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Abstract 

Background:  The superposition of COVID-19 and climate change has brought great challenges to global food 
security. As a major economic crop in the world, studying its phenotype to cultivate high-quality wheat varieties is an 
important way to increase grain yield. However, most of the existing phenotyping platforms have the disadvantages 
of high construction and maintenance costs, immobile and limited in use by climatic factors, while the traditional 
climate chambers lack phenotypic data acquisition, which makes crop phenotyping research and development 
difficult. Crop breeding progress is slow. At present, there is an urgent need to develop a low-cost, easy-to-promote, 
climate- and site-independent facility that combines the functions of crop cultivation and phenotype acquisition. We 
propose a movable cabin-type intelligent artificial climate chamber, and build an environmental control system, a 
crop phenotype monitoring system, and a crop phenotype acquisition system.

Result:  We selected two wheat varieties with different early vigor to carry out the cultivation experiments and 
phenotype acquisition of wheat under different nitrogen fertilizer application rates in an intelligent artificial climate 
chamber. With the help of the crop phenotype acquisition system, images of wheat at the trefoil stage, pre-tillering 
stage, late tillering stage and jointing stage were collected, and then the phenotypic information including wheat 
leaf area, plant height, and canopy temperature were extracted by the crop type acquisition system. We compared 
systematic and manual measurements of crop phenotypes for wheat phenotypes. The results of the analysis showed 
that the systematic measurements of leaf area, plant height and canopy temperature of wheat in four growth periods 
were highly correlated with the artificial measurements. The correlation coefficient (r) is positive, and the determina-
tion coefficient (R2) is greater than 0.7156. The root mean square error (RSME) is less than 2.42. Among them, the crop 
phenotype-based collection system has the smallest measurement error for the phenotypic characteristics of wheat 
trefoil stage. The canopy temperature RSME is only 0.261. The systematic measurement values of wheat phenotypic 
characteristics were significantly positively correlated with the artificial measurement values, the fitting degree was 
good, and the errors were all within the acceptable range. The experiment showed that the phenotypic data obtained 
with the intelligent artificial climate chamber has high accuracy. We verified the feasibility of wheat cultivation and 
phenotype acquisition based on intelligent artificial climate chamber.

Conclusion:  It is feasible to study wheat cultivation and canopy phenotype with the help of intelligent artificial 
climate chamber. Based on a variety of environmental monitoring sensors and environmental regulation equipment, 
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Introduction
The combination of climate change and the new crown 
epidemic has brought huge challenges to food security 
in China and the world [1, 2]. The foundation for cop-
ing with challenges and ensuring national food security 
involves the analysis of the regulation mechanism of crop 
gene and phenotype formation, selection of new varie-
ties with high yield, high quality, are green and stress 
resistance; realisation of precision cultivation and fine 
breeding methods and improvement of the utilisation 
efficiency of crop germplasm resources [3, 4]. High-
throughput crop-phenotype acquisition is the key to 
in-depth interpretation of gene functions and breaking 
through the bottleneck of precision breeding technol-
ogy. Studies should focus on the laws of crop growth 
and development, reveal gene regulation pathways and 
optimise precision management of crop cultivation and 
acceleration of crop improvement [5]. The phenotype 
acquisition platform is an important hardware basis for 
rapid screening of germplasm resources, phenotype iden-
tification, and formation mechanism research [6–8], and 
it is mainly composed of mechanical devices or drones 
equipped with sensors [9, 10].

The traditional artificial climate chamber is a key place 
for the cultivation of crop varieties, and its functions 
mostly focus on the control of environmental parame-
ters. Guo Minghang et al. developed a scientific research-
type artificial arid climate chamber, which can simulate 
main environmental factors such as light, temperature, 
and CO2 concentration [11]. Guo Zhuangliang et  al. 
designed an environmental data acquisition system based 
on the CAN bus for an artificial climate chamber, which 
collects and transmits information on plant growth envi-
ronmental factors through various sensors to achieve 
the purpose of environmental control [12]. Zhang Xinyu 
et  al. designed an artificial climate chamber based on a 
Field-Programmable Gate Arrays (FPGA) environmental 
control system, and realized the automatic adjustment of 
the Photosynthetic Photon Flux Density (PPFD) and Red 
Photon Flux Density (RPFD)/Blue Photon Flux Density 
(BPFD) (R/B) of the plant canopy with the help of multi-
channel photonic sensors [13]. Since artificial climate 
chambers generally do not have the function of high-
throughput acquisition of crop phenotype data, most of 

the phenotype acquisition work still needs to be done 
manually, which has shortcomings such as low efficiency 
and large errors.

