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METHODOLOGY

HairNet: a deep learning model to score leaf 
hairiness, a key phenotype for cotton fibre yield, 
value and insect resistance
Vivien Rolland1*†  , Moshiur R. Farazi2†  , Warren C. Conaty3  , Deon Cameron3, Shiming Liu3  , 
Lars Petersson2   and Warwick N. Stiller3 

Abstract 

Background:  Leaf hairiness (pubescence) is an important plant phenotype which regulates leaf transpiration, affects 
sunlight penetration, and provides increased resistance or susceptibility against certain insects. Cotton accounts for 
80% of global natural fibre production, and in this crop leaf hairiness also affects fibre yield and value. Currently, this 
key phenotype is measured visually which is slow, laborious and operator-biased. Here, we propose a simple, high-
throughput and low-cost imaging method combined with a deep-learning model, HairNet, to classify leaf images 
with great accuracy.

Results:  A dataset of ∼ 13,600 leaf images from 27 genotypes of Cotton was generated. Images were collected from 
leaves at two different positions in the canopy (leaf 3 & leaf 4), from genotypes grown in two consecutive years and 
in two growth environments (glasshouse & field). This dataset was used to build a 4-part deep learning model called 
HairNet. On the whole dataset, HairNet achieved accuracies of 89% per image and 95% per leaf. The impact of leaf 
selection, year and environment on HairNet accuracy was then investigated using subsets of the whole dataset. It was 
found that as long as examples of the year and environment tested were present in the training population, HairNet 
achieved very high accuracy per image (86–96%) and per leaf (90–99%). Leaf selection had no effect on HairNet accu-
racy, making it a robust model.

Conclusions:  HairNet classifies images of cotton leaves according to their hairiness with very high accuracy. The 
simple imaging methodology presented in this study and the high accuracy on a single image per leaf achieved by 
HairNet demonstrates that it is implementable at scale. We propose that HairNet replaces the current visual scoring 
of this trait. The HairNet code and dataset can be used as a baseline to measure this trait in other species or to score 
other microscopic but important phenotypes.

Keywords:  Deep learning, Neural network, Machine learning, Trichome, Hair, Pubescence, Hairiness, Cotton, Leaf, 
Phenotyping
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Background
A need for accurate phenotyping in research and breeding
Modern agriculture and its associated breeding and 
research efforts rely on the accurate observation and 
quantification of key plant traits. Recent years have seen 
the development of a flurry of image-based phenotyping 
methods, and a growing number of those integrate recent 
advances in machine learning and computer vision, and 
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in particular deep learning (for examples, see [1–3]). 
However, many important traits are still visually scored 
by humans. Whilst these methods are often simple and 
well-established, they are prone to human errors, and can 
be slow and costly. Additionally, if visual scoring is done 
directly on plants rather than on recorded images, results 
cannot be revisited when new methodologies emerge.

Functional importance of cotton leaf hairiness
Cotton is a food and fibre crop which accounts for 80% 
of global natural fibre production [4]. The most widely 
commercially cultivated species of Cotton is Gossypium 
hirsutum L., which is bred across the globe for traits such 
as improved yield, insect resistance, fibre length and 
strength, water use efficiency and adaptation to a chang-
ing climate. In these breeding efforts, leaf hairiness, also 
referred to as leaf pubescence, is a key phenotype which 
is still measured manually [5]. Leaf hairiness is caused by 
the presence of hair-like cells on the surface of the leaf 
called trichomes. Trichome structures vary across species 
and tissues, but globally they regulate leaf transpiration, 
affect sunlight scattering, and provide a mechanical and 
chemical barrier against certain insects [6]. In a breed-
ing setting, the importance of measuring cotton leaf 
hairiness is driven by flow-on effects encountered at both 
leaf hairiness extremes. On the one hand, the absence 

(glabrous trait) or low number of leaf trichome are asso-
ciated with reduced fibre yield [7]. Genotypes with lit-
tle or no leaf hair are also more sensitive to a range of 
insect pests such as boll weevil (Anthonomus grandis), 
cotton aphid (Aphis gossypii), Asiatic cottonworm (Spo-
doptera littoralis), spotted bollworm (Earias fabia), green 
leafhopper and jassids (Empoasca spp.), pink bollworm 
(Pectinophora gossypiella), tobacco budworm (Heli-
coverpa virescens) and several Lygus species [8]. On the 
other hand, genotypes with very hairy leaves (pilose trait) 
are more susceptible to being colonised by insects such 
as silverleaf whitefly Bemisia tabaci [9]. When cotton is 
mechanically harvested, high hairiness also promotes gin 
trash—the accumulation of leaf matter, stalks and dirt in 
harvested material. Gin trash can downgrade fibre colour 
and increase the amount of cleaning required prior to 
ginning, which can negatively affect fibre properties and 
decrease their economical value [10]. For these combined 
reasons, an intermediate level of leaf hairiness (hirsute 
trait) is a highly desirable selection trait for elite cotton 
varieties (Fig. 1A).

Current leaf hairiness scoring method
All cotton varieties grown in Australia have been devel-
oped by the CSIRO cotton breeding program (Warwick 
Stiller, pers. comm.). In this breeding program, leaf 
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Fig. 1  Importance of leaf hairiness and its associated manual scoring method. A Leaf hairiness scoring scale highlighting the risks associated with 
too little or too many leaf trichomes, B, C manual leaf trichome scoring method typically performed on the 3rd leaf from the top of the plant (B) by 
visually scoring hairiness of the abaxial side of the leaf
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hairiness is visually scored using an ascending, non-
linear 1 to 5+ scale similar to that of Bourland et al, but 
established over 50 years ago (Fig.  1A) [5, 11]. On this 
scale, 1 represents the glabrous trait and 5+ is the pilose 
trait. These two extremes are separated by 7 intermediate 
scores: 2, 3, 3/4, 4, 4/4+, 4+ and 5. Only genotypes with 
a leaf hairiness score between 3 and 4+ are selected for 
subsequent breeding steps.

Scoring a new genotype is currently done by visu-
ally inspecting the under (abaxial) side of the 3rd fully 
unfolded leaf starting from the top of the plant, on six 
representative plants of that genotype (Fig. 1B, C). Such 
observations are made in the context of a range of geno-
types with well-established scores, representing most lev-
els on the scale and grown under the same environmental 
conditions as those genotypes which require scoring. A 
partly subjective decision is made by each observer to 
integrate the observations made on 6 plants for any given 
genotype into a single score. In addition to the influence 
of human interpretation on this method, this technique 
relies on the reflection of sunlight on trichomes and is 
therefore only utilised on sunny days. However, until the 
present study the lack of available alternative has meant 
that this manual method remains the best approach to 
score this agronomically important trait.

