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Abstract

One of the main challenges in cancer modelling is to improve the knowledge of tumor
progression in areas related to tumor growth, tumor-induced angiogenesis and
targeted therapies efficacy. For this purpose, incorporate the expertise from applied
mathematicians, biologists and physicians is highly desirable. Despite the existence of a
very wide range of models, involving many stages in cancer progression, few models
have been proposed to take into account all relevant processes in tumor progression,
in particular the effect of systemic treatments and angiogenesis. Composite biological
experiments, both in vitro and in vivo, in addition with mathematical modelling can
provide a better understanding of theses aspects. In this work we proposed that a
rational experimental design associated with mathematical modelling could provide
new insights into cancer progression. To accomplish this task, we reviewed
mathematical models and cancer biology literature, describing in detail the basic
principles of mathematical modelling. We also analyze how experimental data
regarding tumor cells proliferation and angiogenesis in vitromay fit with mathematical
modelling in order to reconstruct in vivo tumor evolution. Additionally, we explained
the mathematical methodology in a comprehensible way in order to facilitate its future
use by the scientific community.

Keywords: Hybrid approach, Tumor progression, Mathematical modelling, Parameter
estimation, Experimental design

Introduction
Cancer is a large group of diseases that could affect any part of the body, characterized by
abnormal cell proliferation, and an increasing migration rate that could derive in invasion
and organ spreading, becoming the leading cause of death all over the world [1]. Thus,
cancer is a critical societal and scientific problem. Great amounts of human and mate-
rial resources are yearly spent in developed countries in attempts to understand its root
causes and to develop successful prevention and treatment strategies.
Most of human cancers have acquired six basic capabilities [2]: self-sufficiency in

growth signals, insensitivity to growth-inhibitory signals, programmed cell death eva-
sion, limitless replication potential, sustained angiogenesis, and tissue invasion, which
could cause metastasis. In other words, the defense mechanism preventing each of these
acquired capabilities must be thwarted before cells become a malignant and invasive
tumor [2].
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Hence, it is necessary address new strategies for cancer understanding and treatment.
For doing so, establishing correlation between observable phenomena, as well as, observ-
ing if a particular intervention produces a significant response could be very useful to
state hypotheses postulating which physical processes are involved and how they inter-
act. For example, tumor cell proliferation (observable phenomenon) can be correlated
to oxygen concentration (another observable phenomenon). Experimentally speaking,
if we would modify the oxygen availability to observe whether cell proliferation is sig-
nificantly modified, then we could estimate the oxygen threshold over which cancer
cells begin to proliferate. Biological experiments needed to test such hypotheses can be
time-consuming, expensive and/or impossible with current technology. In these cases,
mathematical modelling plays a key role, providing an independent check of the consis-
tency of the hypothesis and can also improve experimental design by identifying which
measurements are needed to test a particular theory, and additionally, whether new
hypotheses can be established from experimental results (see the review paper by Byrne
[3]). In this regard, mathematical modelling is a theoretical description of biological phe-
nomena that may be calibrated by experimental data comparison. Moreover, by changing
the parameter values of descriptive equations, the significance and functions of variables
representing specific biological features can be easily tested. Then, practically all tumor
growth features can be mathematically modelled, reducing the biological modelling com-
plexity and offering a powerful tool to better understand tumor biology, facilitating drug
development and also pre-clinical and clinical patient management.
In this work we describe the basic principles of mathematical modelling, as well as,

suggest some experimental design in order to obtain relevant biological or clinical data
necessary to estimate relevant parameters of mathematical modelling. We also define
hybrid approach as the feedback capacity between mathematical modelling and biologi-
cal experimental design which is required, as it has been shown in literature, for better
understanding cancer, fitting parameters of a given model with a specific biological sce-
nario, and for obtaining models with predictive capability. This work is not intended
to deepen in the previous aspects, but it can serve as a first bridge of communica-
tion between applied mathematicians, biologist and physicians or even to be a tool to
emphasize research in this field.