As phenomics has gradually become a recognized 
research hotspot in the frontier of life sciences, the crop 
phenotyping platform integrating precise management 
of crop cultivation, high-precision mechanical transmis-
sion, and multi-sensor data collection and analysis has 
become the development trend of high-throughput phe-
notype acquisition [14].In recent years, crop phenotyping 
research platforms have been greatly developed, such as 
the Plant Monitor developed by the French Academy of 
Agricultural Sciences, which uses artificial growth boxes 
equipped with RGB, infrared and fluorescence imaging 
units, but is limited by the small number of monitoring, 
large workload and low efficiency [15]. The Pheno Watch 
Crop 3D developed by the Institute of Botany of the 
Chinese Academy of Sciences integrates various imag-
ing units such as lidar and high-resolution cameras, and 
realizes the extraction of three-dimensional information 
for the first time, with a high degree of automation. How-
ever, the phenotypic data obtained differs from the actual 
crop condition due to the differences between the green-
house environment and the outdoor environment [16]. 
At present, there are many types of platforms for pheno-
typic measurement, but most of them are geographically 
restricted, and equipment maintenance costs are high in 
the later period [17]. There is a lack of multi-functional 
phenotype monitoring equipment for comprehensive 
environmental condition control, image acquisition 
and phenotype acquisition, and it is difficult to meet 
the actual needs of current crop phenotype research to 
obtain relevant phenotype data on the impact of biotic or 
abiotic factors on crop yield [18].

In order to break through the bottleneck of pheno-
typing research and provide more powerful phenotypic 
data support for promoting the wheat breeding process, 
a relatively low-cost, high-throughput, easy-to-promote 
and easy-to-promote high-throughput method that is 
not limited by the environment and climate is urgently 
needed. Phenotype acquisition platform. Therefore, 
based on the traditional artificial climate chamber and 
combined with the environmental control, phenotype 
monitoring and phenotype acquisition systems, this 

the growth environment factors of crops can be adjusted. Based on high-precision mechanical transmission and 
multi-dimensional imaging sensors, crop images can be collected to extract crop phenotype information. Its use is 
not limited by environmental and climatic factors. Therefore, the intelligent artificial climate chamber is expected to 
be a powerful tool for breeders to develop excellent germplasm varieties.

Keywords:  Intelligent artificial climate chamber, Environmental Control System, Phenotype Acquisition System, Crop 
phenotype acquisition system, Wheat cultivation test
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article carried out the research and development of an 
intelligent artificial climate chamber with crop cultiva-
tion management and phenotype acquisition functions 
during the whole growth period of wheat. The precision 
cultivation test of wheat realised the continuous acquisi-
tion of phenotypic characteristics during wheat growth, 
improved the lack of phenotypic feature extraction and 
analysis in the traditional artificial climate chamber and 
verified the feasibility of the artificial climate chamber for 
crop phenotyping research. The purpose of our research 
is to develop an intelligent artificial climate chamber 
that can simulate the environmental conditions of crop 
growth and obtain phenotypic information, so as to help 
breeders develop high-quality, high-yield, high-tolerance 
crop varieties and ensure world food production security.

Materials and methods
Experimental setup
The experiment was carried out in the intelligent artifi-
cial climate chamber of the Baima Base of Nanjing Agri-
cultural University. The test subjects were selected from 
the Qingnong 2(QN2) and Liangxing 77(LX77) wheat 
varieties of the State Key Laboratory of Crop Genet-
ics and Germplasm Innovation. Salt-free coconut bricks 
were selected as the cultivation substrate for soilless cul-
tivation. The wheat seeds were sown on the root support 
site of the round root box at a depth of 3 cm, and three 
repeat groups were set up (Fig.  1f ). A total of 2 × 3 × 3 
round root boxes were planted. Three grains of wheat are 
sown in each round root box. The nitrogen, phosphorus 

and potassium fertilisers used in the experiment were 
urea (containing N46%), superphosphate (containing 
P2O518%) and potassium sulphate (containing K2O50%), 
respectively. The amount of nitrogen fertiliser was set 
as a variable, and the trefoil stage of wheat was fertilised 
and irrigated at the Pre-tillering stage, jointing stage and 
growing period. Additional file  1: Table  S1 shows the 
environment and cultivation parameters in the crop cul-
tivation and phenotype acquisition area.

Development of intelligent artificial climate chamber
Composition of intelligent artificial climate chamber
Fig. 1 shows the developed intelligent artificial climate 
chamber. Fig.  1a–e display the environmental control 
system used to regulate the environmental parameters 
in the crop cultivation area of the chamber. Fig.  1f, g 
present the crop cultivation devices, namely, the flat 
root boxes and round root boxes, respectively, that 
were used for wheat cultivation experiments. Fig.  1h 
shows a crop phenotype monitoring system composed 
of a high-precision mechanical transmission device 
and the multiple sensors mounted on it. We obtained 
the phenotypic characteristics of the crop during the 
growth process. Fig. 1i shows the software interface of 
the crop phenotype acquisition system, which was used 
to analyse and process the image information of the 
crop and extract phenotypic characteristic parameters. 
The environmental parameters in the chamber were set 
by the control system. The crop phenotype monitoring 
system was used to obtain images and information of 

Fig. 1  Schematic of the overall structure of the intelligent artificial climate chamber
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crops on the cultivation device, and the crop pheno-
typic characteristics were obtained based on the phe-
notype acquisition system.

