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Abstract 

Background:  Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and 
promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture 
are mainly based on supervised learning schemes, ignoring unlabeled data’s helpful information.

Methods:  In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases 
recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. 
Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were car-
ried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of 
selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine 
the number of unlabeled samples for pseudo-labelling adaptively.

Results:  The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-
supervised method is 4.6%.

Conclusions:  The proposed methods can outperform other related works with fewer labeled training data.
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Background
In agricultural production, the monitoring of plant 
growth and health status is helpful to guide farmers to 
timely take suitable measures to guarantee the yield 
and quality [1]. In practice, the recognition of plant dis-
eases mainly depends on farmers’ experience in many 
countries and areas, often by observing changes in plant 
leaves’ appearance. With the development of digital agri-
culture and precision agriculture, it is necessary to bring 
the computer and sensing techniques [2–4] into the tra-
ditional agricultural production to achieve efficient and 
automatic production. Thus, the automatic recognition 
of plant leaf diseases is essential and related to other agri-
cultural researches [5–7].

At present, the methods to classify plant leaf diseases 
are mainly through the analysis of plant leaf images, e.g., 
RGB images, near-infrared images, and hyperspectral 
images [8–10], taken by general cameras or unmanned 
aerial vehicle (UAV). The deep learning technique is a 
powerful tool in the image analysis process, which has 
achieved excellent performances in many areas, such as 
leaf segmentation [11], leaf spot detection [12], leaf dis-
eases classification [13–17], and others [18, 19]. The deep 
learning models in these studies all have many layers, in 
which there are a large number of parameters to train.

Although this typical deep learning method to train 
models from large-scale datasets indeed has achieved 
good performance, the community has begun to rethink 
this learning approach at a crossroad. One way is to go 
deeper, with more complex networks and larger data-
sets. For example, many works focused on collecting a 
big dataset at a high cost [20], designing a deeper model 
with optimization [21], designing the ensemble model 
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[22], etc. The other way is to solve the classification prob-
lem with few data, also called few-shot learning, which 
is more suitable for practical applications. For example, 
some other works focused on model compression by 
pruning [23], shallow model [24], and lightweight net-
work [25].

From our point of view, we are in favour of the few-shot 
learning approach. There are two reasons for that. First, it 
is hard and high-cost to collect big scale dataset for all the 
problems in agriculture. Some plant diseases may be so 
rare that collecting large numbers of samples is impracti-
cal. The annotation and identification of collected sam-
ples also require experts or experienced farmers’ efforts, 
so massive data annotation is time-consuming and labo-
rious. Second, the deep learning model has a deep net-
work structure and massive parameters, requiring higher 
and more hardware resources to train and test. Moreover, 
the deployment of deep learning models on the portable 
terminals is difficult. Learning from few data with a small 
model to classify is a meaningful and promising study in 
practical applications due to the low cost of data.

The related studies on few-shot classification in the 
agricultural field are still relatively few at this beginning 
stage, but it has received increasing attention. A handful 
of research has emerged, focusing on the few-shot classi-
fication in agriculture [26–30]. Specifically, Hu et al. used 
the data augmentation to solve few-shot classification 
of tea leaf diseases based on the generative adversarial 
network [26]. Argüeso et  al. used the transfer learning 
method to transfer knowledge from the source domain 
to the target domain, and the testing accuracy was above 
90% under 6-way and 80-shot [27]. Li et al. used the tri-
plet loss to train feature extractor based on distance 
metric comparison and focused on combining few-shot 
algorithms and terminal realization [28]. Zhong et  al. 
used the conditional adversarial autoencoders to gener-
ate samples for the zero-shot and few-shot diseases rec-
ognition based on the visual and semantic features [29]. 
Li et  al. used the metric learning to analyze the single 
domain and cross domain of crop pests and plant dis-
eases recognition [30]. The above studies are all based on 
the supervised learning schemes, using only a few labeled 
samples and ignoring the helpful information of unla-
beled samples. Note that, in many application scenarios, 
the unlabeled samples may be easier to collect. In other 
words, in addition to a few labeled samples, there may 
also be many unlabeled samples, so how to make full use 
of the unlabeled data is indeed a significant and meaning-
ful issue.