Overview of tumor growth and tumor-induced angiogenesis
From a point of view of materials science, a cancerous tumor is a very complex,
multiscaled material. The underlying genetic defects (nano-scale) affect cellular-level
(micro-scale) properties, that in turn affect material properties at the tumor level
(millimeter-scale). The larger scales may even feedback to the smaller scales. For exam-
ple, a change in cellular stress may affect the type and occurrence of genetic mutations.
Cancer can be studied at any of the three scales as suggested by Zheng et al. [2] and the
references therein.
In this work we focus at the millimeter scale, i.e., tumor tissue level. Schemati-

cally, three successive stages can be identified in the growth of a solid tumor due to
deregulation of cell division: initial avascular growth, angiogenesis and finally vascu-
lar growth, which in turn may induce metastatic spread. For a summary of models
and main mathematical references discussed in this section, the reader is addressed to
Table 1.
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Table 1 The aspects of cancer encompassed by the mathematical models discussed in this work

Model Avascular Vascular Angiogenesis Drug
growth growth delivery

[24] first work in modelling
avascular tumor growth

[32] first work in modelling tumor
angiogenesis

[2, 10, 34, 35] works focused on
tumor angiogenesis and invasion

[36–42] works focused in drug
effectiveness

[31] review of avascular tumor
growth

[3, 29, 30, 33] reviews of vascular
tumor growth

Overview of avascular tumor growth

During the avascular growth phase, oxygen and other nutrients are delivered to the tumor
cells, and the waste products are removed from the tumor via diffusion from nearby blood
vessels; under this condition the tumor cells proliferate rapidly consuming more oxygen
than the host cells [4]. However, considering that healthy tissue has approximately 7%
oxygen (53 mmHg) tension and the diffusion distance of oxygen in tissue is ∼ 100 μm
[5], tumor growth is limited in size [6] and maintained during a short period of time.
Under these conditions, the neoplastic compartment rapidly exceeds the diffusion dis-
tance of oxygen and becomes hypoxic. Thus, oxygen tension in a tumor can range from
physiological (7%) to severe hypoxic (< 1% oxygen) or even anoxic [5]. Moreover, the
immediate molecular response to low oxygen is the hypoxia-induced factor (HIF) pro-
tein stabilization [7, 8], which in turn triggers the expression of target genes involved in
hypoxia adaptation such as vascular endothelial growth factor (VEGF). In addition, under
severe hypoxia, it is found surrounding areas of necrosis, which is a common character-
istic of solid tumors. Nevertheless, quiescent cells generation in the periphery of culture
dish was observed in vitro during a nutrient-deficient medium and hypoxia exposure in
tumor cells [9]. Therefore schematically, in the hypoxic phase, a tumor grows within the
limits of its local environment forming three characteristic layers: 1) cells towards the cen-
ter, deprived of vital nutrients, will die and give rise to a necrotic core; 2) proliferating cells
can be found in the outer cell layers; and 3) a layer of quiescent (or hypoxic) cells, which
survive without dividing with slow metabolism, is found between the two others layers.
In summary, tumor growth is severely restricted and in order to continue its developing
needs to find additional nutrient sources.

Overview of vascular tumor growth

As a result of hypoxic pressure some tumor cells secrete a number of diffusive chemical
substances - called tumor angiogenic factors (TAF), such as VEGF, into the surrounding
tissue, which encourage the body to vascularize the tumor and therefore provide new
nutrients. Indeed, transition from the avascular to the vascular state, depends on the
tumor ability to induce new blood vessels formation from the surrounding tissue [10].
These blood vessels sprout towards the tumor and then gradually surround and penetrate
it, providing an adequate micro-circulation and blood supply. Tumor-induced angiogene-
sis, the process by which new blood vessels develop from an existing vasculature, through
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sprouting, proliferation and fusion of endothelial cells, therefore is a critical step in solid
tumor growth.
Under hypoxia, cancer stem cells (CSC), that reside inside the tumor, could differentiate