Environmental control system
Fig.  2 shows the interface of the developed environ-
mental control system. The control of environmen-
tal parameters, including the chamber temperature, 
humidity, light, CO2 concentration, air pressure can 
be realised through a touch screen, and the circula-
tion ventilation inside and outside the chamber were 
attained. Additional file 1: Table S2 in exhibits the con-
trol range. The environmental control equipment of the 
intelligent artificial climate chamber mainly includes 
environmental factor perception equipment and envi-
ronmental factor control equipment. Among them, the 
environmental sensing equipment mainly includes sen-
sor equipment parameters such as temperature, humid-
ity, carbon dioxide concentration and light intensity, 
as shown in Additional file 1: Table S3. Environmental 
control equipment includes air conditioners, humidi-
fiers, dehumidifiers, carbon dioxide supply devices, 
plant growth lights and other equipment. The environ-
mental factor sensor in the crop cultivation and phe-
notype acquisition area detects various environmental 
information in the chamber, and converts the real-time 
parameters into analog signals, and then the A/D con-
verter converts the analog signals into digital signals 
and transmits them to the control core PLC, the PLC 
received signal is converted and displayed on the dis-
play screen, and the user can adjust the environmen-
tal factor parameters in the manual operation of the 
touch screen in the environmental control and analy-
sis area. Then the PLC issues commands to the control 
equipment to control the environment in the chamber. 
Multiple control equipment operates independently 
without interference. Ventilation can set the start and 

end time to achieve the purpose of removing excess 
heat in the chamber and replacing fresh air.

Crop phenotype monitoring system
The crop phenotype monitoring system is mainly com-
posed of high-precision mechanical transmission and 
multi-sensors. As shown in Fig.  3, the high-precision 
mechanical transmission mainly includes three parts: 
control, motion and auxiliary units. The upper com-
puter in the control unit (Fig. 3a) can control the servo 
motor to move in the X/Y/Z directions in space, dis-
play the real-time position of the imaging device and 
communicate with the lower computer. The lower 
computer is responsible for executing the instructions 
issued by the upper computer, collecting the real-time 
position information of the servo motor, feeding back 
the position information to the upper computer, and 
controlling the position movement of the servo motor 
in space and the real-time adjustment of the speed in 
real time, so as to find the fault of the transmission 
device in time. Report to the host computer. The whole 
system adopts open-loop control. The key equipment 
parameters of the high-precision mechanical transmis-
sion are shown in Additional file 1: Table S4. Its oper-
ating range is: in the X-axis direction (0-6000 mm), in 
the Y-axis direction (0-2000  mm), and in the Z-axis 
direction (0-500 mm). The multi-element imaging sen-
sor is used to collect crop image information, convert 
the optical signal into an electrical signal and trans-
mit it to the core controller, which is the core device 
in the crop monitoring system. In order to meet the 
needs of obtaining the phenotypic parameters of crop 
leaf area, plant height, and canopy temperature, RGB 
cameras, depth cameras and thermal imaging cameras 
were selected to form a multi-element imaging sen-
sor group (Fig. 3b). Based on the actual working con-
ditions and the analysis of camera parameters, this 
paper selects industrial cameras with more reliable 
and stable performance, and their respective models 

Fig. 2  Environmental control system architecture
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and parameter information are summarized in: Addi-
tional file 1: Table S5. The imaging sensor sites are set 
according to the location of the cultivation area within 
the crop cultivation and phenotype acquisition zone, 
containing 6 × 3 (length x width) camera sites. The 
high-precision mechanical drive is equipped with a 
multi-element imaging sensor set. When the system is 
running, first of all, the control page of the high-pre-
cision mechanical drive is opened, and the position of 
the imaging device on the linear guide in the Z direc-
tion is adjusted so that the distance between the cam-
era plane and the top of the root box is kept consistent 
at 0.6  m. Timed directional motion (moving speed of 
0.5 m/s) is set. Control the mechanical drive to travel 
along the preset "S" shaped path, stay at each loci for 
50 s, collect 3 to 5 pictures of wheat in each root box, 
and unify with the settings of camera timing photos 
in the subsequent crop phenotype monitoring sys-
tem, which can realize the timing cruise monitoring of 
crops in the intelligent artificial climate chamber, and 
obtain RGB color images of wheat in a nondestruc-
tive way, depth images and infrared images to facilitate 
accurate extraction of canopy feature parameters.