Proposed improvement: deep learning‑based classification
Recent studies have demonstrated that deep learning 
approaches can be used to quantify microscopic but 
important phenotypes such as the density and/or shape 
of stomata in a range of plant species [12–17]. Quanti-
fication of hairiness has been attempted in Arabidop-
sis thaliana, Soybean (Glycine max) and Spring Wheat 
(Triticum aestivum) [18–21]. However, these methods 
require specialised imaging techniques such as 3D X-ray 
computed tomography or 3D confocal laser scanning 
microscopy, and/or require time consuming and destruc-
tive sample preparation [18–21]. Additionally, none of 
these techniques leverage the potential of deep learning. 
To our knowledge, the present study is the first to pre-
sent a simple imaging method combined with a deep 
learning approach to quantify leaf hairiness. This method 
leverages the expertise of crop breeders but offers the 
robustness and user-independence of machine-learning 
approaches. More specifically, we used deep Convolu-
tional Neural Networks (CNNs) to transform an input 
(e.g. a leaf image) into a prediction (e.g. a hairiness score), 
a task called image classification (for a recent review on 
deep learning and CNNs, see [22]). This approach relies 
on having access to data and labels, which in this case are 
images of cotton leaves and their known hairiness score, 
respectively. The whole labelled dataset is then split in 
multiple ways such that the model can be trained and 

tested, and that a number of aspects of the dataset and 
model can be investigated.

In this study we hypothesised that an image-based 
deep-learning model could be used to score leaf hairi-
ness in cotton leaves, accurately and repeatably across 
genotypes and environments. To this end, we grew a 
combination of 27 established genotypes in a controlled 
environment and in the field, and over two successive 
growth seasons (Table 1); built an image library of 13,597 
images (Figs.  2, 3, Table  2); tested different neural net-
work architectures to identify the best approach (Figs. 4, 
5, 6, Tables 3 and 4); and finally tested the effect of leaf 
number (Fig. 8A), growth year (Fig. 8B) and growth con-
dition (Fig.  8C) on the predictions of our best model 
(Fig. 7). This study is the first to describe an accurate and 
reliable method to score leaf hairiness, which is a key 
trait for cotton breeding programs. We propose that our 
deep learning model replaces the current visual inspec-
tion. Additionally, the methodology presented here could 
be adapted to other crops and plant species. Finally, the 
image dataset produced for this study is made available 
for the research community to develop and test novel 
computer vision approaches.

Methods
Genotype selection
A total of 27 genetically diverse Gossypium hirsutum Cot-
ton genotypes were selected based on their known leaf 
hairiness to represent the full gamut of observable leaf 
hairiness variations. Genotype names were anonymised 
to protect germplasm intellectual property (see details 
below). Various combinations of these genotypes were 
grown at two different Australian sites (Narrabri, New 
South Wales & Canberra, Australian Capital Territory), 
in the field or controlled glasshouse environment, and 
over 2 years (2019–2020, referred to as year 1, and 2020–
2021, referred to as year 2). For details refer to Table 1.

Plant growth
Field experiments—Narrabri
Plants of 10 and 26 genotypes, respectively, (see Table 1) 
were established in the summer growing seasons of 
2019–2020 and 2020–2021 at the Australian Cotton 
Research Institute (ACRI, − 30.21, 149.60), 22 km north-
west of Narrabri New South Wales, Australia. Seeds of 
each genotype were planted on Oct. 21 2019 and Nov. 
6 2020, at planting density of 10–12 plants m-2 in rows 
spaced at 1 m. Each genotype was grown in a single 13 m 
row.

The study region is semi-arid, characterised by mild 
winters, hot summers and summer-dominant rainfall 
patterns, with an annual average precipitation of 646 mm 
[23]. The soil of the site is a uniform grey cracking clay 
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(USDA soil taxonomy: Typic Haplustert; Australian soil 
taxonomy: Grey Vertosol). Plant available soil water to 
1.2 m at the site is between 160 and 180 mm [24]. The 
soil at ACRI is generally 60 to 65 per cent clay fraction, of 
low drainage rate [25], pH range of 8.0 to 8.8, and low in 
organic matter and nitrogen [26].

Nitrogen was applied as anhydrous ammonia approxi-
mately 12 weeks before planting at a rate of 200 kg N 
ha−1. Experiments were planted following an 11-month 
fallow period which was preceded by a winter wheat 
crop. Management for all field experiments followed cur-
rent high-input commercial practices: fully irrigated con-
ditions with careful weed and insect control [27]. Plants 
were furrow irrigated every 10 to 14 d (approximately 
1 ML ha−1 applied at each irrigation) from Decem-
ber through to March, according to crop requirements. 
Each experiment was managed according to its individ-
ual requirements for irrigation and pest control, with all 

plots receiving the same management regime. In season 
2019–2020, these plants were imaged on the 7th–8th of 
January 2020 (11 weeks after sowing), whilst in season 
2020–2021 they were imaged on the 8th–12th of January 
2021 (9 weeks after sowing).

Glasshouse experiments—Narrabri
Plants were grown in temperature-controlled glass-
houses at the Australian Cotton Research Institute 
(ACRI). About 15 seeds of each genotype (Table  1) 
were sown in 8 L plastic pots filled with soil on Sept. 
6 2019 and Nov. 2 2020, respectively. The soil was 
obtained from cotton fields at ACRI (see above). To 
improve the nutrient status of the potting mix 10 g 
of MULTIgro® (Incitec Pivot Fertilizers, Melbourne, 
Australia) basal fertiliser was dissolved into the soil 
before planting. MULTIgro® contains the nutrients N, 
P, K, S, and Ca at 13.1, 4.5, 7.2, 15.4, and 2.4 percent, 

Table 1  Details of leaf hairiness score, site, year and growth condition for each of the 27 genotypes used to create the dataset

GH glasshouse, FD field, N Narrabri, C Canberra

Genotype Score Year 19–20 (Y1) Year 20–21 (Y2)

FD N GH N FD N GH N GH C

Pink 1 X X X

Red 1 X X X

Azure 1 X X

Charcoal 2 X X

Scarlet 3 X X

Indigo 3 X X

Purple 3 X X X X

White 3/4 X X X

Opal 3/4 X X

Ebony 3/4 X X

Bronze 3/4 X X

Orange 4 X X

Amber 4 X X

Emerald 4 X X

Copper 4 X X

Yellow 4 X X X X

Teal 4/4+ X X

Beige 4/4+ X X

Green 4/4+ X X X X

Violet 4/4+ X X

Crimson 4+ X X

Cyan 4+ X X

Blue 4+ X X X X

Gray 4+ X X X X

Turquoise 5 X X

Brown 5+ X X X X

Black 5+ X X X

Number of genotypes 10 10 26 16 8
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Fig. 2  Imaging process and data collection. The abaxial side of the 3rd or 4th leaf from the top was imaged using a hand-held microscope and 
stage (A) and about 3 to 5 images were collected along the 3 main veins of each leaf (B) for a total of  9–15 images per leaf (C)

Score = 1 Score = 2 Score = 3 Score = 3/4 Score = 4

Score = 4/4+ Score = 4+ Score = 5 Score = 5+

Glasshouse

Score = 1 Score = 2 Score = 3 Score = 3/4 Score = 4

Score = 4/4+ Score = 4+ Score = 5 Score = 5+

Field

Fig. 3  Examples of images taken on Leaf 3 of plants grown in a glasshouse (A) or in the field (B), for each score class
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respectively. A 10 mm layer of sand was added to the 
surface of the pots to reduce surface evaporation and 
assist in seedling emergence. Once emerged seedlings 
had reached the three-leaf stage, pots were thinned 
down to two plants per pot. Plants were grown at 18 
◦ C night and 32 ◦ C during the day, under natural light 
conditions.

