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Targeting the hallmarks of aging to improve 
influenza vaccine responses in older adults
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Abstract 

Age-related declines in immune response pose a challenge in combating diseases later in life. Influenza (flu) infection 
remains a significant burden on older populations and often results in catastrophic disability in those who survive 
infection. Despite having vaccines designed specifically for older adults, the burden of flu remains high and overall 
flu vaccine efficacy remains inadequate in this population. Recent geroscience research has highlighted the utility 
in targeting biological aging to improve multiple age-related declines. Indeed, the response to vaccination is highly 
coordinated, and diminished responses in older adults are likely not due to a singular deficit, but rather a multitude 
of age-related declines. In this review we highlight deficits in the aged vaccine responses and potential geroscience 
guided approaches to overcome these deficits. More specifically, we propose that alternative vaccine platforms and 
interventions that target the hallmarks of aging, including inflammation, cellular senescence, microbiome distur-
bances, and mitochondrial dysfunction, may improve vaccine responses and overall immunological resilience in older 
adults. Elucidating novel interventions and approaches that enhance immunological protection from vaccination is 
crucial to minimize the disproportionate effect of flu and other infectious diseases on older adults.
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Burden of influenza infection in older adults
Adults over 65 years of age are more susceptible to infec-
tious diseases, such as influenza (flu), and have increased 
risk for severe illness. During the 2019–2020 flu season, 
it was estimated that 44% of hospitalizations and 68% 
of flu-related deaths occurred among older adults [1]. 
Unfortunately, following laboratory-confirmed flu infec-
tions, older adults also commonly have declines in activi-
ties of daily living (ADLs) such as bathing, dressing, and 
walking. In fact, when measuring recovery by measures 
of ADL, only about 30% of individuals recover to their 
pre-admission level of function 1  year post discharge 
from flu-associated hospitalization [2]. These prolonged 

negative outcomes result in a reliance of care support 
including family members, friends, and long-term care 
facilities. Further, declines in physical function, including 
frailty, are associated with increased mortality [3]. Thus, 
it is of the utmost importance that preventative meas-
ures, like vaccination, prevent severe flu infection and 
hospitalization in older adults to promote healthy aging 
and independent living.

Challenges of current influenza vaccines
Seasonal influenza virus infects 5–15% of the human 
population yearly, causing about 500,000 deaths world-
wide [4]. Influenza A and B commonly cause outbreaks 
in humans and acquire rapid mutations as they spread, 
reducing the potency of pre-existing immunity from pre-
vious infections or vaccination. Influenza A is further 
subtyped based on surface glycoproteins hemaggluti-
nin (HA) and neuraminidase (NA), while influenza B is 
delineated by antigenic lineage. Point mutations to the 
surface HA and NA glycoproteins results in reassortment 
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of gene segments across different strains in the same 
host [4]. Constant emergence and circulation of new 
strains makes yearly vaccination necessary. However, it 
is still often difficult to predict the strains that should be 
included in the year’s seasonal influenza vaccine formula-
tion. Thus, the main limitations of current flu vaccines is 
strain specificity.

Current influenza vaccines typically contain four 
(quadrivalent) different strains. The World Health 
Organization (WHO) established the Global Influ-
enza Surveillance and Response System. This is an 
organization that conducts year-round surveillance 
of influenza viruses, isolates circulating strains, and 
analyzes patterns of infections. For the majority of 
current flu vaccines, selected virus strains are propa-
gated in embryonated chicken eggs and either inacti-
vated or attenuated for vaccine production. The virus 
can adapt and mutate during this egg propagation and 
cause reduced protection against the intended circu-
lating strain [5]. Since egg-based flu vaccine produc-
tion to distribution takes about 6 to 8 months, there is 
ample time for mutations to occur, resulting in strain 
mismatch between the year’s vaccines and circulating 
strains [6]. This timeline makes it nearly impossible 
to quickly recreate the vaccine if different seasonal or 
pandemic influenza strains arise. Correspondingly, mis-
matches between circulating strains and vaccine strains 
are not uncommon. Overall, while influenza vaccines 
have been around for decades, their efficacy is quite 
variable for many reasons, including the age and health 
of the recipient, virulence of different seasonal strains, 
as well as the subtype and lineage of circulating viruses 
[7]. When the vaccine is well matched to circulating 
strains, the seasonal flu vaccine has a large range of effi-
cacy with meta-analyses reporting a confidence interval 
of 46–74% vaccine efficacy for influenza A and 18–94% 
for influenza B [8]. Not surprisingly, many others have 
shown lower overall vaccine efficacy and wider ranges 
[9–12], however detailed reports of the closeness of 
the vaccine strain and predominant circulating strain is 
sometimes lacking in vaccine efficacy studies making it 
hard to interpret how effective flu vaccine is based on 
strain matching. In years when the vaccine is clearly 
not well matched, effectiveness is highly variable, rang-
ing from 29 – 48% as seen between 2015 and 2019 [13] 
and 21–39% more recently in the 2019–2020 flu season 
due to antigenic drift [14]. Reported efficacy ranges 
also vary for the different subtypes with lowest efficacy 
generally in H3N2 compared to H1N1 and influenza B 
[9]. It is important to note that despite variable efficacy, 
influenza vaccination has been shown to prevent severe 
illness and potential complications from infections. It 
was estimated that vaccination prevented 7.1 million 

illnesses, 3.7 million medical visits, 109,000 hospitaliza-
tions, and 8,000 deaths from flu infections in the 2017 – 
2018 flu season despite having an overall effectiveness 
around 38% [7, 15]. Importantly, despite these large 
ranges of efficacy based on circulating strains, flu vac-
cine efficacy is consistently reduced in older adults [11, 
16]. Indeed, older adults have reduced overall vaccine 
efficacy, as well as lower antibody titers and reduced 
T cell proliferation [17]. Nonetheless, vaccination 
remains the best way to prevent severe flu infection, 
hospitalization, and associated complications, espe-
cially in older adults.