Crop phenotype acquisition system
The developed crop phenotype acquisition system 
was mainly used for crop image collection, phenotypic 

feature acquisition and data management. The soft-
ware system adopts Client/Server control structure. 
C/S has the advantages of strong interactivity, secure 
data storage, low requirements for network traffic, 
and ready-to-use after installing the client. Based on 
the Visual Studio2017 development platform and pro-
gramming languages ​​such as C#, we have completed 
the development of the server driver and the design of 
the client software interface. The server corresponds 
to the camera driver and is responsible for mobiliz-
ing the camera to capture images. According to the 
SDK software tool development kit provided by the 
camera manufacturer, based on the Linux ARM oper-
ating system and combined with the actual needs, we 
call the specific camera interface function API, set 
and control the camera-related parameters, write the 
camera driver, complete the secondary development, 
and realize the function of mobilizing the camera to 
capture images in real time. The client corresponds to 
the operation interface and provides a human–com-
puter interaction interface. We develop user interface 
WPF based on Windows system under the integrated 
development environment of VS. We set the size 
and appearance of the software interface by adding 
a Form. We add classes and files, as well as controls 
such as buttons and labels on the dialog page, switch 
class items, set events or properties of the response 

Fig. 3  Hardware device of crop phenotype monitoring system
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controls in the solution manager, and call image rec-
ognition and processing function libraries at the same 
time to achieve different interfaces. Different function 
settings. The client and the server communicate with 
each other through Socket, and the two cooperate, 
coordinate and work together during operation, so as 
to realize the purpose of crop phenotype monitoring 
system to complete the functions of crop image acqui-
sition, data analysis and characteristic parameter out-
put. The image processing process is described in the 
next section. Fig.  4a shows the flow chart of the sys-
tem function realisation. The server was used to store 
data and information collection; the user can perform 
image collection and data processing operations on 
the software client; the multiple data obtained by the 
imaging sensor can be wirelessly transmitted to the 
storage server, and they were used for post-processing 
and image processing. Fig. 4b shows the software inter-
face of the system, where the login interface was used 
for user registration and login; the setting interface 
displayed the working status of the sensor and setting 
of the timing camera; the sensor interface displayed 
the operating status information, real-time collected 
crop images and extraction data. The phenotypic data 
of the crops can be obtained: leaf area size, leaf area 
index, green index, wheat individual plant height and 
minimum, maximum and average temperatures of the 
canopy of individual wheat.

Extraction of wheat phenotypic parameters based 
on multivariate imaging sensor 
Extraction of wheat phenotypic parameters based on RGB 
camera  The green index is the proportion of the green 
area in the wheat canopy image in the total image. The 
research standard in this paper is the ratio of the sum of 
green parts in the vertical projection direction of wheat 
canopy to the image. First, read the RGB image, check 
whether the image is uint8 data type, and count the total 
number of pixels of the RGB image. If the data type of 
the RGB image is uint8, the value range of each com-
ponent image is [0 ~ 255]. Obtain the histogram of each 
color component of RGB image, and select the appropri-
ate threshold for segmentation; Set the threshold of green 
component; Leave the green area image (G), remove the 
background, and output the green component value [19]. 
Dividing the green component value by the total number 
of image pixels is the green index for ratio output.

When calculating the leaf area of wheat canopy, this 
paper selects the leaf area extraction method based on 
reference and the wheat leaf area is equal to the number 
of pixels × Unit pixel area [20]. Determine the unit pixel 
area in the RGB image with the help of the reference, and 
select the green paper consistent with the inner diameter 
of the round root box (d = 15 cm) as the test reference to 
simulate the green crop. As shown in Fig. 5, the process 
of processing RGB image based on MATLAB. Firstly, 
the RGB image of wheat canopy is read, and the image 

Fig. 4  General diagram of the software system
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is processed based on R, G, B and color combination 
channels to obtain the gray image and gray histogram 
under different color channels [21]. The valley bottom 
gray value with obvious double peaks in the gray histo-
gram is selected as the threshold for image binarization; 
In order to eliminate the influence of the environment 
on the image acquisition process, the median filter is 
used for image restoration and small target removal area; 
Then mark the processed image with a reference, count 
the total number of pixel points P1 of the reference in the 
binary image at this time, and then count the total num-
ber of pixel points P of the leaf part. Next, calculate the 
leaf area s of the wheat canopy according to formula (1).

S in the above formula represents the total area 
of wheat leaves calculated; S1 is the reference area 
(S1 = 176.625cm2 in this paper after calculation); P is the 
total number of pixels contained in the blade image; P1 
is the total number of pixels contained in the reference 
image.

Wheat phenotypic parameter extraction based on depth 
camera
Through the operator interface of the crop phenotype 
acquisition system, the depth camera is controlled to 
acquire wheat images. The raw image data includes depth 
image, infrared image (IR) and color image (RGB). Depth 
image = RGB image + depth map. The pixel value of the 
point in the depth image represents the distance (depth 
value) from the sensor to the object. Since there is a one-
to-one correspondence between the RGB image and the 
pixel points in the depth map, we align the depth image 
with the RGB image by the correspondence of the pixel 
point coordinates.