In season 2019–2020, these plants were imaged on 
the 17th–18th of December (14.5 weeks after sowing), 
whilst in season 2020–2021 they were imaged on the 
5th–6th of January (10 weeks after sowing).

Glasshouse experiment—Canberra
Plants were grown in temperature-controlled glass-
houses at CSIRO Black Mountain Laboratories, Can-
berra, Australian Capital Territory, Australia (− 35.27, 
149.11). Eight seeds of each genotype (Table  1) were 
sown in 5 L plastic pots filled with potting mix on 
Nov. 30 2020. The pots were filled with a 60:40 
compost:perlite soil mix. Osmocote® Exact Standard 
3-4M (ICL Specialty Fertilizers, Bella Vista, Australia) 
was sprinkled on the top layer of soil before flower-
ing. Osmocote® Exact Standard 3-4M contains the 
nutrients N, P, K, Mg, Fe, Mn, B, Cu, Mo and Zn at 16, 
3.9, 10, 1.2, 0.45, 0.06, 0.02, 0.05, 0.02 and 0.015 per-
cent, respectively. Two weeks after sowing, pots were 
thinned down to two plants per pot. Plants were grown 
at 18 ◦ C night and 28 ◦ C during the day, under natural 
light conditions. These plants were imaged on the 4th 
of February 2021 (9.5 weeks after sowing).

Leaf selection and harvesting
Leaves were numbered in ascending number from the 
tip of the main stem, with the first fully opened leaf 
called leaf one. Leaves 3 and 4 from ten individual 

plants were harvested by cutting their petiole in a prox-
imal position. Harvested leaves were placed in paper 
bags and imaged within the same day. In the 2019–2020 
glasshouse experiment, a few plants died or had a miss-
ing leaf, in which case there were genotypes for which 
leaves 3 and/or 4 were harvested from less than 10 
plants.

Leaf imaging
Single leaves were imaged at a magnification of about 
31× with a portable AM73915 Dino-lite Edge 3.0 
(AnMo Electronics Corporation, Taiwan) microscope 
equipped with a RK-04F folding manual stage (AnMo 
Electronics Corporation, Taiwan) and connected to a 
digital tablet running DinoCapture 2.0 (AnMo Elec-
tronics Corporation, Taiwan) (Fig.  2A). Images were 
captured on the abaxial side of the leaf, along the 3 cen-
tral mid-veins. An average of 3 to 5 images were cap-
tured in a proximal to distal fashion along each one of 
the 3 mid-veins, yielding a total of about 9 to 15 images 
per leaf (Fig.  2B). The exact angle of the mid-vein in 
each image was not fixed. However, either end of the 
mid-vein was always cut by the left and right borders of 
the field of view, and never by the top and bottom ones 
(Fig. 2C).

Data de‑identification process
As the generated dataset contains images and phe-
notypical information of commercial importance, 
the publicly available version of our dataset was de-
identified. Australian Privacy Principles (APPs) in 
the Privacy Act 1988 and the Office of the Austral-
ian Information Commissioner (OAIC) recommend 
that any data de-identification process should ensure 
the removal of direct and indirect identifiers and 

Table 2  Number of images and unique scores per growth condition, leaf and year

GH glasshouse, FD field, N  Narrabri, C Canberra, L3 Leaf 3, L4 Leaf 4

Y1 Y2 Whole dataset
Y1Y2

Growth condition (# of images) GH 2085 (N) 3146 (N) + 1542 (C) = 4688 5231 (N) + 1542 (C) = 6773

FD 2212 (N) 4612 (N) 6824 (N)

Total 4297 (N) 9300 (N+C) 13597 (N+C)
Leaf (# of images/# of leaves) L3 2062/193 4666/500 6728/693

L4 2235/193 4364/500 6869/693

Total 4297/386 9300/1000 13597/1386
Unique scores (classes) GH 1, 3, 4, 4/4+, 4+, 5+ 1, 2, 3, 3/4, 4, 4/4, 4+, 5, 5+ 1, 2, 3, 3/4, 4, 4/4, 4+, 5, 5+

Total 6 9 9
FD 1, 3, 3/4, 4, 4/4+, 4+, 5+ 1, 2, 3, 3/4, 4, 4/4, 4+, 5, 5+ 1, 2, 3, 3/4, 4, 4/4, 4+, 5, 5+
Total 7 9 9
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placement of safeguards against dataset re-identifica-
tion. Following these recommendations and the de-
identification framework proposed by Data61–CSIRO 

[28] we followed a two-step de-identification pro-
tocol by removing identifiers and preventing 
re-identification.

Fig. 4  Network architecture of the proposed deep learning model to score cotton leaf hairiness. The proposed model consists of four main parts. 
First the image is passed through a Data Augmentation module (a) that augments the image by applying a variety of image processing techniques. 
Processed images are then passed to a Feature Extraction Network (b) that extracts discriminative visual features from the image representation. 
Extracted visual features are then passed to a simple Classification Neural Network (c) that assigns each input image to a specific score. Raw scores 
are then processed by the Leaf Hairiness Scoring module (d) which generates three accuracy metrics for scoring cotton leaf hairiness
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Removing identifiers
First, images and their associated labels were duplicated 
into a separate location. Second, unique genotype identi-
fiers present in the duplicate dataset were listed and each 
genotype was assigned a unique colorname (e.g., green, 
orange, pink). The assignment of genotype to colorname 
was documented in a ‘de-identification master file’. Third, 
unique genotype identifiers in the duplicate dataset were 
replaced with their associated colornames and all rel-
evant image meta-data (e.g., geo-tag, timestamp) was 
removed. This final duplicate dataset corresponds to the 
de-identified version of the original dataset and was used 
in all the experiments presented in this study.

Preventing re‑identification
To prevent re-identification, the three different parts 
required to re-identify the dataset were placed in three 
separate locations, and access to each part was managed. 
First, the original dataset was placed in a CSIRO secure 
cloud storage platform which was only accessible to the 
people involved in this project. Second, the de-identified 
dataset was released for open-access through the CSIRO 
data access portal where the de-identified version of the 
dataset is made available to the community [29]. Third, 
the ‘de-identification master file’ was placed in a sepa-
rate CSIRO cloud storage location and access to it was 

restricted to the dataset creators and contributors. With-
out access to all three pieces of the puzzle, one cannot 
link images to commercially important genotype infor-
mation, therefore preventing re-identification.