Age‑related declines in immunity that impact 
influenza vaccine responses
The overall goal of vaccination is to induce protective 
immunity. It is important to understand how age-asso-
ciated declines in immune responses lead to reduced 
protection from vaccines (See summary in Fig.  1). Elu-
cidating the mechanisms underlying poor immuno-
logical protection in older adults from vaccination can 
result in more targeted interventions to improve vaccine 
responses,  prevent infections, and reduce  flu associated 
functional declines. Importantly, age-related declines in 
the immune system are not limited to one cell type, but 
rather affect multiple cells within the innate and adaptive 
immune system that are required for induction of opti-
mal immunological protection. While the gold standard 
to assess vaccine responses is generally serum antibody 
titers, cell mediated responses are equally as important. 
Indeed, the evaluation of T cell responses to flu vaccina-
tion may be a more appropriate measure of protection 
in older adults [18–20]. T cell responses were more pre-
dictive of protection than antibody titers in older adults 
[20]. Further, ex  vivo assays  that  determine interferon 
(IFN)-γ:interleukin(IL)-10 ratios as well as Granzyme B 
(GrzB) responses to flu vaccination were also more sensi-
tive in determining risk for influenza illness after vaccina-
tion [20]. Unfortunately, with age, it has been shown that 
early upregulation of IFN-signaling pathways is impaired. 
In fact, early upregulation of IFN-signaling and antigen-
presentation pathways after vaccination has been shown 
to be associated with higher influenza-specific antibody 
responses [21]. Importantly, certain vaccines that are 
received annually, such influenza vaccinations may also 
elicit poor innate immune responses due to pre-existing 
and cross-reactive antibodies that bind to vaccine anti-
gen and limit the amount of antigen available for innate 
immune cell processing and presentation [22]. Thus, it 
is essential to understand age-related declines that are 
involved in innate responses, as well as both cell-medi-
ated and humoral responses to vaccination.
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Fig. 1  Immune response to vaccination and potential for targeting hallmarks of aging to improve age-related deficits in vaccine responses. Both 
innate and adaptive immune responses are induced by vaccination, which commonly occur via intramuscular injection. Adjuvants are sometimes 
included in vaccines to enhance immunogenicity. The vaccine is injected into muscle. Antigen is taken up by dendritic cells (DCs) and activate 
pattern recognition receptors (PRRs). DCs secrete chemokines that recruit other monocytes from the blood, where they migrate to the site of 
injection, and then uptake antigen and differentiate. Antigen experienced innate immune cells migrate to the lymph node and present antigen 
on Major Histocompatibility Complexes (MHC) to activate naïve T cells through T cell receptors (TCRs). Both CD4 and CD8 T cells can respond 
depending on the type of vaccination and MHC presentation. CD4 T cells will differentiate into various T helper subsets, where T follicular helper 
cells (Tfh) provide help to B cells. B cells in the lymph node can respond to both antigen and T cell help, which leads to maturation and proliferation 
into memory B cells and plasma cells. Short-lived plasma cells generate antibodies specific to vaccine antigen which circulate systemically. 
Long-lived plasma cells reside in the bone marrow and provide long-lasting antibody protection. These vaccine-induced cellular interactions are 
highly coordinated and depend on proper microenvironment milieu and specific immune cell functions and signaling. It is well known that various 
areas of the immune response to vaccination are impaired with aging as detailed in this review. We propose that targeting different hallmarks of 
aging can modulate the tightly coordinated responses to improve overall vaccine responses in older adults. Figure created with Biorender.com
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Age‑related dysregulation in innate immunity that impact 
vaccine responses
Age-related changes in innate immune cells such as den-
dritic cells (DCs), neutrophils, macrophages, and Natural 
Killer (NK) cells contribute to poor vaccine responses 
[23–26]. Robust DC responses are crucial for effective 
uptake of antigens and trafficking to lymphoid organs, 
where they function as Antigen Presenting Cells (APCs). 
APCs are required for stimulating cell-mediated immu-
nity to vaccination. These cells are responsible for pro-
viding three major signals to naïve T cells: 1) antigen 
recognition, 2) co-stimulation, and 3) cytokines [25]. 
The capacity of DCs to provide these signals to a suffi-
cient level is known to decrease with age, thus impacting 
the ability to induce strong T cell activation [26]. These 
findings have been confirmed in mouse models where 
immunized aged mice show decreased peptide-MHC 
surface expression on APCs including DCs compared 
to adult mice [25]. Importantly, toll-like receptor (TLR) 
function in cell types including DCs and macrophages 
are also known to decline with age [27]. These receptors 
are essential pattern recognition receptors that trigger 
the expression of IFNs and proinflammatory cytokines. 
Importantly, in human aging, declines in TLR expression 
and function have been strongly associated with poor 
antibody responses to influenza vaccination [27].

Neutrophils and macrophages also experience age-
related changes that affect their ability to communi-
cate with other immune cell types and impair overall 
immune responses to vaccination. Neutrophils have 
reduced chemotaxis with age [28], causing poor direc-
tional movement toward a stimulus, such as towards the 
site of injection for vaccination. This is associated with a 
delay in neutrophil responses including degranulation, 
NETosis and recruitment of other immune cells [29]. 
Age-related declines in macrophage function also occur, 
including poor phagocytic ability and dysregulated tran-
sition between M1-like (pro-inflammatory) and M2-like 
(anti-inflammatory) phenotypes. As a result, impaired 
macrophage function with age results in poor inflam-
matory resolution, further influencing the ability of 
other immune cells to coordinate a response against an 
infection or generate immunological protection toward 
vaccination [29]. Recently, lymph node macrophages 
have been shown to play a role in initiating responses to 
influenza vaccination by secretion of various cytokines 
mainly IFN-β and IL-1α, where the latter promotes B 
cell responses in the lymph node [30]. Lymph node mac-
rophages also recruit and activate NK cells following 
influenza vaccination via type I IFNs. Activated NK cells 
then produce IFN-γ which leads to the recruitment of 
IL-6 + CD11b + DCs. IL-6 production is essential for the 
development of humoral responses within the draining 

lymph node [31]. Thus, lymph node macrophages and 
NK cells play an integral role in promoting humoral 
responses to flu vaccination [31]. With age, NK cells 
have been shown to decrease in functionality with poor 
cytotoxicity as well as impairment in the secretion of 
cytokines and chemokines that affect other immune 
cell types [32]. In the context of influenza vaccination, 
increased NK cell activity is associated with better sero-
conversion in older adults [23], suggesting the early NK 
response is essential for humoral immunity. Additionally, 
it has been shown that with age, stimulated NK cells pro-
duce less IFN-γ, which can further impact DC matura-
tion and T cell differentiation which are both essential for 
vaccine responses [32].