Plant height is defined as the distance between the 
aboveground part of the crop plant from the main stem 
root to the leaf. The principle of obtaining crop plant 
height based on depth image is shown in Fig. 6a, and the 

(1)S =

S1

P1
P

vertical distance extraction method from depth camera 
to crop leaves and soil matrix is shown in Fig. 6b. Com-
bining the color image and depth image, extract the 
depth value of the central pixel of wheat leaf and the cen-
tral pixel of soil matrix. The area where the wheat leaves 
meet (i.e., the main stem) was defined as the center of 
the leaves. The area of the soil matrix near the roots of 
wheat was considered as the center of the soil matrix. At 
the same time, measure the actual height of the round 
root box as a reference comparison, so as to determine 
the depth value of the depth camera from the ground is 
h1, the distance from the depth camera to the soil matrix 
surface is h2, and the distance from the depth camera to 
the crop leaf is h3. Then the calculation formula of plant 
height (H) is:

First, extract the center pixel coordinates (x, y) of the 
center of the wheat leaf and the soil matrix. Due to the 
interference of the environment or other factors, the raw 
data obtained by the depth camera will have noise, and 
it is necessary to perform denoising processing such as 
median filtering on the original depth image. Since the 
object of this paper is the plant height of a single wheat 
plant, image segmentation is required, and the image 
is segmented by region extraction, leaving only the tar-
get region for coordinate extraction of the target loca-
tion (the center pixel point of the leaf of wheat and the 
center pixel point of the soil substrate). Second, match 
the RGB image to the depth image and extract the depth 
value of the center pixel. Since there is a one-to-one 
mapping relationship between the depth image and the 
color image, the position coordinates (x, y) of the leaf 
center pixel point and the soil matrix center point coor-
dinates determined in the color image are imported 
into the depth image, and the corresponding coordi-
nates in the depth image are imported into the depth 
image. The pixel position matrix M is matched, Z1 can 
be obtained from the leaf center pixel coordinate matrix 

(2)H = h2 − h3
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M1, Z2 can be extracted from the soil matrix center pixel 
coordinate matrix M2, and the depth value Z1 corre-
sponding to the leaf center pixel coordinate is the depth 
from the camera to the crop. The distance between the 
leaves is h3, and the depth value Z2 corresponding to the 

coordinates of the center pixel point of the soil matrix 
is ​​the distance between the depth camera and the crop 
leaves, which is h2. After extraction, make the difference 
for multiple times to get the average value; output the 
plant height parameter of the crop.

Depth Image Preprocessing

Depth image matching with color image

Soil matrix center pixel coordinate extraction

Map to the depth map to get the depth value of 

the center pixel of the wheat leaf

Image segmentation

Extraction of coordinates of center pixel points 

of wheat leaves

Map to the depth map to get the depth value of 

the center pixel of the soil matrix

Get plant height parameters

b
Fig. 6  a Schematic diagram of crop plant height calculation; b Image processing flow of obtaining crop plant height
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Extraction of wheat phenotypic parameters based 
on thermal imaging camera
As shown in Fig.  7, firstly, the infrared image is gray 
transformed. Due to the one-to-one correspondence 
between gray value and temperature, 0 ~ 255  Gy val-
ues are used to represent the temperature distribution 
state in the image. According to the temperature value 
of pixel points, the temperature interpolation method 
is used for data processing and gray image is generated. 
The collected infrared thermal image is preprocessed by 
histogram equalization and median filtering. The pur-
pose is to enhance the thermal image effect and remove 
the noise caused by environmental factors in the origi-
nal infrared image. In order to obtain the canopy tem-
perature of crops, it is necessary to identify the target 
crops in the infrared image, separate the wheat canopy 
area from the surrounding environment, and extract the 
wheat canopy area. Due to the irregular edges of wheat, 
there is interference from environmental factors such as 
soil matrix. We often use segmentation methods based 
on threshold and edge detection to divide the infrared 
image into several parts, separate the wheat canopy 
area from the surrounding environment, and extract the 
wheat canopy area. The purpose is to remove unnec-
essary information on the original image to minimize 
non-target interference. In the regional range of crop 
canopy, count the number of pixels in the wheat can-
opy area, extract the gray value corresponding to each 
pixel, count the canopy area temperature according to 
the corresponding relationship between gray value and 
temperature value, and establish the temperature dis-
tribution field of wheat canopy area [22]. Identify the 
highest and lowest temperature, divide the statistical 
temperature value by the number of pixels to obtain the 
average temperature of wheat canopy, and output the 
wheat canopy temperature parameters in the software 
interface.

