ity of using biomarker expression as an indicator of disease
progression [25–27]. While various biomarkers of injury
have been identified, such as glial fibrillary acidic protein
(GFAP), S100beta, and ubiquitin carboxyl-terminal hydro-
lase isozyme L1 (UCH-L1), the utility as TBI diagnostic
markers in the clinic is debated due to lack of specificity
and sensitivity to TBI [28, 29]. These confounding results
may be attributed to several factors of polytrauma, inclu-
ding time post-injury, severity, and injury phenotype.
Due to the complex heterogeneity of TBI, biomarker dis-

covery in preclinical models must consider the limitations
of each model when characterizing candidate biomarkers.
Although no one animal model can recapitulate the full
complexity of TBI, they have distinct characteristics that
can aid researchers in discovery of biomarkers associated
with different aspects of TBI pathology. Focal injury
models, such as the controlled cortical impact (CCI) model,
produce cavitation, contusion, vasogenic and cytotoxic

edema [12, 30]. While focal injury models are clinically
relevant to edema in TBI patients, diffuse models share
characteristics with TBI experienced by athletes and mili-
tary personnel [12, 31]. Factors such as high intracranial
pressure and progressive gray matter degradation are inves-
tigated are often investigated using diffuse injury models,
such as the fluid percussion injury (FPI) [12]. Blast-induced
injury models in particular are designed to reflect TBI in
military conflicts by using compression shock tubes to
induce blast waves [12, 32]. This model produces an array
of symptoms highly relevant to human blast-induced TBI,
such as axonal injury, diffuse edema, and prolonged beha-
vioral deficits [32, 33]. Another subset of models known for
their human relevance are weight-drop models. These in-
juries are produced by a free-falling weight onto an intact
or non-intact skull and specifically mimics the biomecha-
nics of human TBI induced by falls or vehicle accidents
[34]. This technique produces a mix of focal and diffuse
injury dependent on the model, and results in neural in-
flammation, contusion, and hemorrhage [35]. Biomarkers
developed with these models can provide unprecedented
insight for injury mechanisms and have potential to trans-
late for prognostic and therapeutic use in the clinic.
Currently, there are no approved TBI biomarkers for

clinical treatment or diagnostic purposes [18]. Biomarker
discovery is an ongoing subfield of TBI research due to
the critical need of biomarkers for development of clin-
ical tools. Currently novel biomarker discovery methods
are emerging to detect markers that may be further
characterized and validated for their translational utility,
with each approach having distinct advantages and
disadvantages (Table 1). This review will focus on
current trends in biomarker discovery tools for TBI, in-
cluding innovations on established techniques and novel
approaches to elucidating the neural injury environment.

omics-based approaches
MicroRNA transcriptomics
MicroRNAs (miRNAs) are single-stranded RNAs of 17–25
nucleotides in length and are responsible for regulating
gene expression at the post-transcriptional level [36]. These
miRNAs can be collected from either tissue or serum, and
are screened using either deep sequencing or microarray
methodologies. This technique is already emerging as a
means for elucidating mechanisms of other central
nervous system (CNS) disorders, such as AD, PD, and
stroke [37–40], demonstrating its sensitivity with
complex neural environments and showing promise
as a possible avenue for TBI biomarker discovery. By
analyzing miRNA expression in distinct neuropatho-
logies, researchers are able to identify significant
changes in gene expression profiles that may contri-
bute to distinct mechanisms of injury, such as tem-
poral injury progression and injury severity [41, 42].

Fig. 1 TBI pathophysiology. The primary injury, caused by the initial
insult, contributes to a secondary injury progression
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Due to their early expression, miRNAs could be po-
tentially used in point-of-care applications to inform
clinicians of the severity of a patient’s trauma [43].
Currently, companies are exploring surface plasma
resonance and nanoparticle-based approaches to in-
crease detection of miRNAs to develop sensitive
point-of-care technology [43–46].
Biomarker discovery through miRNA expression also