Although different innate immune cell types experience 
a wide variety of age-related dysfunction, these effects 
remain additive even though single deficits may seem 
manageable. Age-related changes to immune cell traffick-
ing, TLR expression and signaling, as well as declines in 
antigen presentation have massively detrimental effects 
on the ability of the adaptive immune system to generate 
robust and coordinated responses. In totality, these vari-
ous declines in functionality of different innate immune 
cell types leave older adults poorly protected from vac-
cination, and at a disproportionate risk for flu-related 
complications.

Age‑related dysfunction in cell‑mediated immunity 
to vaccination
Due to age-related changes in innate immunity, the adap-
tive arm of the immune system begins at a disadvantage. 
Adaptive immune cell populations are equally susceptible 
to age-related declines and are known to have impaired 
function with aging. Thymic involution with age leads to 
overall decreased output of naïve CD4 and CD8 T cells 
[33]. Additionally, aged CD4 and CD8 T cells have dys-
regulated differentiation, function, and decreased T cell 
receptor (TCR) diversity among other deficits [34]. In 
response to flu vaccination, T follicular helper cells (Tfh) 
are essential for germinal center (GC) formation, B cell 
interactions, and robust antibody induction. In young 
adults circulating Tfh (cTfh) cells after vaccination are 
associated with increased antibody titers [35], however 
in older adults cTfh responses do not always correspond 
with antibody titers. For example, cTfh cells from older 
adults have increased basal expression of Inducible T-cell 
Costimulatory (ICOS), which is important for Tfh main-
tenance and Tfh-B cell interactions that result in differen-
tiation into long lived memory cells and/or plasmablasts 
that produce high affinity antibodies [34, 36, 37]. In young 
adults, increases in ICOS expression on cTfh correlates 
with strong vaccine-induced IgM and IgG responses 
[36]. However, older adults fail to upregulate ICOS post 
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vaccination [36] and there is impaired immunological 
protection post vaccination. Indeed, CD4 T cells have 
vast declines with aging that are both cell intrinsic and 
extrinsic [38]. In general, CD4 T cells have altered dif-
ferentiation patterns with aging with a tendency to skew 
towards Th17 and altered Treg functionality among other 
changes in phenotype and function [38–41]. Regardless 
of phenotype, aged CD4 T cells have reduced IL-2 pro-
duction following antigenic stimulation and impaired B 
cell help abilities leading to reduced humoral immunity 
[42–44]. Thus, age-related changes in CD4 T cell func-
tion directly contribute to impaired vaccine responses.

The generation of CD8 T cell immunity is important 
for providing protection from severe influenza infec-
tion. While current inactivated influenza vaccines on 
the market are not thought to induce potent CD8 T cell 
responses, CD8 T cell responses are desirable for durable 
cross-reactive protection. For example, vaccination with 
influenza virus-like particles including matrix (M1) that 
can induce CD8 T cell responses can protect mice from 
high-dose heterosubtypic influenza challenge [45]. Fur-
thermore, T cell responses, such as GrzB induction and 
IFN-γ:IL-10 ratios,  were more predictive of  protection 
than antibody titers in older adults [20]. Thus, despite the 
limited CD8 T cell induction from current flu vaccines, 
CD8 T cell responses are still an important parameter for 
vaccine-induced immunity. Along with decreased naïve 
T cell and TCR repertoire diversity, CD8 T cells experi-
ence additional age-related declines, including reduced 
priming, proliferation, and quality of antigen-specific 
CD8 T cells [46], as well as overall impaired functional-
ity [34, 47]. Similar to CD4 T cells, aged CD8 T cells also 
can take on a more suppressive phenotype [48]. Further, 
both the decline in repertoire diversity and a loss of reac-
tivity to immunodominant epitopes have been correlated 
with impaired cellular immunity to de novo influenza 
infection as well as deficits in recall response to heterolo-
gous challenge [49]. Overall with aging, both primary and 
memory responses are impacted. Indeed, impaired CD8 
T cell responses impact vaccine-induced immunity, as 
well as contribute to increased severity of flu infections 
in older adults.

Age‑related dysfunction in humoral immunity 
to vaccination
Age-related declines in adaptive immunity are not lim-
ited to T cell responses, but also impact B cells. Age-
related declines in B cell responses to vaccination lead to 
reduced generation of high quality protective antibodies 
and contribute to the disproportionate impact of influ-
enza infection on older adults [50]. There are reduced 
naïve B cells with age [50]. Importantly, with COVID-19, 

the number of circulating naïve B cells has been shown to 
have a strong association with antibody levels after vac-
cination [51]. Age-related declines in protective antibody 
responses to influenza infection also occur with fewer 
somatic hypermutations, which are point mutations 
which are crucial for affinity maturation where B cell 
receptors undergo selection in GCs of lymph nodes [9]. 
GCs are decreased in size and undergo declines in num-
ber with age likely due to poor Tfh-B cell interactions 
[43]. Along with reduced somatic hypermutations, there 
is also reduced class-switch recombination with aging, 
both likely mainly due to reduced activation-induced 
cytidine deaminase (AID) expression with aging [52]. In 
totality these changes contribute to various age-related 
deficits in B cell function including decreased quantity 
and specificity of antibodies, as well as reduced duration 
of protective immunity [50]. This further supports that 
declines in immune responses to vaccination in older 
adults is multifaceted. Together, these deficits in both the 
innate and adaptive immune system combine to result 
in impaired vaccination efficacy  that leaves older adults 
more susceptibility to flu infection and at increased risk 
for severe infection. It is also important to recognize the 
phenomenon of original antigenic sin (OAS) in shaping 
humoral responses to vaccination in older adults. OAS 
explains that antibodies induced from primary exposure 
will continue to dominate regardless of subsequent chal-
lenges with similar, but slightly altered antigen. Since 
older adults likely have encountered influenza infection 
and/or have decades of annual flu vaccinations, their 
immune systems are already at a disadvantage in generat-
ing robust immunological protection to different strains 
in the seasonal vaccine. Thus far, there are no clear ways 
to alleviate the risk of OAS associated with annual influ-
enza vaccination. However, it may be possible that adju-
vants have the potential to induce cross-reactive memory 
B cells, which would be beneficial in improving immuno-
logical protection generated by vaccination [53].