Data augmentation module
The Data Augmentation module takes raw images as 
input and performs two or more types of data augmenta-
tion (Fig. 4a). All images were resized and normalised as 
follows:

•	 Resize The feature extraction network requires input 
images to be of a specific square size. To deal with 
that, input images ( 2560× 1920 ) were resized to 
448× 448 by down sampling.

•	 Normalise The feature extraction network was initial-
ized with pretrained weights learned while training 
the model on the ImageNet dataset [30], and image 
pixel values were normalized with the mean and 
standard deviation calculated from millions of images 
from this dataset. More details is provided in the sec-
tion describing the feature extraction network.

	 In addition to Resize and Normalise, the following 
additional data augmentation techniques were tested 
in this study, individually or in combination:

(a) ResNet34 Baseline
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(b) ResNet34 with Random Rotation (RR)
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Fig. 5  Selecting the best optimizer. Four optimizers were tested with ResNet34 baseline (a) and ResNet34 with Random Rotation (RR) data 
augmentation (b), and evaluated on the whole dataset. Error bars represent the maximum and minimum accuracy of four runs of the same 
experiment
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•	 Random Vertical flip (RV Flip) Input images were 
vertically flipped randomly with a probability of 0.5 
after probabilities ranging from 0 to 1 were tested in 
increments of 0.1 (Additional file 1: Fig. S1).

•	 Random Horizontal flip (RH Flip) Input images were 
horizontally flipped randomly with a probability of 
0.5 after probabilities ranging from 0 to 1 were tested 
in increments of 0.1 (Additional file 1: Fig. S1).

•	 Random Horizontal and Vertical flip (RV + RH Flip) 
Combining RV Flip and RH Flip, input images were 
horizontal and/or vertically flipped, each with a 
probability of 0.5.

•	 Random Crop (RC) Input images were first resized 
to an intermediate resolution of 512× 512 , and 
cropped to 448× 448 at a random location.

•	 Random Crop and Vertical Flip (RC + RV Flip) 
Images underwent a Random Crop operation before 
a RV flip operation was performed.

•	 Random Crop and Horizontal Flip (RC + RH Flip) 
Images underwent a Random Crop operation before 
a RH flip operation was performed.

•	 Random Crop, Vertical and Horizontal Flip 
(RC + RV + RH Flip) Images underwent a Random 
Crop operation before a RV + RH flip operation was 
performed.

•	 Random Rotation (RR) Input images were rotated 
from the centre of the image by an angle between 
+ 30 and − 30 °C.

Feature extraction network
Augmented image representations were fed into a deep 
convolutional neural network (CNN) called Residual 
Neural Network (ResNet) [31], to extract discriminative 
visual features (Fig. 4b). ResNet was chosen as the feature 
extraction network because its use of skip-connections 
makes it robust to the vanishing gradient problem [31]. 
To efficiently perform object recognition, ResNet’s last 
conversational layer generates a discriminative feature 
representation of the image based on the training data 
and labels provided. Such discriminative feature rep-
resentation are encoded with salient information (e.g., 

ResNet34 Network with Random Rotation (RR)
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Fig. 6  k-fold cross validation. This validation was performed on the training split for the whole dataset with ResNet34 and the two best performing 
data augmentation techniques (Random Rotation [RR], and Random Vertical and Horizontal Flip [RV + RH Flip]). Here, k was set to 10. IA, FIA and LA 
refer to Image Accuracy, First Image Accuracy and Leaf Accuracy, respectively
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shape, color, texture) of the image required to classify 
the image into a predefined class. The more discrimina-
tive these features are in the high dimensional space, the 
more accurate the model becomes in predicting which 
class the input image belongs to. However, learning to 
generate more discriminative features require access to a 
very large scale dataset (i.e., millions of densely annotated 
training images) and an expensive training routine.

To circumvent this we used transfer learning, a tech-
nique which allows the backbone CNN network to be 
trained on a classification task using a very large public 
dataset, and then transfer this learning to the specific 
task of interest by training the last few layers of the net-
work only [32]. Here, no layer was frozen but the weights 
of the ResNet network were initialized with weights 
learned by the same network when classifying millions of 
images from the ImageNet dataset [30] into 1000 classes. 
Learning was then refined during training on cotton leaf 
images. The use of transfer learning has two main advan-
tages in the context of this study. First, the size of our 
dataset (13,597 images) is relatively small to train deep 
networks like ResNet to their full capacity. An alterna-
tive would have been to train CNNs more shallow than 
ResNets (i.e., AlexNet [33], VGG [34]) from scratch on 
our dataset, but this was deemed sub-optimal. Second, 
initializing weights with pretrained ImageNet weights 
helps the model be more robust and generalisable. A 
model only trained on our dataset would have been more 
sensitive to any out-of-distribution data not present in 
the training set.

Five ResNet architectures of increasing depth, 
namely ResNet18, ResNet34, ResNet50, ResNet101 and 
ResNet152, were empirically tested for best model per-
formance. With each ResNet, the last fully connected 
layer of the network was removed, and the output of the 
last convolutional layer is treated as the extracted visual 
feature from the image and fed to the classification neural 
network.

Classification neural network
The output of the feature extraction layers was passed to 
a classification network (Fig. 4c). This network consists of 
a single, fully connected layer which takes the extracted 
visual features as input and outputs a prediction vector. 
The weights of the fully connected layer were initialised 
with the standard Kaiming-Uniform method, which per-
formed within a similar and acceptable range compared 
to other common methods tested (Additional file 1: Fig. 
S2). The size of the prediction vector is set to the number 
of classes in the dataset. Predictions generated from the 
classification network are fed to the Leaf Hairiness Scor-
ing module.

Leaf hairiness scoring module
Model accuracy was reported per image, per first image 
and per leaf (Fig. 4d).

Image accuracy (IA)
Image Accuracy was calculated by comparing each pre-
dicted image score with the corresponding ground truth 
score. The higher the IA, the better the model was able to 
predict cotton hairiness scores. The loss function, which 
measures how far a prediction is from its ground truth, 
was minimized with respect to this accuracy and is the 
primary measure of model performance in our experi-
ments. The other two accuracies were derived from IA.

First image accuracy (FIA)
For HairNet to become routine practice, it needs to be 
easily implementable and it is impractical to capture 15 
images per leaf in the field or on a large number of sam-
ples. Accuracy on a single image per leaf was therefore 
measured. To be able to perform meaningful and consist-
ent comparisons between leaves, it was key to focus on 
images collected at the same position. The most proxi-
mal image of each leaf was deemed easiest to consider, 
especially if multiple users were to image leaves in the 
future. Consequently, the most proximal image of a given 
leaf was called First Image for that leaf and its prediction 
accuracy was called First Image Accuracy (FIA).