In this paper, we proposed a semi-supervised few-shot 
classification method based on transfer learning. The 
semi-supervised method uses both a few labeled samples 
and many unlabeled samples to train a model. Extensive 

experiments were carried out on the public dataset 
PlantVillage and compared with the Ref [27], which was 
also based on transfer learning. The transfer learning 
technique needs to split the dataset into source domain 
and target domain. The reference only considered one 
domain split situation; we further compared three more 
domain splits to validate the proposed method’s correct-
ness and generalization. Besides the domain split, we also 
considered other influencing factors, such as few-shot 
parameters and semi-supervised iteration.

The contributions of this work can be summarized as 
three-fold:

1.	 We carried out the first semi-supervised few-shot 
work in the field of plant leaf disease recognition.

2.	 We proposed to use the confidence interval to select 
unlabeled samples for pseudo-labeling in the semi-
supervised process adaptively.

3.	 We considered many factors to verify the proposed 
method’s correctness and generalization, including 
the domain split, few-shot parameters, and semi-
supervised iteration.

Materials
PlantVillage is a public dataset with 38 classes of plant 
leaf diseases and healthy crops. The number of samples 
in each category is not equal. The Ref. [31] augmented 
the images for those classes with fewer samples. In this 
shared dataset, the minimum number of samples per 
class is 1000, and the maximum number is 5507, corre-
sponding to the orange citrus greening disease. To avoid 
the impact of unbalanced data distribution, we randomly 
select 1000 images per category to assemble the used bal-
anced dataset. All the images are resized to 84*84*3, cor-
responding to the RGB channels.

The dataset was split into a source domain and a target 
domain, without intersections between these two parts. 
The main reason is the inherent limitations of few data, 
which cannot provide enough information of categories. 
Mimicking the way humans learn, we hope the few-shot 
model can learn new tasks from few samples based on 
basic knowledge and past experiences. The target domain 
only provides a few labeled data to train the model, then 
it is hoped to generalize to previously unseen samples. In 
fact, this way of learning is similar but different with the 
typical transfer learning, which generally has large num-
ber of training data in the source domain.

Generally, different splits of the source domain and 
target domain in the same dataset will lead to different 
difficulties during the transfer learning process because 
the fitness of transferred knowledge between the source 
domain and target domain is different. To verify the 
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correctness and generalization of the proposed semi-
supervised few-shot classification of plant leaf dis-
eases, we performed three different splits of the source 
domain and target domain on the PlantVillage dataset. 
The split details are shown in Table 1, specifically, some 
image examples corresponding to the Split-1 are shown 
in Fig. 1.

In Table 1, for all the three split modes, the number of 
classes in the source domain is 28, and that in the target 
domain is 10. For the sake of presentation, specific dis-
ease names are not expanded, and only the number of 
diseases for each crop is listed. For example, Apple(4) 
refers to the four categories corresponding to Apple: 
apple scab, black rot, cedar apple rust, and healthy.

Methods
Transfer‑based few‑shot classification
Overall framework
The overall framework of typical few-shot classifica-
tion based on transfer learning is shown in Fig.  2. As 
known, the used dataset was split into a source domain 
and a target domain. It is given that there are many avail-
able labeled data in the source domain to train the model 
to learn basic knowledge and then transfer the trained 
network with parameters to the target domain as trans-
ferred knowledge. In the target domain, there are only 
a few labeled data can be used to updated the model, 
called fine-tuning. Due to the small number of provided 
labeled samples, this kind of problem is called few-shot 
classification.

Table 1  The split modes of  source and target domain

Split Mode Source (28 classes in total) Target (10 classes in total)
Crop (number of categories) Crop (number of categories)

Split-1 Apple(4), Blueberry(1), Cherry(2), Corn(4), Grape(4), Orange(1), Peach(2), Pepper(2), Potato(3), Rasp-
berry(1), Soybean(1), Squash(1), Strawberry(2)

Tomato(10)

Split-2 Blueberry(1), Corn(4), Orange(1), Peach(2), Pepper(2), Potato(3), Raspberry(1), Soybean(1), Squash(1), 
Strawberry(2), Tomato(10)

Apple(4), Cherry(2), Grape(4)

Split-3 Apple(4), Blueberry(1), Cherry(2), Orange(1), Pepper(2), Potato(3), Raspberry(1), Soybean(1), Squash(1), 
Strawberry(2), Tomato(10)

Corn(4), Grape(4), Peach(2)

Fig. 1  Some examples corresponding to the Split-1
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Model structure
The model in this work is designed based on a convo-
lutional neural network (CNN), which has been widely 
used in image processing [32–35]. The structure of the 
used model is shown in Fig. 3.