has immense clinical utility due to the non-invasive na-
ture of analyzing gene expression through plasma sam-
ples and ease of analysis due to advances in microarray
and high throughput sequencing technology. Studies
utilizing this approach have demonstrated the ability to
discriminate TBI patients from non-injured controls. A
2018 study conducted by Qin et al. exhibited this
capability by identifying miR-319 and miR-328-5p as
miRNAs indicative of severe TBI in comparison to mild
or moderate TBI in patients [47]. Similarly, Yang et al.
found that specific miRNAs identified in previous micro-
array studies, miR-93, miR-191, and miR-499 had signifi-
cantly increased expression in patients with severe TBI
and poor prognosis [48–50].
Screening for modulated miRNAs in saliva samples is

an approach that has demonstrated powerful detection
sensitivity while maintaining the non-invasiveness that
makes miRNA analysis so beneficial to research in
patient populations. In a 2017 case study, Hicks et al.
found that 6 specific miRNAs in the saliva of children
with TBI were significantly modulated from control sam-
ples, with three of those miRNAs associated with neu-
ronal development [51]. Further, they identified miR-320
as a miRNA directly correlated with reports of attention
dysfunction [51], showing utility in providing critically
needed age-appropriate biomarkers of injury [52, 53].
Samples taken from concussed athletes also revealed five
miRNAs that were significantly upregulated in compa-
rison to non-injured sample expression [54]. When

screening for inflammatory proteins in those same samples,
analysis revealed no significant difference between groups,
suggesting that miRNA analysis may have more sensitivity
to certain aspects of the neural injury microenvironment.
While promising, it is important to note that miRNA ana-
lysis of saliva is relatively new to biomarker discovery litera-
ture, and more in-depth research must be done to further
test its sensitivity in the clinic.
miRNA expression methods have also shown the same

promise in identifying markers of severity as studies
conducted in animal models. Balankathiresan at al.
found that a blast-induced injury model produced five
serum miRNAs were significantly altered in injury
groups when compared to control animals at three
distinct injury timepoints [55]. Similarly, microarray ana-
lysis conducted by Lei et al. revealed hundreds of signifi-
cantly modulated miRNAs at 6, 24, 48, and 72 h post
injury in rat model of diffuse injury [49]. Several miRNA
array studies have revealed similar results, with various
injury timepoints yielding tens to hundreds of differen-
tially expressed miRNAs in comparison to sham controls
using multiple different injury models [56–58]. Further,
microarray analyses have revealed miRNAs to reveal
essential information about key cellular pathologies in
the injury process. For example, miRNA-21, identified
by Redell et al. [56] as an indicator of neural injury, has
been characterized as a marker indicative of injury pro-
gression in aged brains. Sandhir et al. found that
miRNA-21 expression increased significantly in injured
adult (5–6 months) mice but decreased in aged (22–24
months) mice [59]. However, this decreased expression
lead to an upregulation in miRNA-21 targets such as
PTEN and RECK, consequently increasing the proba-
bility of poor prognosis [59]. From these findings, we
can expect for miRNA array analysis to be tremendously
beneficial to not only identifying biomarkers of injury,
but biomarkers of distinct temporal injury events that

Table 1 Advantages and disadvantages of biomarker discovery approaches

Discovery Approach Advantages Disadvantages

MicroRNA transcriptomics miRNAs are more abundant in human biofluids than
proteins, making them more accessible as biomarkers [43]

miRNA expression may vary due to specific conditions
such as fasting, introducing variability in analysis [43]

Neuroproteomics Elucidate signal transduction events associated with
biochemical processes of injury [63]

Large datasets require sophisticated bioinformatics
software [17]

Metabolomics/Lipidomics Metabolites proximity to CSF and brain and ease of
lipid transport make them easily detectable [73, 79]

Subject’s environment affects metabolome, possibly
producing unwanted variation in data [74]

Phage display Screening can directly take advantage of heterogeneous
injury environment [100]

Requires high throughput sequencing to prevent
selection of false positives [104]

Diffusion tensor imaging Sensitive to detection of diffuse axonal injury and white
matter microstructure [111]

Prone to partial volume effect, which may produce
false positives [125]

Single-photon emission
computed tomography

More sensitivity than CT for detecting lesions, capable of
detecting cerebral blood flow abnormalities [109, 131]

Less specificity detecting in vivo morphology [131]