Data collection
We selected four key periods in wheat growth to collect 
images for phenotypic study. The systematic measure-
ments of wheat canopy phenotype at the trefoil stage, 
pre-tillering stage, late tillering stage and jointing stage 
were obtained automatically through the crop pheno-
type collection system. Manual measurements of wheat 
canopy leaf area size, plant height, and canopy temper-
ature were obtained using graph paper [23, 24], a ruler, 
and a handheld infrared camera. The manual measure-
ment time is consistent with the image data acquisition 
time of the crop phenotype monitoring system. The 
measurement tools used are: ① Vernier caliper (range 
0-20 cm, measurement accuracy 1 mm); ②Ruler (range 

0-50  cm, accuracy 1  mm); ③RAYTEK ST80 + indus-
trial temperature measuring gun FLUKE handheld 
infrared thermometer, the detailed parameters are 
shown in Additional file 1: Table S6.

a. Leaf area measurement: Lay the leaf to be tested 
on the square paper (unit square area 1mm2), trace 
the outline along the edge of the leaf with a pencil, 
then count the number of squares occupied by the leaf 
shape, and the number of squares counted is for the leaf 
area, each wheat plant was measured three times and 
the average value was taken.

b. Plant height: In accordance with the guidance of 
agronomy breeding experts and relevant standards, the 
vertical length from the soil matrix to the highest point 
of the wheat leaf is measured manually with a ruler to 
be the plant height. Collect and record the plant height 
parameters of wheat in each growth period. Likewise, 
each wheat plant was measured three times for plant 
height and averaged.

c. Canopy temperature: Manually collect wheat can-
opy phenotype data with the help of a hand-held ther-
mometer. Wheat canopy areas were collected using 
a Raytek ST80 + handheld thermometer. In order to 
make the measured canopy temperature data more rep-
resentative, we measured three times at each canopy 
temperature collection point, and took the average of 
the three measurement results to represent the wheat 
canopy temperature value at the data collection point.

Data processing
We performed statistical analysis of the collected 
data using SPSS statistical software (IBM SPSS Statis-
tics 26, Inc., Chicago, IL, USA). First, we analyzed the 
correlation between the two data sets, using the cor-
relation coefficient(r) to evaluate the degree of cor-
relation between the image eigenvalues and the wheat 
agronomic parameters (if it presents significance, the 
results are marked with an * in the upper right corner). 
In general, when r is greater than 0.7 it indicates a very 
strong relationship; r between 0.4 and 0.7 indicates a 
strong relationship; r between 0.2 and 0.4 indicates an 
average relationship [25].

In addition, we performed regression analysis of the 
systematic and manual measurements of wheat pheno-
typic data [26]. Regression models between systematic 
and manual measurements of leaf area, plant height 
and canopy temperature of wheat were developed. The 
goodness of fit and error between wheat phenotypic 
parameters based on systematic and manual measure-
ments were assessed with the help of two metrics, coef-
ficient of determination(R2) [27] and root mean square 
error (RMSE) [28].
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Results
Correlation analysis
Correlation analysis of wheat leaf area
Table  S7 shows the results of correlation analysis 
between systematic and manual measurements of leaf 
area of wheat. It can be seen that the systematic meas-
urements of wheat leaf area were significantly and posi-
tively correlated (at the p < 0.05 level) with the manual 
measurements in the four growth periods of wheat, and 
the correlation coefficients were obtained to be greater 
than 0.84. On this basis, linear regressions were fitted 
to the two sets of data, and the evaluation indexes were 
R2 and RMSE. where R2 was used as the goodness-of-
fit coefficient, reflecting the goodness-of-fit between 
the systematic measurements of wheat leaf area and the 

manual measurements. The larger the R2, the better the 
fit of the model, and the RMSE is used to measure the 
deviation between the systematic and manual meas-
urements, which can better reflect the precision of the 
measurement. the smaller the RMSE (tends to 0), the 
better the regression. The fitting results are shown in 
Fig.  8 andAdditional file  1: Table  S8, both for the lin-
ear regression model. The calculated R2 was greater 
than 0.71, and the goodness of fit between the system 
measurements and manual measurements of wheat leaf 
area performed well. the RMSE were less than 2.4 cm2. 
among them, the crop phenotype collection system 
showed the smallest RMSE for wheat leaf area meas-
urements at the trefoil stage, which could be as small 
as 1.112 cm2. Therefore, the growth model of wheat leaf 
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area could be monitored by the crop phenotype system 
for prediction.

Correlation analysis of wheat plant height
We correlated the systematic measurements of wheat 
plant height with the manual measurements and the 
results are shown in Additional file  1: Table  S7. It can 
be seen that the correlation coefficients were all greater 
than 0.72. The systematic measurements of wheat plant 
height were significantly and positively correlated with 
the manual measurements (at the p < 0.05 level) in all four 
growth periods of wheat. On this basis, linear regres-
sions were fitted to the two data sets, evaluating the indi-
cators R2 and RMSE. the results of the fits are shown in 
Fig. 8 and Additional file 1: Table S8, and the equations 
are shown as linear regression models. The calculated 
R2 was greater than 0.83, indicating a good regression 
fit between the systematic and manual measurements of 
wheat plant height [29, 30]. The RMSEs in the fit results 
were all less than 2.5 cm. where the crop phenotype col-
lection system showed the smallest RMSE in the wheat 
height measurements at the trefoil stage, the smallest 
could reach 0.349  cm, and the growth model of wheat 
plant height could be predicted by the crop phenotype 
monitoring system.