As seen in Fig. 2, the model in the source domain has 
same structure as that in the target domain. Given the 
size of input images, each layer’s details in the model 

are shown in Table 2. According to the fine-tuning set-
ting in transfer learning, the parameters in the first sev-
eral layers are fixed and non-trainable, those in the last 
dense layers are trainable. The pooling layers have no 
parameters.

In Table  2, there are seven convolution layers and 
three pool layers. For the first two convolution layers, 
the number of filters is 64, and the padding mode is the 
same padding. For the max-pooling layer, the purpose 
is to halve the space size and maintain the same num-
ber of channels. The situation for the following convo-
lution layers is similar, and the number of filters is 128 
and 256, respectively.

Note that the last dense layer refers to the soft-
max classifier. Thus, the number of its output neurons 
should be the same as the number of categories clas-
sified, here written as N. For the source domain, the 
training samples from all 28 classes are used, so the N is 
28. But for the target domain, the N is variable.

The few-shot classification in this paper uses the 
typical definition: N-way k-shot. That means there 
are N categories and k samples per category available 
to fine-tune the transferred model, which is wished to 
distinguish these N classes in the target domain. As 
described, there are in total ten classes in the target 
domain. Hence, the N can be anyone smaller than 10, 
generally equal to 3 or 5.

Fig. 2  The overall framework of transfer-based few-shot classification

Fig. 3  The structure of the used model

Table 2  The details of each layer in the model

Layers Output size Parameters Fine-tuning

Input (84, 84, 3) 0 –

Convolution (84, 84, 64) 1792 Non-trainable

Convolution (84, 84, 64) 36,928 Non-trainable

Max pooling (42, 42, 64) 0 –

Convolution (42, 42, 128) 73,856 Non-trainable

Convolution (42, 42, 128) 147,584 Non-trainable

Max pooling (21, 21, 128) 0 –

Convolution (21, 21, 256) 295,168 Non-trainable

Convolution (21, 21, 256) 590,080 Non-trainable

Convolution (21, 21, 256) 590,080 Non-trainable

Global average pool (256) 0 –

Dense (128) 32,896 Trainable

Dense (N) 128*N + N Trainable



Page 5 of 10Li and Chao ﻿Plant Methods           (2021) 17:68 	

Training, fine‑tuning, and testing
The training stage occurs in the source domain with 
a batch size of 16. The Adam optimizer with its default 
parameters is adopted, and the categorical cross-entropy 
is used as the loss function. There are 20% data in the 
source domain split as the validation set to check the 
model’s training status.

The fine-tuning stage occurs in the target domain, 
where only provides a few labeled data. The model 
trained in the source domain will be transferred to the 
target domain. The number of neurons in its last dense 
layer is replaced with N. If all the model parameters are 
fine-tuned, the serious overfitting problem is inevitable 
because of the small number of labeled training data. 
Hence, as shown in Table  2, only the parameters in the 
last two dense layers are fine-tuned and trainable, while 
the parameters in other layers are fixed.

The testing stage also occurs in the target domain, 
based on the fine-tuned model. The few-shot classifica-
tion problem definition is the N-way k-shot, and the N 
classes are randomly selected from the ten classes in 
the target domain. The selected categories to be classi-
fied may be similar or significantly different, resulting in 
different task difficulty. So, only one experiment is not 
enough. We performed ten times for each group (N-way 
k-shot) of experiments, and then the average accuracy is 
output.

Semi‑supervised few‑shot classification
In “Transfer-based few-shot classification” section, the 
few-shot classification based on transfer learning was 
introduced, which includes two main parts. One is the 
source domain to learn basic knowledge from a large 
number of labeled data. The other is the target domain 
to fine-tune parts of the transferred network from a few 
labeled data to adapt the specific classification tasks. Our 
essential contribution is to propose the semi-supervised 
few-shot classification method, working in the target 
domain.

Single semi‑supervised few‑shot classification
As comparison, the typical fine-tuning and testing pro-
cess of few-shot classification is shown in Fig. 4.

Based on the N-way k-shot definition in “Model struc-
ture” section, the N*k samples are used to update the last 
two dense layers’ parameters, and then the fine-tuned 
model is fixed. We randomly select 15 samples per cat-
egory, total N*15 samples, to test the fixed model’s few-
shot performance, referring to Ref [36, 37]. The testing 
process will be performed ten times to obtain the average 
few-shot accuracy in this work.

To improve the few-shot classification performance, we 
propose the semi-supervised method, shown in Fig. 5. It 
is shown that there are two steps to complete.