Machine learning Uncovers nonlinear and higher order effects of predictive
variables to model complex relationships [149, 137]

High volume of data required for accurate prediction [148]
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may go undetected otherwise. Similarly, biomarkers of
injury severity can also be characterized by analyzing
miRNA expression. When using a weight-drop model
of mTBI with four varying severities, Sharma et al.
found that injured animals had a significant increase
in miRNAs in comparison to sham controls, while
seeing a steady increase in the number of modulated
miRNAs correlating to injury severity [60]. These
findings were corroborated by a 2017 study that used
the same model and severity scale, but also identified
the modulated miRNA’s targets, such as calcium sig-
naling pathways [61].

Neuroproteomics
Neuroproteomics, the study of protein complements of
the genome, seeks to analyze protein expression within
the CNS to answer questions about disease states and
progression [62]. Recently, neuroproteomics approaches
have been applied to neurotrauma to identify possible
protein biomarkers of TBI, a logical step considering the
surge of success with the search for genomic biomarkers
[62]. In contrast to genomics analysis, neuroproteomics
can elucidate signal transduction events associated with
biochemical processes of injury [63]. First, the protein
complex is fractionated either by electrophoresis or
chromatography. Then, the fractionated proteins are
identified and quantified by mass spectrometry. Ad-
vances in mass spectrometry have provided researchers
with the capability to collect an immense amount of data
from proteomes, giving an in-depth look at the global
protein environment [62, 64, 65]. Due to the substantial
volume of data gathered, neuroproteomics is often
coupled with bioinformatics and systems biology to
identify proteins of interest and analyze their interac-
tions with other proteins to specific pathways associated
with the target condition. .
The specificity and sensitivity of neuroproteomics

approaches have been successfully demonstrated with
animal models of TBI. Boutte et al. used this technique
to assess protein expression in cerebral spinal fluid
(CSF) and brain tissue within the acute timepoints of a
penetrating ballistic-like brain injury (PBBI) rodent
model of TBI. In addition to observing significant ex-
pression changes of UCH-L1, this method was able to
isolate cullin 1, protein phosphotase 2C-alpha, and mini-
chromosome maintenance protein 2 homolog, proteins
associated with neurite outgrowth and cell differenti-
ation, as potential candidate biomarkers of injury, dem-
onstrating the power of utilizing bottom-up discovery
techniques with advanced proteomic methodology [66].
A similar study found collapsin response mediator
protein-2, dehydrogenase, and synaptotagmin were sig-
nificantly expressed in cortical tissue samples of rats
with focal injury when compared to naïve samples [67].

Using a similar injury model, a study by Thelin et al.
found several proteins differentially expressed in correl-
ation with temporal stages of injury. For example, aldol-
ase C showed increased expression at earlier timepoints
after injury while hypoxia inducing factor -1a and amyl-
oid precursor protein showed increased expression 2–4
weeks post-injury [68]. Other studies assessing the tem-
poral profile of injury have been conducted, revealing
several candidate markers that may be influenced by
temporal mechanisms of the microinjury environment
[69, 70]. While not yet heavily researched, neuroproteo-
mics may also have utility in the clinic due to the relative
ease of analyze whole proteomes of biofluid samples.
From the CSF and blood of injured patients, Halford et
al. analysis revealed candidate astroglial markers of in-
jury such as aldolase C and astrocytic phosphoprotein
[71]. Overall, neuroproteomics takes advantage of the
advances in data output and cost of proteome analysis to
adequately discover novel candidate biomarkers.

Metabolomics and Lipidomics
An alternative to neuroproteomics is metabolomics, the
study of global metabolic profiles in specific conditions
and diseases using mass spectrometry or nuclear mag-
netic resonance spectrometry [72, 73]. This technique is
beneficial for biomarker discovery due to the disruption
of homeostasis after injury that is reflected in the metab-
olome [74]. Similar to neuroproteomics, applying a
metabolomics perspective when exploring the injury
microenvironment can give rise to novel biomarker can-
didates not well discussed in the literature. For example,
analyzing plasma metabolomics of rats with focal injury
revealed significant differentially expressed galactose,
demonstrating its capability as an early marker of
acute TBI [75]. Several studies have used metabo-
lomics in animal models of TBI to report similar
findings of novel candidate biomarkers, including ad-
enosine diphosphate (ADP) and spermidine [76, 77].
Lipidomics, a subset of metabolomics, is emerging as a