Leaf accuracy (LA)
During visual human inspection, a leaf is considered as a 
whole and given a single score. Leaf Accuracy (LA) was 
calculated by assigning a single score to any given leaf 
based on the predictions made on images of that leaf pre-
sent in the test set. For images of a given leaf, the most 
common score was selected and compared to the ground 
truth to calculate LA. In the event of two scores being 
predicted by as many images of a given leaf, the smallest 
score was selected to calculate LA.

Dataset splits
General approach
With the exception of the k-fold cross validation experi-
ment (see following section), all experiments were per-
formed with a two-way split of the data as follows:

•	 A candidate image list of In images to be separated 
into train and test split was generated.

•	 In images from the candidate image dataset belong-
ing to a given leaf were grouped to create Ln mutually 
exclusive groups of leaves.

•	 80% of Ln were randomly selected, and images 
belonging to these leaf groups were set as the train-
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ing set. As all leaf groups have a similar number of 
images on average, the size of the training set was 
therefore approximately 80% of In.

•	 Images belonging to the remaining 20% of Ln were 
set as the test set, with the size of the test also being 
approximately 20% of In.

A number of splits were created for this study and are 
explained below.

Whole dataset split
This split was built by placing all 13,597 images of the 
candidate image list and generating 1386 leaf groups. 
Here, train and test sets were generated irrespective of 
leaf number, year and environment. This dataset split is 
referred to as ‘whole dataset’ and was used to determine 
the best model architecture.

Leaf‑based splits
In leaf-based splits, images were placed into train and test 
sets based on the identity of the leaf they originated from 
(Leaf 3 or Leaf 4). Below is the list of all leaf-based splits 
generated in this study, where the names before and after 
the ‘/’ refer to the train and test conditions, respectively. 
The first two splits are mixed-leaf splits (training on 
both leaf identities), the middle two are intra-leaf iden-
tity splits (training and testing on the same leaf identity) 
and the last two are inter-leaf identity splits (training and 
testing on different leaf identities).

•	 L3L4/L3 Here, the candidate image list is all images 
in the unsplit, whole dataset. Images taken on L3 and 
L4 were separated into two groups. Images in the L3 
group were split according to the process highlighted 
above, with 20% of L3 images set aside for the test set. 
The remaining 80% of L3 images and all L4 images 
were placed in the training set. This split generated a 
training set made of L3 and L4 images, and a test set 
consisting of L3 images only.

•	 L3L4/L4 This split was similar to L3L4/L3, but here 
20% of L4 images were placed in the test set with all 
other L4 images placed in the training set together 
with all L3 images.

•	 L3/L3 Here, candidate images only consisted of L3 
images with 80% being placed in the training set and 
20% being placed in the test set.

•	 L4/L4 Same as L3/L3 but with L4.
•	 L3/L4 Here, all L3 images were placed in the train-

ing set and all L4 images were placed in the test set.

•	 L4/L3 This split is the reverse of L3/L4, where all 
L4 images were placed in the training set and all L3 
images were placed in the test set.

Year‑based splits
In year-based splits, images were placed into train and 
test sets based on the year they were grown in, where 
year 1 (Y1) and 2 (Y2) refer to seasons 2019–2020 and 
2020–2021, respectively. Following the nomenclature of 
leaf based splits, the first two, middle two and last two 
splits are mixed-year (training on both years), intra-
year (training and testing on the same year), and inter-
year (training and testing on different years) splits.

•	 Y1Y2/Y1 Here, the test set consists of 20% of Y1 
images, with the remaining 80% og Y1 images and 
all Y2 images placed in the training set.

•	 Y1Y2/Y2 In this case, the test set consists of 20% of 
Y2 images, with the remaining 80% og Y2 images 
and all Y1 images placed in the training set.

•	 Y1/Y1 Here, only Y1 images are used, with 80% 
placed in the training set and 20% of images placed 
in the test set. Importantly, Y1 images belong to 
7 score classes only (Table  2). So in this case, the 
model was only trained and evaluated on these 
classes.

•	 Y2/Y2 Similarly to the Y1/Y1 split, only Y2 images 
were considered for this split. Y2 images belong to 
9 score classes so this split was used to train and 
evaluate a models on these 9 classes (Table 2).

•	 Y1/Y2 The candidate image list for this inter-year 
split was slightly different than for inter-leaf iden-
tity splits because the genotypes grown in Y1 and 
Y2 covered a different number of unique score 
classes (7 for Y1 and 9 for Y2, see Tables 1 and 2). 
To circumvent this problem, the candidate image 
list was limited to images of genotypes and scores 
present in both years only. Additionally, this split 
was used to train and evaluate a model on the 7 
score classes common to Y1 and Y2 only. From this 
reduced candidate image list, the Y1/Y2 split was 
generated by placing all remaining Y1 images into 
the train set and all remaining Y2 images into the 
test set.

•	 Y2/Y1 Using the same reduced candidate image 
list as for Y1/Y2, here all remaining Y2 images 
were placed into the train set and all remaining Y1 
images we placed into the test set.
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Environment‑based splits
In environment-based splits, images were placed into 
train and test sets based on the environment they were 
grown in (Glasshouse—GH, or Field—FD). Following 
the same nomenclature as above, the first two, middle 
two and last two splits are mixed-environment (training 
on both environments), intra-environment (training and 
testing on the same environment), and inter-environment 
(training and testing on different environments) splits.

•	 GHFD/GH Similar to other mixed-split genera-
tion processes, 20% of Glasshouse (GH) images 
were placed in the test set and all remaining images 
formed the train set.

•	 GHFD/FD Here, 20% of Field (FD) images were 
placed in the test set and all remaining images 
formed the train set.

•	 GH/GH Here, 20% of Glasshouse (GH) images were 
placed in the test set and the remaining 80% of the 
GH images formed the train set.

•	 FD/FD In this split, 20% of Field (FD) images were 
placed in the test set and the remaining 80% of the 
FD images formed the train set.

•	 GH/FD Here, all GH images were used as the train-
ing set and all FD images formed the test set.

•	 FD/GH This split is the reverse of GH/FD, where all 
FD images were used as the training set and all GH 
images formed the test set.

Results and discussion
Building a large and diverse digital dataset
A range of 27 genetically diverse cotton genotypes with 
leaf hairiness phenotypes ranging from 1 to 5+ were 
selected in this study (Table  1). These genotypes com-
prise historical, commercial and unreleased genotypes 
which vary in their yield, fibre quality, insect/disease 
resistance, and water use efficiency. Each score class was 
represented by 1 to 5 unique genotypes, with the most 
abundant diversity of genotypes in the range that is both 
the hardest to separate and the most desirable to breed-
ers, namely 3 to 4+. To build a model that works across 
years and growth condition, these genotypes were grown 
over two separate seasons (2019–2020—year 1, and 
2020–2021—year 2) and in two different environments 
(Field—FD, and Glasshouse—GH). This is particularly 
important to reflect the two growth environments used 
in the breeding pipeline, with some early stages of vari-
ety development occurring in the glasshouse and inter-
mediate and later stages being primarily conducted in the 
field. For each genotype, a total of 10 plants were imaged 
each year and in each environment (Fig. 2). For each leaf, 
about 9 to 15 images were collected (Fig. 2B) and to test 

the importance of selecting the correct leaf, both leaf 3 
(L3) and leaf 4 (L4) were imaged. Altogether, this gen-
erated a total dataset of 13,597 images split across 1386 
leaves, with a full breakdown of the dataset available in 
Table  2 [29]. Representative images across the scoring 
scale in the field and the glasshouse are shown in Fig. 3. 
To protect sensitive germplasm information, the dataset 
was de-identified and each genotype was renamed after a 
unique colour.