toward endothelial progenitor cells andmature endothelium, which in turn generates new
blood vessels inside the tumor [11]. This last process is called neovasculogenesis, and
in the past was thought to happen only intrauterine, but nowadays it is known that this
event happens also in adulthood. In cancer field, presence of CSC has been associated
with tumor recurrence, resistance to chemotherapy, tumormetastasis, and in general with
poor clinical prognosis [12, 13]. Tumor-induced angiogenesis is believed to start when a
small avascular tumor exceeds a critical diameter (∼ 2 mm), above which normal tissue
vasculature is no longer able to support its growth. By the time a tumor has grown to a
size whereby it can be detected by clinical means, there is a strong likelihood that it has
already reached the vascular growth phase (see [10] and the references therein).
Tumor-induced angiogenesis is characterized by a chaotic tumor vessels development

associated with both angiogenesis and vasculogenesis. Thus, endothelial cells proliferate
and capillaries are rapidly formed allowing tumor growth, but in cancer framework theses
processes are deregulated. Indeed, vessel diameter is five times bigger than in normal tis-
sue [14], rarely differentiated into arterioles or venules, with frequently blind endings, and
incomplete and abnormal endothelial cell lining [15–17]. All these abnormalities gener-
ate an irregular blood flow [5], perpetuate the intermittent low oxygen delivery, increase
HIF activity and promote pro-angiogenic signals generation [18–20].
Over the past decade much work has been performed to understand the angiogenic

process. For instance, it is well-known that increased density of blood vessels (the so-
called “hot spots”), and high VEGF plasma levels are a powerful prognosis tool in many
human tumor types [21]. In fact, the capacity to modify this process has been considered
as a keystone for cancer treatment, which includes some molecules that reduce the abil-
ity of TAF, and in particular of the VEGF, to provide blood supply toward the tumor and
thus controlling tumor growth. Indeed, a recent meta-analysis [22] including 24 random-
ized trials with 8 different types of cancers, in which the synthetic antagonist of VEGF
(Bevacizumab®) was used in combination with chemotherapy, shown a statistically sig-
nificant improvement in the overall survival and progression of free cancer survival in
patients who received Bevacizumab® compared with those who did not receive this drug.
These beneficial effects were more evident in patients with colon cancer and renal cell
carcinoma, but less evident in those who had breast, pancreatic or prostate cancer. This
suggests that despite the overall benefit of Bevacizumab®, some patients and types of
cancer are more resistant to antiangiogenic therapy. A possible explanation to this phe-
nomenon is the presence of CSC, whose differentiation could occur independently of
VEGF [23].
Altogether these last evidences indicate that angiogenesis during tumor growth is a

complex process which study demands the use of many experimental approaches, and
actually experimental analysis is in general expensive and/or difficult to be carried out and
moreover no experiment can fully explain this process. For these reasons, mathematical
modelling might theoretically combine a broad range of biological events for giving a
better vision of the overall tumor progression including angiogenesis.
Since the seminal work of Greenspan [24], the mathematical modelling of avascular

solid tumor growth has been rapidly expanding. Most models in this area consist of
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nonlinear partial differential equation systems (e.g. see References [25–28]), and may
be described as a macroscopic approach. In this work we will focus on tumor-induced
angiogenesis and on some of the key aspects of vascular tumor growth, so we will omit a
bibliographical discussion about avascular tumor growth in this manuscript, but we refer
to exceptional work [3, 29–31] and the references therein.
Modelling tumor-induced angiogenesis has a well-established history beginning with

the work of Balding and McElwain [32]. These authors proposed a simple model of
tumor angiogenesis to describe experiments in which tumor cells implanted in the rab-
bit cornea stimulated formation, growth and migration of new blood vessels from the
corneal limbus to the tumor [3]. Since the pioneer work of these authors [32], much of
the mathematical modelling has focused on the way in which TAF initiate and coordi-
nate capillary growth [33]. The next phase in tumor development, namely vascular tumor
growth, has received less attention than avascular growth and angiogenesis in mathemat-
ical modelling literature. See also [34, 35] for early work on vascular tumor growth and
invasion.
In order to show some examples in which mathematical modelling combined with