In step 1, the N*k samples with true labels are used 
to fine-tune the transferred model and then fix all the 
parameters after fine-tuning. All the unlabeled samples 
are then fed to the fixed model to make predictions and 
select some of them as pseudo-labeled samples. The 
pseudo-label means the prediction label given to the 
sample through the judgment of the model.

In step 2, both the N*k labeled samples and the selected 
pseudo-labeled samples from step 1 are used to fine-
tune the model again. The trainable parameters are still 
those in the last two dense layers. After the fine-tuning, 
the model is fixed again and tested on the N*15 samples. 
Because the pseudo-labeled samples in the semi-super-
vised methods can be selected once or more times, the 
above-described process is also called single semi-super-
vised few-shot classification.

Fig. 4  The typical fine-tuning and testing process

Fig. 5  The single semi-supervised few-shot method
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Iterative semi‑supervised few‑shot classification
Based on the single semi-supervised few-shot classifica-
tion, we further propose the iterative semi-supervised 
few-shot classification, shown as Fig. 6.

The iterative semi-supervised few-shot method has 
three steps, but the whole operation is similar to the 
single semi-supervised method. The difference is that 
the pseudo-labeled samples are selected twice. In par-
ticular, step 1 of the iterative semi-supervised method is 
the same as that of the single semi-supervised method. 
After the fine-tuning stage in step 2, the rest unlabeled 
samples except the selected pseudo-labeled samples in 
step 1 are fed to the fixed model to select pseudo-labeled 
samples again. In step 3, the N*k labeled samples and the 
pseudo-labeled samples from both steps 1 and 2 are used 
together to fine-tune the parameters in the last two dense 
layers of the model, and then the model is fixed finally to 
do the testing on the N*15 samples.

Adaptive selection of pseudo‑labeled samples
In Figs.  5 and 6, the unlabeled samples are fed to the 
model to select some of them for pseudo-labeling. But 
how to determine the number of pseudo-labeled sam-
ples? The simplest method is to set some number, e.g., 5 
or 10, manually. However, this is not a wise choice, owing 
to the low fitness for different tasks.

It should be noted that the selection of pseudo-labeled 
samples is a double-edged sword. If we can get many 
suitable pseudo-labeled samples in the semi-supervised 
process, the shortage of few data with original labels can 
be solved. But if we get many unsuitable pseudo-labeled 
samples, e.g., with many wrong labels, there will be ter-
rible impacts on the few-shot performance due to the 
misdirection of fine-tuning by the wrong labels. Besides, 
if we are too careful to select only a few pseudo-labeled 
samples, the improvement will also be tiny.

We propose an adaptive selection method based on the 
confidence interval to solve the pseudo-labeled samples’ 
selection problem. Specifically, only when the prediction 
confidence is larger than 99.5% will the unlabeled sample 
be selected by the model to pseudo-label as the predicted 
category. Although these given labels are called pseudo-
labels, they should be almost entirely consistent with the 
real ones, as the model has such high confidence in the 
predictions. In this case, the model will adaptively deter-
mine the number of pseudo-labeled samples under dif-
ferent experiments.

Results
This section carried out the comparison experiment with 
other related work and further experiments considering 
the factors of domain split, few-shot parameters, and 
semi-supervised iteration. The experimental hardware 
and software environments are the NVIDIA TITAN 
Xp with 12 GB memory and the Jupyter Notebook with 
libraries of Tensorflow (version 1.12.0), Numpy (version 
1.19.2), Keras (version 2.2.4), and OpenCV (version 4.1).

Comparison results with related work
In Ref [27], the few-shot plant diseases classification was 
carried out based on transfer learning and other opti-
mized methods, such as contrastive loss and triplet loss. 
The used dataset was also PlantVillage, but the Ref [27] 
only considered one domain split. The first six classes are 
the target domain, and the rest 32 classes are the source 
domain. All the six classes in the target domain are tested, 
and k is 1, 5, 10, 15, 20, 30, 50, 80, and 100. In terms of 
the definition of N-way k-shot, the operation was called 
6-way k-shot. Same with the above experimental settings, 
our semi-supervised few-shot results are compared with 
those provided in Ref [27], shown in Table 3.

In Table  3, the SS is short for the semi-supervised. It 
is shown that our proposed method outperforms the 
results presented in Ref [27] in all the conditions of 
k-shot. Specifically, the referred work achieved an aver-
age accuracy of 90% at 80-shot. However, our work 
achieved the average accuracy of 90% at 5-shot using the 
iterative semi-supervised, or 92.6% at 10-shot using the 
single semi-supervised method.Fig. 6  The iterative semi-supervised few-shot method
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Thus, our semi-supervised methods have apparent 
advantages due to the reasonable use of the unlabeled 
samples.