new approach to biomarker discovery in TBI. The ration-
ale for using lipidomics over neuroproteomics is that lipid
expression in blood is reflective of expression in brain tis-
sue and therefore has more clinical utility [78, 79]. Further,
CNS tissue has the highest lipid content of any tissue type
excluding adipose tissue, and also has a high diversity of
different sub-types of lipids [80, 81]. This relatively new
approach to injury biomarker research is already demon-
strating diagnostic capability in rodent models of TBI.
Analyses on the serum lipidome of rodents with a CCI re-
vealed that polyunsaturated fatty acids and sphingolipids
are significantly upregulated after injury and may serve
purpose as a quantifiable TBI biomarkers [79, 82]. In the
other direction, analyzing the plasma of injured mice re-
vealed significant decrease of ether

Martinez and Stabenfeldt Journal of Biological Engineering           (2019) 13:16 Page 4 of 12



phosphatidylethanolamine levels 3months post-injury in
comparison to controls [83]. Utilizing lipidomics ap-
proaches to study perioxidative processes of lipids is also
informative of possible biomarkers associated with
injury-induced oxidation. For example, Bayir et al.’s ana-
lysis of rat cortical tissues after focal injury revealed cardi-
olipin, a mitochondria-specific phospholipid, may be
indicative of apoptosis and oxidative stress [84]. A similar
study conducted with the same rodent model of injury
found increased levels of 8-epi-prostaglandin F2α, a
marker of oxidative damage, at 6 and 24 h post-injury
[85]. Despite overwhelming evidence of the possible utility
of applying lipidomics to biomarker discovery research,
very few studies with human patients exist in the literature
at this time. However, these studies have shown promise
in positively identifying lipids that may be associated with
TBI and its neuropsychological outcomes, such as post-
traumatic stress disorder [86].

Phage-facilitated discovery
Phage display is a powerful screening/selection process
that is often utilized in drug discovery research [87, 88].
First described in 1985, phage display has the capabilities
of elucidating biological mechanisms by revealing
protein-protein interactions [89–91]. Briefly, George P.
Smith’s 1985 work provides the foundation for modern
phage display technology, in which biological motifs (e.g.

peptides, DNA, or antibody fragments) are fused to the
gene III of filamentous bacteriophage, such as M13
phage. This fusion results in the bacteriophage “display-
ing” the motif on its surface with the specific sequence
encoded in the gene’s DNA [89]. Large libraries (diver-
sity of 106–1011 different ligands) of biological
motif-displaying bacteriophages can then be generated
to screen against a target antigen or tissue. Collecting
only target bound bacteriophage followed by subsequent
amplification in bacterial hosts creates a new phage li-
brary that is biased toward the target antigen or tissue,
thereby completing a single screening cycle, also known
as “biopanning”. Biopanning is repeated several times to
enrich for biological motifs that have strong affinity for
the target antigen or tissue. Upon completion of biopan-
ning rounds, bacteriophage plasmids are sequenced and
analyzed for discovering biological motifs that may bind
specifically to the target (Fig. 2) [92]. This technology
has been used in many pathologies to discover novel
biomarkers, for example ovarian cancer and atheros-
clerosis [93, 94].
Ghoshal et al. explored the feasibility of using phage

display as a biomarker discovery tool for TBI using the
serum of a focal injury model as target for biopanning
[95]. Proteomic analysis (protein pull-down and mass
spectrometry) of the converged peptide sequence
revealed GFAP as the target antigen. Similarly, phage