Correlation analysis of wheat canopy temperature
As shown in Fig.  8 and Additional file  1: Table  S7. The 
correlation coefficients r between the systematic and 
manual measurements of wheat canopy temperature 
were greater than 0.92 during the wheat reproductive 
period, and both were significantly and positively cor-
related. The fitting results are shown in Fig. 8 and Addi-
tional file 1: Table S8. The R2 was greater than 0.84, and 
the RMSE was less than 1.3℃. The crop phenotype acqui-
sition system exhibited the smallest measurement error 
of the wheat canopy temperature during the trefoil stage, 
and the smallest RMSE can reach 0.261℃. The results 
showed a significant correlation between the canopy 
temperature system-measured values obtained by the 
crop phenotype monitoring system and manual measure-
ment values. A good fit was also observed. The crop phe-
notype monitoring system can be used to further study 
the water stress of wheat [31].

Dynamic changes of wheat phenotypic parameters 
under different nitrogen application rates
Dynamic changes of  wheat leaf area and  green index 
under different nitrogen application rates  Fig. 9a, b show 
the dynamic changes of leaf area and green index of wheat 

during the growth period of wheat under different nitro-
gen fertilizer concentrations. In general, the effect of N 
fertilizer application on both wheat varieties tended to be 
the same. In the same growth period of wheat, different 
nitrogen fertilizer application rates have certain influ-
ence on the characteristic parameters of wheat canopy. 
In the same growth period, the leaf area and green index 
of wheat canopy increased with the increase of nitrogen 
fertilizer application, showing a certain sensitivity. The 
effect of different N fertilizer use on wheat leaf area was 
most obvious at the late tillering stage. for QN2 wheat, the 
average leaf area of wheat was 26.32 cm2 under N1 treat-
ment, 29.25 cm2 under N2 treatment and 35.05 cm2 under 
N3 treatment. the increase in N fertilizer application pro-
moted wheat canopy growth significantly.

The average leaf area of wheat increased from 11.9 cm2 
to 41.3 cm2 from the pre-tillering stage to the jointing 
stage. Analysis of the reasons shows that the use of nitro-
gen fertilizer is conducive to the growth of wheat leaves, 
and the leaf color is dark green. Within the range, the 
more nitrogen fertilizer was applied to wheat, the num-
ber of tillers increased and the leaves grew vigorously 
[32]. With the advancement of the wheat growth period, 
the leaf area and green index of wheat under different 
nitrogen application rates showed an increasing trend.

Dynamic changes of wheat plant height under different 
nitrogen application rates
The dynamic changes of wheat plant height during the 
growth period are shown in Fig.  9c. For wheat at dif-
ferent growth stages under the same nitrogen applica-
tion level, the plant height showed an increasing trend. 
The increase of wheat plant height was larger from the 
trefoil stage to the late tillering stage. The plant height 
increased from 10.58 cm to 33.28 cm, with an increase 
of 22.7 cm.While the increase of the plant height from 
the late tillering stage to the jointing stage was rela-
tively slow, increasing only 16  cm. For wheat under 
different nitrogen fertilizer application conditions in 
the same growth period, the plant height showed an 
increasing trend with the increase of nitrogen fertilizer 
application concentration. For example, in the pre-till-
ering stage, the average plant height of wheat in the N3 
treatment was 3.6 cm higher than that of wheat in the 
N1 treatment. But the increase trend of plant height 
was not obvious as the growth period went on. It can be 
seen that nitrogen fertilizer has a significant promoting 
effect on wheat plant height in the early stage of wheat 
growth. Within the application concentration range of 
80 kg/hm2 ~ 240 kg/hm2, the higher the nitrogen ferti-
lizer concentration, the more obvious the promotion of 
plant height growth.
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Dynamic changes of wheat canopy temperature 
under different nitrogen application rates
The dynamic changes of wheat canopy temperature dur-
ing the growth period are shown in Fig. 9d. The canopy 
temperature of the two different varieties of wheat in the 
same period was not very different. For the wheat under 
the same nitrogen fertilizer application level, the canopy 
temperature showed a trend of first increase and then 
decrease with the growth period, and the wheat canopy 
temperature increased from the trefoil stage to the late 
tillering stage. In the pre-tillering stage, the canopy tem-
perature can be as high as 38.5℃.But from the late till-
ering stage, the temperature of wheat canopy gradually 

decreased. During the jointing stage, the temperature 
decreased to 24.39 ℃, which was due to the fact that 
nitrogen application could reduce the canopy tempera-
ture [33]. The variation of wheat canopy temperature 
under different N fertilizer application conditions during 
the same growth period was that the canopy temperature 
of wheat with higher N fertilizer application concentra-
tion was lower, and the canopy temperature of wheat 
under N1 treatment > N2 treatment > N3 treatment. The 
canopy temperature of wheat under N3 treatment was on 
average 1.3℃ lower than that under N1 treatment. This is 
in agreement with the findings of Yang, D. et al. [34].
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Discussion
With the development of phenomics nowadays, in order 
to achieve high-throughput, high-efficiency and high-
precision phenotypic parameter acquisition, scholars of 
phenotypic research at home and abroad have focused 
their research on the development of phenotypic plat-
forms, striving to develop new phenotypic platforms 
that meet the needs of phenotypic development [35]. We 
have summarized the advantages and disadvantages of 
different types of phenotyping platforms at present after 
research, as shown in Additional file 1: Table S9.