It is clear from the preceding review that failure to 
generate sufficient immunological protection from vac-
cination in older adults is caused by a complex inter-
play of age-related changes in the global immunologic 
milieu  (Fig.  1). Strategies that target singular deficits in 
the aged immune system may enhance some level of vac-
cine-induced immunity; however, it is not sufficient to  
improve overall protection  to the levels seen in young 
adults since age-related immune deficits are not isolated. 
Nevertheless, to date, the focus of vaccine development 
has been reductionist and focused on very specific strate-
gies that have evolved from vaccine science rather than 
geroscience, which can elucidate unique targets that can 
overcome a multitude of age-related deficits to improve 
vaccine efficacy in at-risk older adults.
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Current vaccination strategies to enhance 
protection in older adults
To overcome these deficits, specific vaccines were devel-
oped for older adults. Currently, a quadrivalent high 
dose flu vaccine (Fluzone) and adjuvanted flu vaccine 
(FLUAD) are FDA approved for older adults. The high 
dose vaccine contains four times more antigen than the 
standard dose vaccine. Clinically, it has been shown that 
the quadrivalent high dose flu vaccine is safe and well tol-
erated by older adults [54, 55]. Importantly, the high dose 
flu vaccine also showed increased seroconversion rates 
up to 28  days after vaccination, indicating that increas-
ing the dose of antigen results improved immunogenic-
ity and immunological protection [56]. Mechanistically, 
it has been shown that high dose flu vaccination induces 
a more potent Tfh response, which directly correlates to 
increased plasmablasts in older adults [57]. Although the 
exact molecular mechanisms behind improved vaccine 
responses to high dose flu vaccines are not completely 
defined, increasing the dose may alleviate certain defi-
cits of the aged immune system, including poor antigen 
presentation by APCs [25]. In mouse studies, age-related 
changes in antigen presentation related components 
have been shown [25]. Additionally, preclinical work and 
clinical trials are underway to more closely evaluate the 
mechanisms of improved responses in both the innate 
and adaptive responses following high dose vaccination 
in older adults (NCT#:05154383). Rather than increasing 
the dose of antigen, the FLUAD vaccine utilizes an adju-
vant, MF59. MF59 enhances immune cell recruitment to 
the site of injection via local chemokine and interleukin 
production, with CCR2 and ICAM-1 implicated as pri-
mary mediators [58, 59]. It also promotes immune cell 
activation, APC differentiation, and antigen presentation 
that further enhances CD4 T cell activation and GC reac-
tions that directly influence B cell response increasing the 
magnitude and persistence of antibody responses to vac-
cination [58, 60]. More specifically, MF59 creates a more 
immunocompetent environment that works in a feed for-
ward amplification loop where MF59 leads to increased 
chemokine production locally in the muscle tissue fol-
lowing injection, which then recruits more innate cells, 
mainly granulocytes and monocytes. These innate cells 
also respond to MF59 by increased chemokine secre-
tion that recruits additional cells. The recruited cells 
take up adjuvant and antigen and transport to the drain-
ing lymph nodes to interact with antigen-specific T cells 
[59]. Indeed, there are increased APCs in the draining 
lymph node following vaccination with MF59 providing 
more opportunity for interaction with T cells [59]. Cor-
respondingly, FLUAD enhances overall vaccine-induced 
protection in older adults [61–63]. While these vaccines 
consistently elicit more robust immune responses in 

older adults compared to the standard dose flu vaccine 
[64], protection is insufficient for preventing immense 
negative effects of influenza infection on older adults.

These current FDA-approved strategies to improve flu 
vaccine responses in older adults target specific deficits, 
mainly improving antigen presentation, cell trafficking to 
the site of injection, and improved antibody responses. 
Unfortunately, they are not able to address all age-related 
immune declines and protection is still inadequate which 
is evident since older adults continue to experience the 
most significant burden from flu infection, including 
57% of hospitalization and over 75% of flu-related deaths 
[1]. Indeed, despite improved vaccine responses in older 
adults vaccinated with high-dose or adjuvanted flu vac-
cine compared to standard dose [64], efficacy rates are 
not high enough to prevent excess flu-associated hos-
pitalizations and deaths in older adults. Further, the 
majority of currently approved flu vaccines still utilize 
egg-based technology that requires a lengthy manu-
facturing process. This poses a problem as the longer it 
takes for vaccine manufacturing, the more likely the that 
predicted circulating strains in the vaccine formulation 
could mutate causing a mismatch between the vaccine 
strain and predominant circulating strains, reducing 
overall efficacy for everyone. Alternative vaccination 
platforms that reduce vaccine production would be par-
ticularly valuable for all individuals. Furthermore, alter-
native vaccination approaches for older adults may be 
better suited to improve the tightly orchestrated immune 
response required for optimal vaccination responses. In 
fact, geroscience approaches that target common path-
ways of aging may be a better suited approach to alleviate 
multiple aspects of age-related declines and improve vac-
cine protection.