biological experiments have contributed to a better cancer understanding, we will
highlight some selected results centered on targeted therapies efficacy. In the papers
[36–38], the authors studied multiscale models to address questions related to prediction
of chemotherapy and radiotherapy efficacy. Likewise, Lignet et al. [39] and Panovska et
al. [40] developed models to investigate the combined effect of anti-proliferative therapy
with anti-TAF or anti-vascular therapy. Additionally, Billy et al. [41] studied the efficacy
of a new anti-angiogenesis treatment and provide some indications about the best way
to optimize this cancer treatment strategy. In our very recent work [42], we dealt with
tumor drug resistance modelling in hepatic gastrointestinal stromal tumor (GIST) metas-
tases, which exhibit resistance to two standard treatments: imatinib and sunitinib. Based
on an accurate analysis of medical images, we provided a patient-dependent model that
reproduces qualitatively and quantitatively spatial tumor evolution, as shown the follow-
up clinical data that we have carried out. Interestingly, specific aspects of tumor growth
as spatial heterogeneity and treatment failures could be explained by our model. See
Section Looking for a hybrid approach.
Additionally, also concerning the combination of mathematical modelling with clinical

data, another recent work from our group described the basic principles of mathemat-
ical modelling, as well as, the advantages, limitations and future prospects using both
oncology imaging andmodelling [43]. Combination of imaging andmodelling can resolve
complex problems and describe many aspects of tumor growth or response to treat-
ment, and therefore nowadays is possible to consider its clinical use in the medium term.
Accordingly, in the present work we also describe some aspects of tumor growth mod-
elling giving more details and, at the same time, we suggest some biological experiments,
as well as, the way of combining them to provide new insights in tumor progression,
angiogenesis and response to treatments. To do this, in the next section we focus on
deterministic models which analyze tumor growth as a macroscopic mechanical process
involving the whole tumor tissue rather than analyzing individual cells, in the same way
as models presented so far in this section. In addition, in the Section Looking for a hybrid
approach, we give some insights about how mathematical modelling should be modified
for fitting with the biological scenario of a specific cancer.
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Basic principles of mathematical modelling of tumor growth
Taking into account the complexity of the processes involved in all the stages of tumor
growth, it is not difficult to understand that mathematical models are to a large extent
basically phenomenological and simplified compared to what is happening in a biological
context. Roughly speaking, from a biological point of view two main types of modelling
can be distinguished: those that only consider the tumor as a whole, and those that also
consider the spatial distribution of tumor components [43].
The key challenge is to develop mathematical models for tumor progression including

the aspectsmentioned above, in which optimal combination of drugs is simulated in order
to suggest the best protocols for improving clinical outcomes. In addition, these models
may be used to shed light about the existence of new mechanisms that could explain
phenomena clinically observed and may have predictive capability. To do this, parameter
estimation of these models is a key issue for which performing experiments or collecting
clinical data are required. Then, in this work we want to emphasize two main aspects;
the first one is the mathematical modelling of tumor progression; and the second one is
how data coming from experimental biology or clinical data may contribute to parameter
estimation.

Non spatially-structured models of tumor growth based on ordinary differential equations

We present below some simple models considering only the change in volume at which
tumor growth occurs, without taking into account tumor environment.We focus onmod-
els based on ordinary differential equations (ODE). To do this, we borrow some ideas by
Byrne [44]. See Appendix A for a more detailed discussion.
One of the simplest models that can be used to describe the way in which the

number of cells N(t) within a solid tumor changes over time is the exponential
growth law. In this model, there are no constraints on cell growth: all nutrients and
other vital growth factors are assumed to be available in abundance. In consequence,
the model predicts that the population will increase exponentially, without limit.
See Fig. 1.
Whilst the exponential growth law is not realistic enough, it provides an accurate

description of the early stages of a tumor development. In particular, reduced growth and
eventual saturation are observed when avascular tumors are grown in vitro or when vas-
cular tumors develop in vivo. This discrepancy arises because as the tumor increases in
size, competition for nutrients and other vital resources, such as space, can no longer be
neglected. A simple modification of the exponential growth law which takes account of
competition for resources (without specifying what those resources are) is the logistic
growth law.
Whilst the logistic growth law predicts almost exponential growth of small tumors and

growth saturation when the tumor reaches its carrying capacity (see Fig. 1), the symme-
try of N(t) about its point of inflection means that it is not particularly flexible to fit or
describe experimental data. A more general family of curves, which, depending on the
choice of a parameter α can saturate more or less fastly than the logistic growth law, is
given by