In order to make up for the limitations of climate and 
location when most phenotype platforms are used, as 
well as the shortcomings of traditional artificial climate 
box phenotype collection and analysis, continuous high-
throughput collection of phenotypes during crop growth 
period is realized. The intelligent artificial climate cham-
ber developed in this study has the functions of crop cul-
tivation management and phenotype acquisition during 
the wheat growth period. We have developed an environ-
mental control system that can set indoor temperature, 
humidity, light and other parameters, and designed a 
crop phenotype monitoring system composed of a high-
precision mechanical transmission and multiple sensors. 
We also developed a phenotypic feature extraction and 
management software system.

We carried out a wheat cultivation experiment in an 
intelligent artificial climate chamber, selected differ-
ent wheat varieties and applied different concentrations 
of nitrogen fertilizer, and collected image information 
of wheat samples with the help of the crop phenotype 
monitoring system. Correlation analysis was performed 
between systematic measurements of layer temperature 
and manual measurements. The results showed that the 
systematic measurement values of wheat canopy phe-
notype parameters based on the crop phenotype moni-
toring system were linearly correlated with the artificial 
measurement values, and the fitting degree was good. 
The effect of nitrogen fertilizer application on wheat 
canopy growth. Under the nitrogen fertilizer application 
of 80 kg/hm2 ~ 240 kg/hm2, with the increase of nitrogen 
fertilizer concentration, the wheat leaf area, plant height 
and canopy temperature decreased.

However, this study still has the following limitations. 
First of all, in the cultivation experiment in this paper, 
we focus on the difference in the response of wheat to 
nitrogen fertilizer concentration, and do not consider the 
influence of other factors on wheat growth, which is an 
ideal state. In actual production, factors such as pests and 
diseases, freezing damage do exist. In future research, the 
intelligent artificial climate chamber can further simu-
late the growth environment of wheat under different 
biotic or abiotic stresses, explore the growth differences 

of wheat and carry out phenotypic data research, so as 
to screen out excellent stress-resistant genes. We believe 
that it has great application potential.

Secondly, to explore the interaction mechanism 
between wheat phenotypes and the environment and 
genotypes, more phenotypic data information needs to 
be analyzed. Due to the long growth cycle of wheat and 
the impact of the new crown epidemic, we have not been 
able to carry out the full growth period of wheat. canopy 
image acquisition and phenotypic parameter acquisition, 
more experimental parameters need to be acquired in 
the future to continuously optimize the accuracy of crop 
phenotype analysis models. At the same time, the crop 
phenotype acquisition software developed in this paper 
preliminarily meets the requirements of image acquisi-
tion and phenotype analysis, and its functions can be fur-
ther expanded and improved according to needs.

Therefore, our future work will include continuously 
enriching the functions of the crop phenotype acquisition 
system, deeply mining the data information contained 
in the depth images to extract more wheat phenotype 
parameters, and realizing the data information fusion 
of multiple sensors. In addition, experiments on various 
influencing factors of biotic and abiotic stress were car-
ried out in the intelligent artificial climate chamber.

Conclusion
In this study, we developed an intelligent artificial cli-
mate chamber for wheat cultivation and phenotyping. 
Compared with the current phenotypic platform, its use 
is not restricted by the climatic environment and place, 
and has the advantages of being movable, relatively low 
in construction cost and easy to promote. We have com-
pleted the overall design of the intelligent artificial cli-
mate chamber, the construction of the internal hardware 
system and the development of the software system. And 
with the help of wheat cultivation experiments, the feasi-
bility verification of intelligent artificial climate chamber 
was completed. We found that continuous non-destruc-
tive measurements of wheat during the growing season 
can be achieved with the help of an intelligent artificial 
climate chamber. At the same time, cultivation experi-
ments confirmed that increasing nitrogen fertilizer con-
centration can promote the growth of wheat stems and 
leaves and reduce leaf temperature.

Overall, the intelligent artificial climate chamber pro-
vides a high-throughput phenotyping research platform 
and a solution for crop breeders. The intelligent artificial 
climate chamber we developed makes up for the high cost 
of building large phenotyping platforms and the difficulty 
of scaling them up, and achieves the research goal of a 
low-cost and easy-to-scale-out facility that can be used 
regardless of climate and site constraints and has both 
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crop cultivation and phenotype collection functions. 
It also improves the lack of phenotype data collection 
function of most traditional artificial climate chambers. 
Therefore, the intelligent artificial climate chamber is 
expected to be a powerful tool to assist crop breeders by 
in-depth study of the interaction mechanism between 
wheat phenotype and genotype and environment.
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