Fig. 2 Phage display biopanning process. Phage libraries are grown and incubated with target antigens. Bound phage are rescued and amplified
to generate a new library, which is used in subsequent biopanning rounds. Generally, phage selected through this process are validated for
specificity with sequencing and ELISAs
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biopanning can be applied to in vivo screening applica-
tions. Phage display has the advantage of being able to
target brain vasculature under normal BBB conditions
[96, 97]. Further, phage displayed peptides and antibody
fragments have the ability to target or transmigrate
across the BBB, which is the primary bottleneck of drug
development for neurological conditions [98, 99]. There-
fore, using this method on an animal model of TBI in
vivo may yield peptides or proteins with high affinity to
the neural injury milieu. An additional advantage of in
vivo biopanning as opposed to a traditional in vitro or
ex vivo screening methods is that the former embraces
the heterogeneous injury pathology as it unfolds in the
neural milieu, creating an opportunity for increased bio-
marker discovery of TBI. Mann et al. capitalized on this
concept and performed in vivo screening in a rodent
model of focal TBI [100]. Through this methodology, a
novel short peptide, Cys-Ala-Gln-Lys (CAQK), was iden-
tified as a unique targeting motif of acute brain injury.
To validate specificity, a liver injury model was analyzed
and showed no accumulation of the CAQK peptide
[100]. The authors exploited this discovery for targeted
therapeutics, which demonstrates this method’s feasibi-
lity of identifying distinct biomarkers of injury severity
and progression.
Despite successful identification of unique ligands of

disease and injury in AD and stroke respectively,
utilization of phage display for TBI biomarkers has not
been thoroughly conducted [101–103]. This slow adop-
tion may be in part due to the difficulty of identifying
biomarker candidates from the biopanning process.
Traditionally, phage display screening from biopanning
involved Sanger sequencing, which only captures gen-
omic analysis of a small fraction of the phage population.
The advancement of next generation sequencing (NGS)
has improved this process, increasing the sequencing
space from 100 clones to 107 clones and consequentially
uncovering more positive biomarker candidates for fur-
ther validation [104, 105]. Additionally, NGS analysis
specifically for phage libraries has evolved to develop-
ment of user-friendly programs [106–108]. Overall, the
combination of phage display and NGS for TBI
biomarker discovery is promising yet requires more
validation to fully achieve its potential.

Imaging
Due to its application in hospital settings, especially
within the first 48 h of injury, researchers have made
strides in discovering biosignatures that are detectable
by imaging modalities. These imaging-based diagnostic
approaches inform clinicians on trauma severity and can
also aid in evaluating the progression of injury with
routine monitoring. Despite its common use and great
capability of visualizing severe trauma, such as skull

fracture, hematoma, and edema, traditional imaging tests
such as CT and MRI may have difficulties detecting sub-
tle aspects of brain injury [109, 110]. Experimental and
clinical researchers are now improving sensitivity of
these imaging techniques and using them to detect bio-
signatures of neural injury that are not seen in control
populations, leading them to characterize and validate
candidate biomarkers of TBI.
Recent efforts have explored the utility in employing

diffusion tensor imaging (DTI) as a tool for analyzing
possible biomarkers of injury in patients. In contrast to
traditional MRI, DTI provides the ability to spatially
map white matter and analyze its diffusivity via frac-
tional anisotropy. This feature shows promise in being
more sensitive to detection of axonal injury as opposed
to traditional MR techniques alone [111], which is sig-
nificant due to traumatic axonal injury (TAI) being a key
contributor to cognitive dysfunction in TBI populations
[111, 112]. Animal studies employing DTI as a discovery
and validation technique have shown success in analy-
zing biomarkers of injury. Mac Donald et al. found
promising results when using DTI in conjunction with
histological analysis compared to common MRI analysis
when imaging rodent focal injury model brains. Their
analysis suggested that DTI was able to detect significant
changes in axial diffusivity and relative anisotropy,
validated by amyloid beta precursor protein histology.
Meanwhile, MRI of the same region was not able to de-
tect this axonal injury, only the contusion [113]. Several
other studies using both rodent and porcine models have
corroborated these results [114–116], further demon-
strating both the utility of axonal diffusion as a candi-
date biomarker and DTI as a possible imaging tool for
the validation of this biomarker.
Clinical applications of DTI are also being heavily