Alternative vaccination platforms to enhance 
vaccination protection in older adults
Alternative vaccination strategies may be more fruit-
ful to bolster responses in older adults. The COVID-19 
pandemic has shed light on the benefits of mRNA-based 
vaccines. These benefits include a substantially shorter 
production time and high vaccine efficacy among older 
adults [65]. For example, it was reported that vaccine 
production only took about 2  months for the SARS-
CoV-2 mRNA vaccine utilized for the first clinical trials 
(mRNA-1273) [65]. An important feature of mRNA-1273 
vaccine development is the specific testing performed in 
older adults at different doses in early stages [66]. Early 
on, it was clear that older adults were disproportionately 
affected by COVID-19. Thus, including individuals in 
this age group for clinical trials provided unique biologi-
cal context that is rarely considered in vaccine develop-
ment. This study showed similar side effects between the 
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lower and higher dose vaccine, and improved responses 
with the higher dose in older adults [66]. Importantly, 
Moderna’s mRNA-1273 vaccine showed 95.6% efficacy at 
preventing symptomatic SARS-CoV-2 infection in indi-
viduals 18 – 65  years old and those 65  years and older 
had 86.4% efficacy [67]. Similarly, the Pfizer-BioNTech 
BNT162b2 vaccine showed between 94–96% efficacy in 
all individuals from 16 to over 65 years old [68]. Although 
declines in vaccine efficacy are generally evident in older 
adults, the mRNA vaccine proved to have fairly consist-
ent efficacy among different age groups. Studies have 
shown that mRNA vaccines were able to elicit similar 
responses in adults 70 years old and older as were seen in 
younger adults [69]. In adults over 80 years old, a striking 
89% efficacy was noted, further suggesting that mRNA 
vaccination can elicit strong immunological protection in 
even the oldest cohorts of adults [70]. It is important to 
note, however, that the spike protein utilized to formu-
late this vaccine was a neoantigen for almost all humans, 
including older adults, and vaccine recipients likely had 
no pre-existing immunological memory. Thus, these 
results point to the ability of mRNA vaccines to over-
come the breadth of immunological deficits in vaccine 
responses to new antigens, however it is not yet clear if 
this would also be the case for antigens that older adults 
have already encountered or been vaccinated for multiple 
times, such as influenza. Nonetheless, COVID-19 vac-
cine efficacy has been shown to have promising durabil-
ity over time in both younger and older adults. Although 
risk of COVID-19 increases slightly after about 2 months 
post-vaccination, efficacy for all age groups plateaus at 
about 60–70% and remained at this level up to 8 months 
later [71]. It is likely that the inclusion of older adults in 
earlier clinical trial phases was important when select-
ing an appropriate dosage for this at-risk population [70]. 
Indeed, despite the widely accepted age-related reduc-
tion in vaccine responses, older adults remain underrep-
resented overall in clinical trials due to arbitrary upper 
age limits. In fact, 65.7% of trials on WHO Clinical Trials 
Registry Platform included at this time had an arbitrary 
upper age limit [72]. Ultimately, it is likely that many tri-
als miss key age-related biological deficits that may help 
in understanding age-related requirements for eliciting 
stronger immunological protection from vaccination.

Several other factors contribute to increased effi-
cacy with mRNA vaccines in older adults compared to 
other platforms. Specific to the SARS-CoV-2 virus, the 
mRNA platform allows generation of a more immuno-
genic spike protein than the wild-type virus due to pre-
fusion-stabilizing mutations [73]. This ability to modify 
the structure combined with the potent lipid nanopar-
ticle (LNP) delivery system is associated with prolonged 
protein expression, antigen specific Tfh induction, and 

GC B cell activation [74]. It’s possible that this mRNA 
approach could be applied to flu vaccine and allow for 
targeting of flu virus components that do not mutate as 
quickly, such as the stalk of HA, to provide better cross-
reactive protection to different flu strains. Furthermore, 
these mRNA vaccines elicited both T helper 1-biased 
CD4 T cell responses as well as robust cytolytic CD8 T 
cell responses [65, 75, 76]. It is possible that the potent 
T cell responses stimulated by the mRNA vaccines con-
tribute to the enhanced protection with age, since it has 
been shown that cell-mediated responses may be more 
indicative of protection in older adults [20]. While the 
evaluation is still in early stages, there seems to be over-
all improved efficacy utilizing mRNA vaccine platforms 
in older adults. Additional rigorous studies are needed to 
explore mechanisms of improved immunogenicity in this 
population.

Interestingly, many initial preclinical studies on 
mRNA-based vaccines were for influenza [77–80]. Simi-
lar to responses seen with the mRNA-based  COVID-
19  vaccines, mRNA-based flu vaccines showed robust 
responses including cTfh and memory B cells in non-
human primates [78]. Importantly, studies have already 
shown that mRNA vaccines utilizing more conserved 
internal proteins, such as influenza nucleoprotein (NP), 
matrix protein 1 (M1), and LNPs increased survival after 
both homologous and heterosubtypic virus infection [79, 
80]. Utilizing an mRNA vaccine for influenza also pre-
sents a unique opportunity to induce protection against 
multiple subtypes of the virus. Recent research has 
shown that a mRNA-based vaccine that contained 20 dif-
ferent HA mRNA-LNPs from all known influenza virus 
subtypes induces diverse antibodies in mice and ferrets 
that were successful in providing protection against both 
matched and mismatched viral strains, providing strong 
hope for a universal flu vaccine in the future [81]. Despite 
the preclinical success, the number of human trials inves-
tigating influenza mRNA vaccines is more limited likely 
owing to the rigorous FDA vaccine approval process and 
reduced necessity for rapid vaccine production prior to 
the COVID-19 pandemic. Furthermore, the trials to 
date focused on younger healthy adults. While these tri-
als were successful and showed induction of protective 
antibody responses [82, 83], it is hard to predict if similar 
success would be evident in older adults. Comparisons 
between future mRNA-based flu vaccines and the cur-
rent inactivated flu vaccines will be essential to determine 
if and how mRNA platforms can elicit stronger immune 
responses in individuals over 65.

While an mRNA vaccine platform may overcome many 
flu-specific vaccination challenges such as the production 
timeline, alternative strategies are likely still necessary to 
overcome the totality of age-related immune declines. 
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Thus, a geroscience-focused adjunctive approach that 
targets common pathways of aging may be a more suc-
cessful way to alleviate multiple aspects of age-related 
declines and improve overall flu vaccine protection in 
older adults.