dN
dt

= k
α
N

[
1 −

(
N
θ

)α]
, withN(t = 0) = N0, (1)
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Fig. 1 Plot of the different tumor growth laws. Exponential growth law (solid-dotted line); logistic growth
(solid line); general growth law (α = 0.5, circles and α = 2.0, crosses); Gompertzian growth law (dots).
Parameter values: k = 0.1, θ = 1.0, N0 = 0.1

where k > 0 represents the net rate at which tumor cells proliferate and θ > 0 denotes
the carrying capacity.
We remark that the logistic growth law is a special case of (1) (set α = 1) and that the

Gompertzian growth law is recovered in the limit as α → 0+, which states that the net
proliferation rate of tumor cells exponentially decreases with time.
In order to compare the four models presented above, we plot in Fig. 1 growth curves

for each model for fixed values of the proliferation rate k and the carrying capacity θ .
These models are too simple to provide useful, reliable and reproducible information

about the tumor from the phenomenological change in its volume, which varies between
different tumors and patients. They may, however, be made more complex to incorporate
tumor cell heterogeneity (coming from the cell cycle) or to take into account different
processes such as angiogenesis; see Reference [43].
In order to getmodels with predictive capability an important issue is parameter estima-

tion, which has to be performed for fitting modelling with experimental or clinical data.
For example, estimating parameters k and θ for the logistic model (see (13) in appenA) is
roughly made by minimizing the error

E(k, θ) =
M∑
i=1

(N̂i − N(ti))2, (2)

where N̂i, i = 1, . . . ,M areM experimental or clinical measurements collected at different
times, say ti (i = 1, . . . ,M), during the tumor evolution, corresponding to the observed
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numbers of tumor cells at the time instants ti, and N(ti) are the numbers of tumor cells
predicted by the model at time instants ti. The minimization of the error E(k, θ) (2) is
made in this case with respect to the parameters k and θ in such a way that the responses
of the modelN(ti) approximately match the data N̂i. When the minimum of (2) is reached
for some (k̂, θ̂ ), the error E(k̂, θ̂ ) is called the least-squares error whereas (k̂, θ̂ ) is known as
the least-squares estimate of the parameter (k, θ). It is worth noting that the optimization
process can be quite complicated depending on the model, the number of parameters and
of the availability of data; the interested reader is referred to the textbook [45].
Classically the mathematical models used for clinical applications are based on systems

of non-linear ODE, which do not consider the spatial aspect of tumor growth. Despite
of it, these models have great interest in biological applications and typically they are
parametrized using statistical methods and may provide a prognosis of tumor volume,
but neither shape nor location of tumor can be estimated. See references [46, 47].
In order to appreciate the impact of parameter estimation in the clinical context, for

example we refer to a recent meta-analysis [48] which describes natural development of
meningiomas, a kind of neurological tumor. In [48], 22 studies reporting 675 patients
with untreated meningiomas were found, followed by serial magnetic resonance imaging
(MRI) during 5 years. From the analysis, authors show that tumors which initial diameter
was > 2.5 cm exhibit a linear growth rate > 10% per year, which leads to the highest risk
for developing progressive symptoms. By contrast, untreated meningiomas which initial
diameter was < 2.5 cm do not show tumor growth over a follow-up period of 4.6 years.
Then, the finding of the parameter 2.5 cm as a threshold for meningiomas in vivo allows
to describe tumor biologically more aggressive and classify patients who might require or
not surgery, which may avoid excessive intervention.

Spatially-structuredmodels of tumor growth based on partial differential equations

We describe below generic modelling, based on partial differential equations (PDE),
which consider the effect that changes in the composition of the medium surrounding
the tumors have on their growth. We focus on the study of three key issues: vascular
tumor growth, tumor-induced angiogenesis and invasion, and efficacy of treatments such
as anti-proliferative and anti-angiogenic therapies. See Appendix B for a more detailed
discussion.
The most basic principle for all quantitative models is conservation of mass [49].