Further comparison experiments
In “Comparison results with related work” section, we 
compared the related work of the few-shot plant leaf dis-
eases classification, which had shown our semi-super-
vised method’s superiority. Since the different splits of 
the source domain and target domain will lead to the 
different fitness of transferred knowledge (network), we 
further carried out more comparison experiments con-
sidering domain split and few-shot parameters of N-way 
k-shot. The purpose of these comparison experiments is 
to verify the consistent correctness and generalization of 
our proposed semi-supervised method under different 
experimental settings.

According to the few-shot definition of N-way k-shot 
and the three different domain split modes described in 
Table 1, we set N as five and carried out each experiment 
ten times to obtain the average few-shot classification 
accuracy. The results under different domain splits are 
shown in Table 4.

In Table  4, the SS is short for semi-supervised. There 
are three methods, named baseline, single semi-super-
vised, and iterative semi-supervised. The baseline stands 
for the typical few-shot classification based on transfer 
learning, shown in Fig. 4. The single SS and iterative SS 
methods are our proposed methods, shown in Figs. 5, 6.

Unlike the experimental settings in “Comparison 
results with related work” section, in this section, the 
N is equal to five, which means in each experiment, we 
randomly selected five classes from all the ten classes in 

the target domain to fine-tune the transferred model to 
distinguish these random N categories.

The relation between average accuracy and k-shot is 
plotted in Figs. 7, 8, and 9, corresponding to the domain 
split-1, split-2, and split-3, respectively.

The few-shot parameters in Fig. 7 are as follows. The 
N-way is 5, and k-shot is 1, 5, 10, and 20. The data split 
mode is Split-1, which decides the different source 
domain and target domain.

The above three figures can intuitively indicate two 
points: First, the baselines are different under differ-
ent domain splits, due to the different difficulty of 
few-shot task in different domain split modes. Second, 
under three different split modes, the proposed semi-
supervised (SS) method is consistently higher than the 

Table 3  The comparison results with related work

Results k-shot

1 5 10 15 20 30 50 80 100

Ref. [27] 0.56 0.72 0.77 0.8 0.82 0.86 0.88 0.9 0.91

Single SS 0.745 0.897 0.926 0.936 0.939 0.951 0.961 0.97 0.974

Iterative SS 0.751 0.9 0.927 0.936 0.939 0.951 0.961 0.97 0.974

Table 4  The comparison results under different domain splits

Results Split-1, k-shot Split-2, k-shot Split-3, k-shot

1 5 10 20 1 5 10 20 1 5 10 20

Baseline 0.328 0.467 0.64 0.732 0.439 0.685 0.787 0.891 0.507 0.631 0.772 0.893

Single SS 0.337 0.509 0.667 0.747 0.447 0.747 0.857 0.897 0.523 0.676 0.799 0.901

Iterative SS 0.34 0.531 0.688 0.756 0.464 0.769 0.892 0.919 0.552 0.693 0.808 0.915

Fig. 7  The average accuracy under domain split-1
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baseline accuracy at each k-shot. In detail, the iterative 
SS method achieves the highest performance at the cost 
of more operations. Thus, the single SS method can be 
regarded as a suitable solution, balancing the perfor-
mance gains with computational complexity.

Moreover, the average improvement by single SS 
method and iterative SS method on different k-shot 
can be calculated from Table  4. In particular, under 
the domain split-1, the average improvement by single 
SS method is 2.33%, and that by iterative SS method is 
3.7%. Under the domain split-2, the average improve-
ment by single SS method is 3.65%, and that by iterative 
SS method is 6.05%. Under the domain split-3, the aver-
age improvement by single SS method is 2.4%, and that 
by iterative SS method is 4.13%.

In summary, considering all the experimental factors, 
the average improvement by single SS method is 2.8%, 
and that by iterative SS method is 4.6%.

Results of adaptive selection of pseudo‑labeled samples
As described in “Adaptive selection of pseudo-labeled 
samples” section, pseudo-labeled samples’ adaptive selec-
tion is crucial for the proposed semi-supervised few-shot 
methods. For instance, in the domain split-1, the number 
of adaptively selected pseudo-labeled samples under dif-
ferent k-shot is shown in Fig. 10.