Targeting the hallmarks of aging to improve 
vaccine responses in older adults
The hallmarks of aging were established in 2013 [84]. 
Nine candidate hallmarks were identified that manifest 
during normal aging, accelerate aging when induced 
experimentally and improve age-related declines when 
reduced experimentally [84]. These hallmarks include 
mitochondrial dysfunction, cellular senescence, altered 
intracellular communication, and stem cell exhaustion 
among others [84]. Importantly, in 2022, 5 new proposed 
hallmarks were discussed among leaders in the aging 
research field including compromised autophagy, dysreg-
ulation in RNA splicing, inflammation, loss of cytoskel-
eton integrity and disturbance of the microbiome [85]. 
This list is likely to continue developing as aging research 
expands and we better understand the pathways and biol-
ogy that contribute to age related declines.  Thus, these 
hallmarks represent targets that may improve not only 
lifespan and healthspan, but also immunological protec-
tion from vaccination in older adults.

Targeting hallmarks of aging: inflammation
Inflammation is crucial for generating immune responses 
by activating various signaling pathways. However, a 
chronic, sterile, pro-inflammatory state is associated 
with age and has recently been added to the hallmarks 
of aging. This phenomenon, also known as inflammaging 
[86], is likely driven by other hallmarks of aging includ-
ing cellular senescence, mitochondrial dysfunction, and 
defective autophagy among others. Importantly, many 
studies have demonstrated that increased basal, sys-
temic inflammation alters immune cell function and 
their ability to respond to challenges [87]. Indeed, pre-
vaccination PBMC transcriptomic signatures that are 
more pro-inflammatory are negatively correlated with 
antibody responses, while signatures related to T and B 
cell function were positively associated with antibody 
responses [88]. Along these lines, inhibiting inflamma-
tory cytokine production via pretreatment with an oral 
small molecule p38 mitogen-activated protein (MAP) 
kinase inhibitor was able to improve vaccine efficacy in 
older adults following subcutaneous varicella zoster virus 
(VZV) vaccination [89]. These findings may also translate 
to immune responses toward vaccines that are admin-
istered intramuscularly like flu vaccine. The JAK-STAT 
signaling pathway is a conserved pathway that results 
in the expression of a multitude of pro-inflammatory 

cytokines including IL-2, IL-6, IFNα and IFNβ [90], that 
are also commonly increased with aging [91]. Since the 
JAK-STAT pathway is implicated in autoimmune and 
inflammatory conditions, JAK-STAT inhibitors are FDA 
approved drugs used to treat various autoimmune, aller-
gic, and inflammatory conditions [92]. Interestingly, 
JAK-STAT inhibitors decrease the senescence associ-
ated secretory phenotype (SASP), which is directly 
related to inflammaging in aged mice [93]. It is possible 
that utilizing JAK-STAT inhibitors as a pretreatment 
for vaccination may be able to reduce baseline levels of 
inflammation in older adults. However, targeting inflam-
mation by inhibiting a major signaling pathway related 
to immune function comes with the risk of inhibiting 
the desired vaccination responses. Interestingly, it has 
been shown that older adults receiving tofacitinib, a 
common JAK-STAT inhibitor used to treat rheumatoid 
arthritis and ulcerative colitis, resulted in satisfactory, 
but not improved serological protection from flu vac-
cination compared to individuals in the age-matched 
placebo group (treatment group age range: 25–82  years 
old, placebo group mean age: 23–77 years old) [94]. On 
the other hand, a study analyzing the effects of similar 
drugs on SARS-CoV-2 vaccination responses indicated 
a reduction in antibody responses compared to placebo 
(treatment group mean age: 62.5 ± 11.8 years old, placebo 
group mean age: 64.3 ± 9.2  years old) [95]. Thus, more 
research is necessary to determine if JAK-STAT inhibi-
tion would improve flu vaccination responses in older 
adults. Interestingly, a small study showed that older 
adults who chronically use Non-Steroidal Anti-Inflam-
matory Drugs (NSAIDs) have higher titers of virus-neu-
tralizing antibodies and increased antiviral defense gene 
expression after flu vaccination [96]. However, future 
studies need to replicate these findings in larger popu-
lations and determine mechanistic effects. On the other 
hand, the possibility that systemic inflammation has the 
potential to increase influenza vaccine immunogenicity 
has been proposed, although this has not been correlated 
with improved protection against disease [30]. Indeed, 
while some inflammation is necessary for optimal 
immune responses, excessive inflammation can impair 
responses, highlighting the highly coordinated immune 
signaling and microenvironment necessary for optimal 
vaccine responses. In totality, findings to-date suggest 
that increased basal inflammation has negative effects 
on vaccine-induced immune responses and antibody-
mediated protection, and potentially could be targeted to 
improve vaccine responses. Overall, determining which 
players are the most appropriate and effective targets to 
interrogate the relationship between inflammaging and 
vaccine responses remains the biggest challenge as many 
pro-inflammatory signals are essential for proper vaccine 
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responses as noted above. Mechanistic studies will be 
essential for determining the best targets for inhibit-
ing baseline inflammation, without ablation of immune 
responses.

Targeting hallmarks of aging: cellular senescence
Cellular senescence, as first described by Hayflick and 
Moorhead [97], is a mostly irreversible state of prolif-
eration arrest that occurs as a response to cellular stress, 
including DNA damage and oxidative stress [98]. Senes-
cent cells have been shown to serve important functions 
in embryonic development and wound healing in adult 
tissue and are readily cleared by the immune system 
after serving their functions [99, 100]. These cells, how-
ever, accumulate in much higher numbers with age and 
resist apoptosis, which causes systemic adverse effects. 
Senescent cells that resist clearance remain metaboli-
cally active and contribute to an inflammatory micro-
environment. They secrete high levels of inflammatory 
cytokines, chemokines, and immune modulators, termed 
the senescence associated secretory phenotype or SASP, 
despite experiencing cell cycle arrest [101]. Some com-
mon SASP factor include IL-6, IL-8, and ICAM-1 among 
many others. SASP components can vary widely based 
on the inducer and duration of senescence, environment, 
and cell type [101]. Importantly, these SASP components 
also are major signals to immune cells and regulate many 
different functions [102]. In fact, SASP and the micro-
environment of immune cells directly impacts their dif-
ferentiation, activation, and cell–cell communication 
[103]. Clearing senescent cells via senolytics, a class 
of drugs that can induce apoptosis in senescent cells, 
induces various benefits in aged mice for age-related dis-
eases such as liver cirrhosis [104], atherosclerosis [105], 
and type-2 diabetes [106]. However, our knowledge of 
the effects of senolytic drugs on immune responses is 
limited. To date, senolytics have been shown to allevi-
ate senescence-induced changes in CD4 T helper (Th) 
subset differentiation in the context of flu infection [39] 
and reduce coronavirus induced-mortality in aged mice 
[107]. These findings may provide crucial insight into 
utilizing senolytics to re-balance differentiation patterns 
to reflect more youthful responses to primary infection. 
However, importantly, the effects of senolytics on vaccine 
responses have not yet been elucidated. Pre-vaccination 
treatment with senolytic drugs may be a unique gerosci-
ence approach to improve flu vaccine efficacy in older 
adults and would not require any novel vaccine develop-
ment. Future research will elucidate the potential of seno-
lytics to improve immunological resilience with aging.