Conservation of mass of a component in a dynamic and open system states that:
⎛
⎜⎜⎜⎜⎜⎜⎝

Net rate of
change
of mass
of component
in the system

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Mass flow
of the
component
into
the system

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

Mass flow
of the
component
out of
the system

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

Rate of
production
of the
component by
transformations

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

Rate of
consumption
of the
component by
transformations

⎞
⎟⎟⎟⎟⎟⎟⎠

The local mass balances are the mathematical form of equality, which can be written as

∂C
∂t

= −∇ · J + r, (3)

where t is time; C is the concentration of the component in the system; J is the mass
flux of the component; and r is the net production (or growth) rate of the component.
This is the equation of continuity for a component, either tumor cell densities or chemical
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concentration of a growth rate limiting (e.g. oxygen or glucose), or of TAF, or of drugs
against cancer.
The transport processes that regularly are considered in cancer models are advection

(for cell densities) and molecular diffusion (for chemical concentrations). The general
expression to model the specific mass flux of a component is

J = vC − D∇C, (4)

where v is the velocity field due to the mechanical forces which act on the system (e.g. the
pressure within the tumor) and D is the diffusion coefficient.
We assume that transport of tumor cells is driven only by advection. Consequently,

applying the principle of mass balance, the spatiotemporal dynamics of cell populations
are formulated as the generic PDE:

∂f
∂t

= −∇ · (vf ) + r(f ), (5)

where r(f ) is the net growth rate of the cell density f , which depends on the cell population
considered, and ∂ f

∂t stands for the partial derivative with respect to time (representing the
rate of change of the mass density f ). For example, if f represents the proliferating tumor
cells density, designed as f = P, then

r(P) = �P − δP. (6)

In replacing r(P) in (5), one arrives to

∂P
∂t

+ ∇ · (vP) = �P − δP. (7)

This formula is called a reaction-advection equation, because of the presence of the
advection term ∇ · (vP) and the reaction term �P − δP. The term �P represents the net
tumor growth rate, which is determined by local oxygen concentration. For example

� = γ0
1 + tanh(R(C − Chyp))

2
, (8)

where C represents the local oxygen concentration, Chyp is a parameter which describes
the sensitivity of cells to hypoxia and γ0 stands for the maximal proliferation rate. � is
chosen according to (8) in such a way that it satisfies the following properties: � → γ0 as
C � Chyp, i.e. cells proliferate as the oxygen concentration is high enough, and � → 0 as
C � Chyp, i.e. cells do not proliferate as the oxygen concentration is low enough (hypoxia).
Moreover R > 0 is a numerical smoothing parameter, in such a way that � be a smooth
version of a Heaviside function.
The term δP represents the necrosis due to a generic anti-proliferative drug, where the

parameter δ represents the doses of such drug. Eq. 7 is a basic form for modelling tumor
proliferation and obviously there are others terms which we could add, for example, a
term taking into account the passage to quiescence (see Appendix B).
Similarly, we assume that transport of chemical concentrations is driven only by diffu-

sion. Consequently, applying the principle of mass balance, the spatiotemporal dynamics
of chemical concentrations are formulated as the generic PDE:

∂g
∂t

= ∇ · (D∇g) + r(g), (9)
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where r(g) is the reaction term of the chemical concentration g. This formula is called
reaction-diffusion equation. For example, the local oxygen concentration is given by:

∂C
∂t

− ∇ · (DC∇C) = −gC + hC , (10)

where DC stands for the diffusion coefficient of local oxygen in the blood flow, hC is the
production of oxygen in the functional blood vessels, and gC is the consumption of oxygen
mainly due to proliferation tumor cells.
Likewise, the anti-proliferative drug concentration is given by