To train our models, the dataset was either analysed as 
a whole, or split according to leaf identity (L3/L4), year 
(Y1/Y2) or environment (GH/FD). In short, each dataset 
split was prepared by placing 80% of the images of inter-
est into the train set and the remaining 20% of images 
in the test set. All images of a given leaf were placed in 
either the test or train set, rather than split across both. 
Each dataset split follows a ‘train/test’ nomenclature and 
the size of each split is shown in Table  2, with details 
about how each split was generated explained in “Meth-
ods” section.

A four part network architecture
To classify leaf images, we used the four part deep learn-
ing architecture illustrated in Fig. 4. In this architecture, 
a raw input image was presented as input to a Data Aug-
mentation module which performed two default opera-
tions (normalise and resize), with the benefit of additional 
operations tested as well (Fig.  4a). Augmented images 
were then fed to a Feature Extraction Network, where 
convolution and pooling layers were used to extract 
discriminative visual features in augmented images 
(Fig.  4b). Different ResNet network depths were tested 
and are detailed below. The feature vector generated by 
the Feature Extraction Network was fed to a Classifica-
tion Neural Network, which converted its input into class 
predictions (Fig.  4c). Finally, the Leaf Hairiness Scoring 
module compared predictions to the ground truth to 
output a model accuracy (Fig.  4d). Here, three levels of 
accuracies were generated: for every single image (Image 
Accuracy—IA), for the most proximal image of each leaf 
only (First Image Accuracy—FIA) and for each leaf as a 
whole (Leaf Accuracy—LA).

Building the best deep learning model
To build the best model, each one of its four parts was 
optimised starting with the Feature Extraction Network.

Selecting a baseline feature extraction network
The performance of five baseline ResNet models with 
data augmentation limited to resize and normalise and 
of growing depths (i.e., ResNet18, ResNet34, ResNet50, 
ResNet101, ResNet152) was tested on three dataset 
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versions of increasing size and complexity (i.e., Y1/Y1, 
Y2/Y2 and whole dataset). The three levels of accuracy 
achieved for each ResNet/dataset combination are 
reported in Table  3. Overall, the smaller ResNet18 and 
ResNet34 models achieved the highest accuracy on 
nearly all combinations, with the exception of FIA on 
the whole dataset where the deeper ResNet101 per-
formed slightly better (83.09%) than ResNet34 (81.65%). 
Consequently, ResNet18, ResNet34 and ResNet101 were 
selected as feature extraction network options in subse-
quent experiments.

Data augmentation technique selection
Data augmentation is the process of performing digi-
tal modifications such as rotating, cropping or flip-
ping images on the training set. These techniques can 
help increase the size of the training dataset and reduce 
the risks of over-fitting the model [35]. To determine 
whether data augmentation could help improve the 
performance of our baseline ResNet18, ResNet34 and 
ResNet101 models, a range of techniques were tested 
in the Data Augmentation module (Table 4). Out of the 

eight modifications considered here, Random Horizon-
tal and Vertical flip (RV + RH Flip) and Random Rota-
tion (RR) yielded the best accuracies across the three 
feature extraction networks. Amongst all combina-
tions, ResNet34 + RR had the highest IA (89.27%) and 
LA (94.96%). ResNet101 + RR was only superior with 
its FIA (1.8↑ compared to ResNet34 + RR). Importantly, 
ResNet101 has about twice as many training parameters 
(42.51M) as ResNet34 (21.28M) and is therefore a slower 
and more expensive model to run. Taking all the above 
into account, ResNet34 + RR was considered the overall 
superior combination and was selected for subsequent 
experiments.

Optimizer selection
The optimizer is the algorithm which updates weights 
in the network in response to measurements of the loss 
function, which calculates the distance between predic-
tions and the ground truth. The experiments presented 
above were done with the standard Adam optimizer 
with a default learning rate lr of 1e−4 [36]. No optimiza-
tion of hyper parameters was carried out on individual 

Table 3  Selection of visual feature extraction network based on % accuracy scores

For each network structure tested, % accuracy scores are reported as Image Accuracy (IA), First Image Accuracy (FIA) and Leaf Accuracy (LA). The highest accuracy in 
each column and corresponding feature extractor is highlighted in bold. All models here employ the Adam optimizer with learning rate (lr) = 1e

−4

Dataset→ Y1/Y1 Y2/Y2 Whole dataset

Network ↓ IA FIA LA IA FIA LA IA FIA LA

ResNet18 94.55 94.87 98.71 84.00 82.00 90.50 83.19 78.41 89.56

ResNet34 94.09 94.87 97.43 84.37 83.50 90.00 84.85 81.65 91.36
ResNet50 94.43 96.15 98.71 82.43 77.50 88.00 82.60 79.85 89.92

ResNet101 93.04 91.02 98.71 82.75 83.00 88.50 82.49 83.09 88.12

ResNet152 93.27 91.02 97.43 80.81 74.50 86.00 82.60 79.85 87.76

Table 4  Effect of a range of data augmentation techniques on the % accuracy of our three best model architectures, ResNet18, 
ResNet34 and ResNet101, trained on the whole dataset

Image Accuracy (IA), First Image Accuracy (FIA) and Leaf Accuracy (LA) are compared to baseline accuracies obtained without data augmentation. The highest 
accuracy in each column is highlighted in bold. All models here employ the Adam optimizer with learning rate (lr) = 1e

−4

RV Random Vertical, RH Random Horizontal, RC Random Crop, RR Random Rotation

Data augmentation ↓ ResNet18 ResNet34 ResNet101

IA FIA LA IA FIA LA IA FIA LA

Baseline 83.19 78.41 89.56 84.85 81.65 91.36 82.49 83.09 88.12

RV Flip 87.98 84.17 92.08 88.65 87.56 92.44 85.96 85.25 90.28

RH Flip 87.87 84.53 92.80 88.98 87.12 91.72 84.63 81.65 90.64

RV + RH Flip 88.43 85.97 93.88 89.20 86.69 92.80 87.80 85.97 93.52
RC 82.32 80.93 88.48 83.67 81.65 87.05 82.38 83.09 89.20