researched with high levels of optimism. Rangaprakash
et al. applied DTI in an effort to differentiate chronic
mild TBI patients from non-injured controls, and found
a significant loss of integrity of white matter fibers in
hippocampal-striatum pathway in injured patients that
was not found in the control population [117]. While
the decreased connectivity of the hippocampus after
chronic injury is unsurprising given findings of signifi-
cant neuronal cell death within the injured hippocampus
[118, 119], the ability to visualize axonal integrity in the
patient population further validates the use of DTI as an
applicable biomarker discovery tool. Further, DTI can be
used to analyze possible biomarkers of injury indicative
of cognitive outcome [120, 121]. For example, one study
found significantly higher diffusivity in children with TBI
correlated with poor social cognitive skills [122]. This
study corroborates findings from a 2013 study demon-
strating the link between axonal diffusivity and memory
in a rodent model of blast injury [123], suggesting a
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strong case for analyzing white matter abnormalities as
not only a marker of injury severity, but one of cognitive
dysfunction. A link between motor outcome in injured
patients and white matter diffusivity is also being
heavily researched, with many studies finding that sig-
nificantly lower fractional anisotropy (FA) values in
patients may be indicators of motor control affect
after injury [124, 125]. FA values taken from DTI
scans have also shown promise as a predictor of mor-
tality in clinical studies for individuals with severe
TBI, demonstrating that DTI is not only useful for
mild injury diagnosis [126].
Single photon emission computed tomography (SPECT)

is another imaging modality that has high potential for
biomarker discovery applications [127]. Approved by the
FDA as a diagnosis tool in PD [128, 129], the capability of
SPECT to provide true 3D information is beneficial for
detection and validation of biomarkers in the patient
population. A study conducted by Kinuya et al. in 2004
found that in comparison to CT and MRI analysis, SPECT
revealed frontal hypoperfusion and cerebellar hypoperfu-
sion, abnormalities associated with personality change and
vertigo respectively [130]. SPECT identifying MRI/CT-ne-
gative abnormalities is also seen in both acute and chronic
imaging of mild TBI, further demonstrating its utility in
the clinic [131]. Furthermore, using 99mTc exametazime in
conjunction with SPECT to measure cerebral blood flow
(CBF) revealed significantly lower CBF levels in the right
temporal lobes of patients with poorer physical health
[132]. However promising, candidate biomarkers detected
by SPECT appear to lack a strong correlation with cogni-
tive and neuropsychiatric dysfunction, which may affect
its clinical utility [132].

Machine learning and statistical modeling
Machine learning involves using advanced algorithms to
analyze large sets of data to progressively recognize
patterns without being programmed to do so. Machine
learning algorithms can be applied to many categories of
datasets, from proteomics to imaging data. This approach
is well suited for identifying patterns of disease in biome-
dical data, and as such, has been applied to biomarker re-
search of many diseases including cancers, psychosis, and
Huntington’s disease [133–136]. For biomarker discovery
in TBI, machine learning procedures have focused on
gathering large amounts of imaging data from the injured
patient population. Combining the advancing imaging
technology with powerful statistical modeling algorithms
has the potential to reveal in depth analysis on prospective
biomarkers with direct utility for clinical use, specifically
for analyzing white matter connectivity. This approach is
evidenced by Mitra et al.’s application of a Network-Based
Statistics (NBS) model to fractional anisotropy data [137].
With NBS’s capability of analyzing low contrast-to-noise

data, this study revealed sensitivity of 80% when classify-
ing TBI patients [137]. Dynamic functional network con-
nectivity (dFNC) for example is used to analyze global
temporal connectivity, but with a linear support vector
machine algorithm to classify the data, researchers have
found significant connectivity states between cerebellum
and sensorimotor networks that may serve as a possible
biomarker for classification of mTBI [138]. Similarly,
Hellyer et al. applied pattern classification algorithms to
DTI data acquired from TBI patients and then applied the
classifiers to patients without DTI scans, successfully
predicting severity of cognitive impairment induced by in-
jury [139]. Graphical-model-based multivariate analysis
(GAMMA), a machine learning tool to analyze interac-
tions between brain regions [140], and tract-based spatial
statistics (TBSS) were also be applied to DTI data to use
fractional anisotropy values as classifiers to detect neuro-
imaging biomarkers of mTBI [141]. Additionally,
GAMMA has revealed significant differences in the cere-
bellar white matter integrity between injured and
non-injured patients that may have utility as a diagnostic
maker of acute stage TBI [142], demonstrating the model’s
utility in TBI applications. Predictive algorithms are also
utilized with imaging techniques sparsely used for TBI to
improve their capability of detecting neurotrauma. In a re-
cent study by Shi et al., a machine learning algorithm was
applied to terahertz (THz) continuous-wave (CW) trans-
mission imaging to develop an automatic classification
system for diagnosis of TBI [143]. The spatial and
temporal power of THz CW imaging proved to be an
excellent data source for predictive modeling, with the ana-
lysis revealing up to 87.5% classification accuracy [143].
These data demonstrate the capability of machine learning
to use or improve upon established imaging techniques to
improve accuracy of candidate biomarker discovery.
Machine learning algorithms are versatile in that they can