Targeting hallmarks of aging: mitochondrial dysfunction
Mitochondrial dysfunction is common with aging and 
has widespread impacts on both the systemic and cellu-
lar functions. Mammalian target of rapamycin (mTOR) 
and AMP-activated protein kinase (AMPK) are known 
as master regulators of metabolism. More recently the 
integral role of immune cell metabolism, also known 
as immunometabolism, on immune cell function has 
been elucidated [108]. Regulated metabolic pathways 
are essential for maintaining the overall health of cells 
including mobility, proliferation, and efficient utilization 
of nutrients to execute effector functions [108]. With 
aging, there is an overall increase accumulation of reac-
tive oxygen species (ROS) and declines in mitochondrial 
activity within both tissues and individual cells [109]. 
Immune cells also experience mitochondrial dysfunc-
tion, which can contribute to different age-related dys-
functions in immunity [110]. mTOR inhibitors are at the 
forefront of metabolic targets being utilized to combat 
age-related mitochondrial dysfunction, including rapam-
ycin derivatives (rapalogs) [111, 112]. Importantly, rapa-
mycin and other mTOR inhibitors show similar effects in 
enhancing lifespan and improving aging-related diseases 
in mice [113, 114] and are currently being studied in 
various clinical trials. In fact, treatment with a rapalog in 
older adults prior to flu vaccination resulted in increased 
flu antibodies compared to those who received placebo 
[112, 115]. It is important to note that participants in this 
study discontinued treatment 2  weeks prior to flu vac-
cination. It is possible that this was done to prevent any 
subtle immune suppression that might interfere with vac-
cine responses, as rapamycin is used clinically (at much 
higher doses)  as  an immunosuppressant to reduce like-
lihood of organ transplant rejection. Although immune 
suppression seems counterintuitive when trying to elicit 
a strong immune response to vaccination, it is likely that 
mTOR inhibitors suppress the dysregulated activity that 
impairs immune responses with aging. Importantly, in 
addition to improved vaccination responses, older adults 
had reduced respiratory infections for 1  year follow-
ing cessation of the mTOR inhibitor [115]. This finding 
suggesting that dysregulated mTOR activity contributes 
to poor immune responses overall and that targeting 
mTOR can improve overall immunological resilience in 
older adults. It is important to continue exploring vari-
ous interventions that modulate cellular metabolism 
and determine the appropriate treatment schedules that 
maximize drug benefits while mitigating side effects and 
adverse events.

Metformin is FDA approved diabetes drug that modu-
lates the AMPK/mTOR pathways among other meta-
bolic targets and is also a candidate anti-aging drug 
[116]. Although traditionally used as a diabetes drug, 



Page 10 of 15Cadar et al. Immunity & Ageing           (2023) 20:23 

metformin has shown positive effects on various immune 
cell types both through direct immunometabolic modu-
lation and alleviation of inflammatory factors known to 
increase with age. Metformin treatment in vitro reduces 
age-related alterations in mitochondrial bioenerget-
ics and inflammatory cytokine secretion in aged CD4 T 
cells [117]. Additionally, metformin treatment in young 
mice amplifies CD8 T cell memory formation [118], a 
known deficit in aged vaccine responses. In  vitro B cell 
responses are also improved by metformin treatment in 
diabetics, including suppressing inflammatory mediators 
associated with poor antibody responses [119]. In  vivo, 
post flu vaccine antibody titers were higher in metformin 
treated individuals compared to diabetics on other oral 
hypoglycemics [119]. Thus, metformin has clear util-
ity in improving immune responses and cellular func-
tion in diabetics and it is possible this would translate to 
older adults. Metformin treatment also reduces circulat-
ing inflammatory markers including C-reactive protein 
(CRP), Interleukin-6 (IL-6) and Tumor Necrosis Factor-
alpha (TNF- α) among other factors associated with con-
ditions including frailty and chronic disease [120]. Thus, 
metformin targets multiple hallmarks of aging and may 
improve vaccine responses with aging.

In totality, rapamycin and metformin are two candidate 
drugs that may be able to target mitochondrial dysfunc-
tion with aging. Indeed, alternative drugs likely exist and/
or can be developed that more specifically target age-
related metabolic dysfunction. It is likely that targeting 
mitochondrial dysfunction in aging can improve vaccine 
responses, however future research should explore differ-
ent drugs and potential interactions.

Targeting hallmarks of aging: microbiome disturbances
The human microbiome includes various anatomical sites 
such as the skin, gastrointestinal tract, respiratory tract 
and urogenital tract among others. These various sites 
play a crucial roles in various physiological processes 
including metabolism, inflammation, and the immune 
system, making it a multifaceted target to address age-
related declines. While targeting the skin, respira-
tory tract, or other microbiota sites may have utility for 
improving immune responses, the majority of research to 
date has focused on how the gut microbiome specifically 
can influence immune responses. Thus, we have focused 
this section on how the gut microbiota changes with 
age and can be a potential target to modulate immune 
responses in older adults. The gut microbiome shifts 
in composition due to many factors including age, diet, 
medications, and physical activity [121]. Further, leaky 
gut, or the increased permeability in the intestinal bar-
rier, increases with age and allows for food antigens and 
bacteria among other factors to enter circulation and 