RC + RV Flip 83.78 83.09 87.76 86.25 84.17 93.16 83.60 82.01 88.12

RC + RH Flip 83.12 81.64 87.76 86.10 84.53 91.72 83.71 82.37 86.69

RC + RV + RH Flip 84.59 85.25 88.84 83.38 81.65 86.33 82.57 82.73 85.97

RR 87.80 87.76 91.72 89.27 88.13 94.96 88.72 89.92 92.80
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experiments enabling more direct comparisons. To test 
whether another optimizer could improve the perfor-
mance of our model, the accuracy obtained on ResNet34 
and ResNet + RR with Adam was compared to that 
obtained with another three popular optimizers, namely 
AdamW, RMSProp and SGD, on the same networks 
(Fig.  5) [37, 38]. Four experiments were conducted for 
each combination and the Adam optimizer was found to 
consistently perform better than AdamW, RMSProp and 
SGD and was therefore selected as the optimizer for the 
final model configuration.

k‑fold cross validation splits
k-fold cross validation experiments can be used to fine-
tune model hyper-parameters (e.g., learning rate, batch 
size) on any split to achieve slightly higher accuracy. 
However, here we performed this type of experiment 
with default values to evaluate the sensitivity of our 
model to different data splits. To this end, the training 
portion (80%) of the dataset split was used. Using k = 10, 
the train set was further randomly sampled 10 times to 
create new 20–80% validation-train set pairs, which each 
cover 16–64% of the whole dataset. The performance of 
ResNet34 + RR and ResNet34 + RV + RH Flip on these 
set pairs is reported in Fig.  6. In both cases, IA, FIA 
and LA fluctuated within normal range, indicating that 
there are no detrimental outliers in the data and that our 
models are robust to handling the natural variation with 
default parameters.

Best model performance on the whole dataset
Taking all the above into account, the best model archi-
tecture was found to be a Data Augmentation module 
with Normalize + Resize + Random Rotation, a pretrained 

ResNet34 Feature Extraction Network and a Classifica-
tion Neural Network with the Adam optimizer (Fig.  4). 
This deep learning model was named HairNet and 
trained in 5 independent runs. On the whole dataset the 
average IA, FIA and LA were 89.40%, 89.35% and 93.02%, 
respectively (Additional file 1: Table S2 and Fig. 8a). The 
highest IA, FIA and LA were achieved in two separate 
training runs and reached 89.94%, 90.28% and 94.96%, 
respectively (Additional file 1: Table S2). Because of the 
importance of ascribing a single score to a leaf to reflect 
the visual assessment currently used in the field, the 
training run with the highest LA (94.96%) on the whole 
dataset is thereafter referred to as the best run, or best 
model. The best HairNet run achieved an IA of 89.27% 
and a FIA of 88.13%. Normalized confusion matrices of 
the best model are shown in Fig. 7 and qualitative exam-
ples on individual images are presented in Additional 
file 1: Figs. S3 and S4. The result of the confusion matri-
ces demonstrates that HairNet performs very well across 
all score classes and that when the model makes an incor-
rect prediction, it is often not far off the ground truth. 
For example, the best HairNet model achieved the low-
est accuracy on the score class 2, with 80.2% IA (Fig. 7). 
This score class was particularly hard for the model as it 
only contains one genotype (‘Charcoal’) which was only 
grown in year 2020–2021 (Table 1). There was therefore 
a reduced number of training examples in this class com-
pared to other classes. Despite this challenge, nearly all 
mispredicted images (17% of the test images) were attrib-
uted a predictive score in one of the two neighbouring 
classes (1 or 3) and only 2.8% of images were attributed 
another score. This suggests that HairNet is able to learn 
discriminative features encoding the ordinal relationship 
between score classes, even in challenging cases.

Fig. 7  Normalized confusion matrices of the best preforming model on the whole dataset. Image Accuracy (IA), First Image Accuracy (FIA) and Leaf 
Accuracy (LA) are reported for the best performing model on the whole dataset. The model is able the confidently predict (i.e., strong agreement 
along the diagonal) the cotton leaf hairiness for all score classes and accuracy measures
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HairNet is robust to Gaussian/white noise
During image acquisition, camera sensors can produce 
Gaussian noise (white noise) due to a number of factors 
which include temperature and level of illumination, 
for example. The effect of Gaussian noise on the perfor-
mance of the best model was therefore tested by add-
ing to our data varying amounts of noise with random 
probability, or a fixed amount of noise within a range of 
probabilities at the data augmentation step. The results 

of these experiments are presented in Additional file 1: 
Fig. S5 and demonstrate that HairNet in resistant to 
Gaussian noise. It is worth noting that the possibility of 
Gaussian noise being introduced in training or testing 
images was possibly limited as a result of the precise 
and robust imaging protocol proposed in this study, 
which included a constant illumination source within 
the portable microscope itself.
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Fig. 8  Effect of leaf selection (L3 and L4) (A), year to year variation (Y1 and Y2) (B) and environment (C) on the model accuracy. The best models 
(ResNet34 feature extractor with Random Rotation (RR) data augmentation and Adam optimizer) performance on the whole dataset is plotted 
in each row as reference. Each bar in the figure represents the average accuracy and the range clips on each bar represent the maximum and 
minimum accuracy of five runs of the same experiment with the best model. The training dataset size of each experiment is plotted on the right y 
axis of each row of bar plots
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HairNet is versatile and implementable in the field
HairNet achieved a very high IA, which is derived from 
images taken at any position along the three central 
mid-veins of leaves. However, for HairNet to be useful 
in the field or in a breeding program, a high accuracy on 
a limited number of images per leaf is important. The 
observation that HairNet achieved similar FIA (88.13%) 
compared to IA (89.27%) on the whole dataset demon-
strates that our model is robust and that imaging could be 
reduced to only one image per leaf without compromis-
ing accuracy. Concurrently, when a human scores plants 
in the field a single score is given for a whole leaf. The 
leaf-level accuracy (LA = 94.96%) achieved by the best 
HairNet run was significantly higher than its associated 
IA and FIA. This suggests that if imaging is not a limiting 
step in a given experiment, an even higher scoring accu-
racy can be achieved. HairNet is therefore a robust model 
which can easily be adapted to suit the amount of imag-
ing that is practical in a given setting.

Best model performance on leaf, year 
and environment‑based splits
Whilst HairNet achieved very high accuracies on the 
whole dataset, the role of leaf selection (Leaf 3 vs. Leaf 
4), growth season (year 1 vs. year 2) and environment 
(Glasshouse vs. Field) on model predictions was next 
explored. For each variable (leaf, season and environ-
ment), the dataset was split in 6 independent ways. 
Splits where both categories (e.g. L3 and L4) within a 
variable (e.g. leaf ) were represented in the training set are 
referred to as mixed splits (e.g. L3L4/L3, L3L4/L4; where 
L3L4 represents the training set and L3 or L4, the test-
ing set). Splits where training and testing were done on 
the same categories are called intra splits (e.g. L3/L3, L4/
L4). Finally, splits where training and testing were done 
on different categories are referred to as inter splits (e.g. 
L4/L3, L3/L4). Following this nomenclature the whole 
dataset split could be referred to as L3L4/L3L4. Each 
split was used to independently train HairNet five times 
and the average, minimum and maximum model accura-
cies on each split, as well as the size of each training set 
are reported in Fig. 8, Additional file 1: Tables S1, S2 and 
S3. Furthermore, confusion matrices of the best model 
performance on each leaf, year and environment-based 
splits are reported in Additional file 1: Figs. S6, S7 and S8, 
respectively.