be applied to non-imaging datasets as well. For example,
topological data analysis (TDA), a machine learning tool
that clusters patient data based on outcome metrics, was
used by Nielson et al. to predict novel biomarkers associ-
ated with several variables indicative of unfavorable out-
come post-injury [144]. The TDA algorithm, which showed
great promise in an earlier study involving rodent models
of TBI and spinal cord injury [145], analyzed TBI patient
data in a multidimensional space, with each patient having
over 900 measurable variables. From this model, Nielson et
al. found that high levels of specific genetic polymorphisms
predicted unfavorable recovery after injury and high prob-
ability of PTSD [144]. To analyze and predict protein ex-
pression in acute injury, Peacock et al. applied a random
forest (RF) predictive model to a panel of biomarkers, in-
cluding neurogranin, neuron-specific enolase, and metallo-
thionein-3, selected by American Congress of
Rehabilitation Medicine criteria [146]. By building a model
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from this panel, researchers were able to observe the diag-
nostic accuracy of these biomarkers in predicting mTBI, re-
gardless of neuroimaging findings [146]. RF was also
applied to injury data acquired by the American National
Football League using metrics including corpus callosum
fiber strain and cumulative strain damage of the whole
brain to identify predictive concussion biomarkers and
evaluate their accuracy [147]. Functional connectivity data
detected through magnetoencephalographic recordings can
also be analyzed through machine learning methods, re-
vealing that the model was eventually able to discriminate
injured patients against controls with 100% accuracy [148].
Interestingly, machine learning algorithms are also incred-
ibly useful for evaluating pediatric TBI cases. When analyz-
ing metrics from physical examination findings, Chong et
al.’s application of a machine learning algorithm yielded ac-
curacy above 94% for both sensitivity and specificity [149].
This approach demonstrates the utility of using predicative
algorithms for pediatric TBI biomarker discovery and
showcases its power in the probability of detecting which
biomarkers are indicative of a more aggressive disease pro-
gression later in life. Hemodynamics influenced by injury
have also been explored as possible biomarkers of TBI, with
predictive classification algorithms revealing significant
temporal and spatial activity in the prefrontal cortex as pos-
sible diagnostic markers of injury [150].
While promising, machine learning algorithms applied

to neurotrauma research still have drawbacks. Even
though using multivariate analysis is extremely beneficial
for analyzing the heterogeneous injury microenviron-
ment, it is critical to consider that larger sample sizes
are needed to validate the specificity and sensitivity of
the biomarkers selected from these models prior to full
utility in clinical applications.

Conclusion
Several biomarkers of TBI have been identified but they
carry the disadvantage of either not being sensitive or
specific to TBI, which diminishes their clinical utility.
Biomarkers have the potential for improving diagnostic
accuracy, predicting the severity of injury progression,
and conveying information to clinicians about injury
progression for individual patients. Advancements in
biomarker discovery range from improving upon already
established techniques to applying novel methods to elu-
cidate mechanisms of the neural injury environment.
Many emerging tools and techniques have shown prom-
ise in inching the field towards a better comprehension
of TBI and have given rise to multiple novel candidate
biomarkers to further characterize. While preclinical dis-
covery has not yet lead directly to clinical translation,
the technological strides discussed here are immensely
promising. Ultimately, future efforts in biomarker

discovery should continue to rigorously test potential
biomarkers and critically inspect their potential clinical
utility.
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