It can be found that there is a positive correlation 
between the number of adaptively selected pseudo-
labeled samples and k-shot. The reason is that with the 
increase of k-shot, the model has more training data to 
fine-tune. In other words, the model is stronger. So, it can 
be more confident to predict those unlabeled samples. 
When the predicted confidence is larger than 99.5%, the 
sample is selected for pseudo-labeling.

Besides, the iterative SS method will choose more 
pseudo-labeled samples than the single SS method. The 
reason is that the iterative SS method has one more fine-
tuning stage than the single SS method. Thus, the model 
with iterative SS has better performance on understand-
ing the tested categories to predict unlabeled data with 
higher confidence.

Discussion
At present, the plant leaf diseases classification is mainly 
based on deep learning. Although there have been many 
achievements achieved, the drawbacks of deep learning 
cannot be ignored, e.g., the high cost of collecting and 
labeling large-scale datasets. As an essential supplement 

Fig. 8  The average accuracy under domain split-2

Fig. 9  The average accuracy under domain split-3

Fig. 10  The number of pseudo-labeled samples under domain 
split-1
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to deep learning, few-shot learning aims to combine a 
few samples and knowledge, committed to model learn-
ing and application deployment. The existing few-shot 
studies in the agricultural field all focus on the super-
vised paradigm and neglect the helpful information of 
unlabeled samples through the literature research. Thus, 
we want to explore the semi-supervised paradigm to 
improve the effect of few-shot classification and provide 
some inspirations for this community.

We proposed the single semi-supervised and iterative 
semi-supervised method to deal with few-shot plant leaf 
diseases classification. Overall, the experimental results 
are divided into two major sections. The first is the com-
parison with the related work in the Ref [27]. According 
to the experimental setting in referred work, the results 
have shown that our proposed method can outperform 
the reference method under all the conditions of k-shot. 
Specifically, the reference method achieved an average 
accuracy of 90% at 80-shot. Our work achieved an aver-
age accuracy of 90% at 5-shot with the iterative semi-
supervised methods and 92.6% at 10-shot with the single 
semi-supervised method. In other words, under the same 
conditions, our methods can achieve better results with 
fewer samples. The second is the further comparison 
experiments considering more factors, e.g., the different 
three domain splits in Table 1 and different k-shot. The 
results consistently prove our semi-supervised methods 
can achieve better performance than the typical trans-
fer-based few-shot learning. In detail, under the domain 
split-1, the average improvement by single SS method 
is 2.33%, and that by iterative SS method is 3.7%. Under 
the domain split-2, the average improvement by single 
SS method is 3.65%, and that by iterative SS method is 
6.05%. Under the domain split-3, the average improve-
ment by single SS method is 2.4%, and that by iterative 
SS method is 4.13%. Considering all the different domain 
splits and k-shot, the average improvement by single SS 
method is 2.8%, and that by iterative SS method is 4.6%.

This study did not consider some special case, such as 
the possible wrong data labels, which belongs to another 
important research scope of robustness. If the wrong 
labels are corresponding to original data, it is better to 
clean data first, otherwise they will mislead the learn-
ing process. If the wrong labels are corresponding to 
predicted data, it is suggested to modify the confidence 
interval to raise the screening criteria, and increase 
the number of iterations to improve model filtering 
performance.

In future work, from a broader and more practical per-
spective, we will try to do the few-shot classification under 
significant cross-domain by taking the public dataset as 
the source domain and the images taken in the field as the 
target domain. Moreover, in this study, the used model has 

seven convolution layers and two dense layers. As men-
tioned, the few-shot learning should aim at learning from 
few samples and convenient application deployment. 
Hence, we would like to further compress the size of the 
used model to realize the smaller intelligent model for con-
venient deployment.

Conclusion
Automatic classification of plant leaf diseases based on 
a few labeled samples is significant to guarantee the yield 
and quality with low cost of data. In this work, we proposed 
the semi-supervised few-shot learning scheme, which can 
improve the average accuracy of few-shot classification by 
adaptively selecting the pseudo-labeled samples to help 
fine-tune the model. Through literature research, to our 
best knowledge, we carried out the first semi-supervised 
work in the field of few-shot plant diseases classification. 
The PlantVillage dataset was divided into three split modes, 
and extensive comparison experiments were executed 
to prove the correctness and generalization of proposed 
methods. Considering all the different domain splits and 
k-shot, the average improvement by the proposed single 
semi-supervised method is 2.8%, and that by the iterative 
semi-supervised method is 4.6%.
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