Leaf selection does not affect model predictions
As can be seen in Fig. 8a, HairNet performed consistently 
well on all leaf-based splits and across all score classes as 
highlighted in Additional file 1: Fig. S6. HairNet even had 
slightly higher average IA and LA on mixed-leaf splits 
compared to the whole dataset, whilst FIA remained 

similar. This is possibly because the training set of mixed-
leaf splits was slightly larger to that of the whole dataset 
due to the presence of all images of the non-test category 
in the training set. Interestingly, despite their training 
sets being half the size of the whole dataset split, intra 
and inter-leaf splits returned very high IA, FIA and LA. 
This is particularly surprising for inter-leaf splits, where 
the model was tested on data from a different category 
to what it was trained on. In this case, the best model 
still achieved high accuracies of 84% (IA), 83% (FIA) 
and 89.2% (LA) on L3/L4 and 85.2% (IA), 83.5% (FIA) 
and 92.4% (LA) on L4/L3 (Additional file 1: Fig. S6). This 
may be explained by the fact that L3 and L4 have simi-
lar appearances and that the model can learn from either, 
indifferently. Alternatively, because identifying the true 
L3 and L4 on a plant may sometimes be a little subjec-
tive, it is possible that some variation in true leaf identity 
was introduced by the operator at the time of leaf collec-
tion. In any case, these results reinforce the robustness of 
HairNet, as it was able to perform well on both L3, L4, 
and mixed leaf populations.

Year‑to‑year variations can be absorbed by mixed training
Similarly to leaf-based split, HairNet returned very 
high accuracies for mixed-year and intra-year splits 
(Fig.  8b). With the best model, these high accuracies 
were observed across all score classes (Additional file 1: 
Fig. S7). Interestingly, despite a small training set size of 
about 1/3 compared to the whole dataset split or mixed 
splits, Y1/Y1 showed the highest model performance 
with IA = 97%, FIA = 98.7% and LA = 100%. This is pos-
sibly due to the fact that in year 1 all examples of a given 
score class came from the same genotype, which may 
have reduced the diversity of examples within a class 
the model learns from. Conversely, despite having much 
more genotypes in each class, Y2/Y2 yielded high accura-
cies too, with IA = 89.8%, FIA = 90.5% and LA = 94%. On 
the other hand, inter-splits were more challenging for the 
model with Y1/Y2 and Y2/Y1 reaching IAs of 62.9% and 
56.9%, respectively. This cannot be solely explained by a 
reduced training set size due to removal of classes pre-
sent in one year only, because Y1/Y1 had a similar train-
ing set size. Instead, it is more likely due to differences 
between year 1 and year 2 conditions which may have 
affected plant characteristics as previously reported [5]. 
Overall, the key finding of this year-based experiment is 
that as long as some of the year to be tested was present 
in the training set, HairNet performed very well. When 
it comes to implementation, data from a hypothetical 
year 3 could be tested with known lines and used as is if 
predictions are good, or slightly adjusted by adding some 
year 3 data in the training set to refine the model if pre-
dictions need to be improved.
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Environmental variations can be absorbed by mixed training
Similarly to year-based splits, experiments on mixed and 
intra-environment splits achieved comparable accura-
cies to those obtained on the whole dataset (Fig.  8c). 
Accuracies were highest with GHFD/GH (IA = 97.8%, 
FIA = 95.5% and LA = 100%) and GH/GH (IA = 97.3%, 
FIA = 94.8% and LA = 100%). This is unlikely due to the 
size of the training set because for GH/GH it was about 
half the size it was for the whole set or for GHFD/GH. 
Instead, it is likely suggesting that leaves grown in the 
glasshouse were easier to predict than leaves grown in the 
field, possibly because conditions were more controlled 
throughout the season and across years in the glasshouse 
than in the field. Unsurprisingly, HairNet achieved the 
lowest accuracy on inter-environment splits. On GH/FD 
and FD/GH, the model achieved IAs of 44.8% and 45.3% , 
respectively. This is likely due to physiological and mor-
phological differences between plants grown in the glass-
house and the field, which remain to be clearly explained 
but could be influenced by factors such as incidence of 
insect pressure, wind, and mechanical damage. Inter-
estingly, GHFD/FD performed as well as FD/FD whilst 
GHFD/GH performed as well as GH/GH (Additional 
file 1: Fig. S8). From a practical standpoint, this observa-
tion suggests that a model trained on a mixed environ-
ment (GHFD) is more valuable because it can efficiently 
predict the score of leaves coming from either environ-
ment, which again makes HairNet a robust solution to 
score leaves in a range of conditions.

Conclusion
Leaf Hairiness is an important crop trait, which is cur-
rently scored manually for a lack of reliable alterna-
tive. Here, we have presented a simple imaging set-up 
to easily capture large amounts of data. We used this 
dataset to build HairNet, a deep learning model which 
can automatically score leaf images with a very high 
accuracy. We showed that HairNet is robust and ver-
satile: we reach 88.13% accuracy when using one image 
per leaf only and up to 100% accuracy when aggregat-
ing scores of multiple images per leaf. Finally, we inves-
tigated the variables influencing model performance 
and found that leaf selection did not influence model 
outputs, which further improves the robustness of 
our model. Additionally, variations introduced by dif-
ferent growth seasons and environment did not nega-
tively affect HairNet so long as some data representing 
the condition to test was also present in the training 
set. Overall, we demonstrated that this simple imaging 
set-up combined with HairNet is able to reproduce the 
current human scoring without being operator-biased 
whilst offering advantages such as collection of images 

which can be later revisited. We propose that HairNet 
replaces the current visual scoring of leaf hairiness. To 
enable other researchers to fully benefit from our work, 
we are publicly releasing both the anonymised image 
dataset [29] and the HairNet code [39] generated in 
this study (see “Availability of data and materials” sec-
tion below for URLs). Our image dataset is an impor-
tant contribution to the science community as a 2020 
survey revealed that only 34 field imagery datasets were 
publicly available, with only 9 of those not relating to 
fruit detection or weed control [40]. We hope that it 
will prove useful for the development of a range of data 
science studies and solutions. The HairNet code can be 
used as a baseline to measure leaf hairiness in cotton or 
in other species such as soybean and wheat with sim-
ple modifications. Jumping to another species or even 
another phenotype will require an image dataset tai-
lored to the new task at hand but HairNet may serve as 
a useful template to build upon.
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