trigger immune responses [122]. Some have suggested 
a positive feedback loop where age-associated inflam-
mation drives microbial dysbiosis as well [123]. As these 
mechanisms and pathways continue to be unveiled, tar-
geting microbiome disturbances to treat aging may be an 
optimal target for improving immune responses to vacci-
nation in older adults. Recent studies have shown that the 
use of probiotics, including lactobacillus species, success-
fully reduce gut permeability [124]. This improvement in 
intestinal barrier function would translate to decreases 
in leaky gut-induced inflammation and could poten-
tially improve inflammation-induced immune response 
declines. In fact, the effects of various probiotic supple-
mentations on flu vaccination response in older adults 
has been in various trials. Interestingly, three smaller 
trials explore supplementation with different probiot-
ics including Lactobacillus helveticus R0052, Lactobacil-
lus rhamnosus R0011 and fermented dairy drinks, all of 
which resulted in increased levels of flu-specific antibod-
ies [125–127]. These smaller studies provide tremendous 
support for following up with larger studies to evaluate 
the ability of probiotics to improve flu vaccine responses 
with aging. It’s possible that probiotics are a safe and fea-
sible intervention that can improve multiple hallmarks of 
aging via improving the microbiota and corresponding 
systemic inflammation.

Targeting hallmarks of aging: other potential targets
It is important to remember that the hallmarks of aging 
are an incredibly interconnected web, each of which is 
sensitive to changes in other hallmarks of aging. In fact, 
the sheer heterogeneity of aging makes unveiling these 
connections quite difficult, but they remain crucial in our 
understanding of biological aging. Interestingly, the most 
often overlooked intervention to improve multiple age-
related deficits, physical activity and exercise, also targets 
multiple hallmarks and has been shown to have profound 
effects on immune responses. Specifically, regular exer-
cise has been shown to improve overall immunological 
function in terms of  responses to vaccination and infec-
tion, while also  reducing the risk of various age-related 
diseases including type-2 diabetes and cardiovascular 
disease among others [128]. It is known that visceral adi-
pose is increases with age, particularly in the abdominal 
region [129]. Importantly, increases in fat mass are also 
associated with increased incidence of metabolic dys-
function and inflammation. Thus, physical exercise can 
also  reduce fat mass in older adults, which would also 
induce  metabolic reprogramming and decrease sys-
temic inflammation. In terms of the immune system, 
this is likely to have beneficial effects. Overall, studies 
have shown that exercise can improve overall immune 
function and vaccine responses in older adults. In older 
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adults, moderate exercise can improve antibody titers to 
influenza vaccination [130]. Exercise immediately after 
vaccination also has utility to improve vaccine responses 
via myokines, mainly IL-6, improving CD4 T cell and B 
cell responses and increased type I IFNs that can improve 
DC activation and overall antibody responses. Indeed, it 
has been shown that 90  min of aerobic exercise imme-
diately after immunization with either influenza or 
COVID-19 led to increases in antibody response several 
weeks later in adults [131]. This suggests exercise can 
improve vaccine responses regardless of vaccine platform 
as well. Although exercise has vast benefits in the over-
all health of older adults, including potentially improving 
immunological protection in response to vaccination, it 
may not be a viable option for those with extensive co-
morbidities, disabilities, and/or uncontrolled medical 
conditions that may prohibit safe exercise. Thus, research 
on exercise mimetics may elucidate an alternative strat-
egy to achieve similar exercise-induced benefits in vac-
cine responses as well.

Other hallmarks of aging aside from those detailed 
above also likely impact age-related immune deficits 
and represent potential targets. However, to date, differ-
ent approaches to target these processes are limited and 
the direct link to declined vaccination responses has yet 
to be shown definitively. Stem cell exhaustion, for exam-
ple, is a hallmark that directly impacts the immune sys-
tem [132]. It is known that with age, the ability of stem 
cells to renew and to differentiate into other cell types 
is impacted [132]. Restoring the ability of stem cells to 
renew would theoretically reduce hematopoietic stem 
cell skewing towards myeloid cells and improve overall 
immune responses. Other hallmarks such as loss of pro-
teostasis and reduced autophagy likely also have unique 
impacts on the immune system which require further 
exploration. Reduced autophagy likely contributes to 
impaired immune cell function due to the accumulation 
of damaged macromolecules and organelles [133], while 
loss of proteostasis leads to misfolded proteins that can 
be recognized by the immune system as foreign and con-
tribute to sterile inflammation [134]. In totality, the inter-
connectedness of the hallmarks of aging and their effects 
on the entirety of the immune system likely have effects 
on vaccine efficacy and generation of protective immu-
nity in older adults and should continue to be explored.

Conclusions
Despite the availability of flu vaccines formulated to 
better protect older adults, older adults remain dispro-
portionally at-risk for severe infection, flu-associated dis-
ability, and death. However, vaccination remains the most 
effective way to prevent infectious diseases and reduce 

severity of  infections. Fortunately, the vast amount of 
research aimed to understand the hallmarks of aging have 
opened many doors to improve flu vaccine responses in 
individuals 65  years and older, potentially without the 
need to reformulate the vaccines themselves. Targeting 
aging as a whole, rather than specific age-related deficits, 
is likely more suited to improve the highly coordinated 
responses to vaccination and improve overall immuno-
logical resilience in older adults. The COVID-19 pan-
demic has shed light on the vulnerability of our older 
populations and the vast benefits that vaccination pro-
vides. It is important to acknowledge age-related immune 
changes as a hurdle that requires continued attention and 
investigation for future vaccine clinical trials. Alterna-
tive vaccine platforms for flu, such as mRNA-based vac-
cines, may be able to overcome some age-related immune 
deficits, while also providing improved production time 
and increased subtype inclusion to increase overall vac-
cine efficacy regardless of changes in predominantly cir-
culating strains. Further, pre-vaccination treatments that 
target the hallmarks of aging may be a novel approach 
to improve flu vaccination responses with aging that 
don’t require any vaccine formulation changes. Overall, 
flu vaccine efficacy is integral to protecting older adults 
from excessive morbidity and mortality. Alternative vac-
cination strategies and pre-vaccination interventions 
that better address aging physiology likely can improve 
immunological resilience and overall protection in at-risk 
older adults.
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