∂M
∂t

− ∇ · (DM∇M) = −λM − aMP + ρδM, (11)

where DM is the diffusion coefficient of anti-proliferative drug in the blood flow, λ is
the mean-life of such drug, a is the consumption rate due mainly to proliferation tumor
cells, ρ represents the blood flow, and finally δM denotes the doses of the drug admin-
istrated at different time intervals. Similar equations also hold for the blood flow ρ, the
anti-angiogenic drug concentration and the TAF concentration, particularly the VEGF.
Mathematical modelling described above relies on systems of non-linear PDE, in which

a set of parameters takes into account the complexity of the underlying biological phe-
nomena. In order to apply such models in practical situations, these parameters need to
be identified, that is to say, biologically meaningful values have to be estimated. One way
to determine their values is by means of inverse problems theory, exploiting data coming
from medical images, as achieved in References [50, 51]. One of the main difficulties is
that the amount of data for system identification is scarce. Although medical scans allow
an accurate localization of tumors in space, little information can be inferred regarding
cellular nature or nutrient distribution inside tumors. In addition, usually only two scans
are available before treatment, which makes estimation of tumor evolution a challenging
problem.
On the other hand, retrieving tumor shape evolution may provide useful information

since PDE based models are spatially distributed. We will return to this important issue
in the next section. One possible approach to formulate the inverse problem is by opti-
mal control theory, as was done for instance in [50]. In this approach a PDE-constrained
optimization problem has to be solved. For instance, one can consider a functional to be
minimized by matching spatiotemporal evolution of tumor density predicted by math-
ematical modelling with the corresponding tumor density maps estimated from serial
scans for one particular patient. In order to carry out theminimization process an adjoint-
based algorithm is used for evaluating the gradient of the functional. This algorithm is
expensive, since each optimization iteration requires solving a number of forward prob-
lems equal to number of variables. A different approach, as was done for instance in [51],
consists in using the difference between a variable predicted by the model and its corre-
sponding observed value (the residuals of themodel) within aNewtonmethod to solve the
inverse problem. This identification procedure is based on proper orthogonal decomposi-
tion (POD), a way to identify complex natural processes with models that are intrinsically
much simpler than biological scenarios. In this approach the solution is sought in a given
low-dimensional functional space, which basis gives an optimal representation of a suffi-
ciently large number of solution samples. In particular, the parameter space is sampled in
such a way that all the possible different biological behaviors are represented.
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We finish this section by showing some results which are part of a work in progress.
We have carried out some numerical simulations of a tumor growth model under normal
conditions, i.e., in absence of treatments. These simulation results are depicted in Fig. 2,
which shows the distribution of endothelial cells (right), as well as, the distribution of
the sum of the proliferative and quiescent tumor cells (left). The time unit is 12 hours.
Because of the configuration (four blood vessels initially placed far from tumor cells),
the proliferative and quiescent tumor cells initially decrease, which can be clearly seen in
Fig. 2. At the same time, this would produce an increment of the VEGF in the regionwhere
the quiescent cells are concentrated. This would trigger the proliferation of endothelial
cells making them to move by chemotaxis towards the tumor (see Fig. 2). This process
takes place between t = 30[ 12 h] and t = 140[ 12 h], generating four sources of nutrients
which are enough to increase the oxygen concentration over the hypoxic level. Further, as
a result a lack of production in VEGFmay be observed which it is thought to be consumed
by endothelial cells. At this stage, the main effect is the reactivation of the proliferation
of peripheral tumor cells due to high levels of nutrients in a neighborhood of the new
blood vessels. However, after some time the oxygen concentration would be consumed
by proliferative cells to levels that produce the usual distribution in three layers of tumor
cells (see Fig. 3) described in the schedules of fully developed tumors [44]. A diminution
in the spread of endothelial cells can also be observed in Fig. 2 as a consequence of tumor
growth, which is reflected as a reduction in density of the four blood vessels between
t = 159[ 12 h] and t = 250[ 12 h]. Accordingly vascular collapse and regression in tumors
has been suggested [52], and it is thought that is a consequence of the biomechanical
stresses and of the action of the interstitial pressure [53].

Looking for a hybrid approach
Parameter estimation is highly required in order to improve models for tumor progres-
sion and provide new clinical insights. In this regard, we have defined hybrid approach
as the feedback capacity between mathematical modelling and biological experimental
design. This approach may lead to a better understanding cancer, by fitting mathematical
parameters with biological processes, in order to achieve accurate biological predictive
models. In this section we will give two examples which illustrate the hybrid approach.
The first example is concerned with tumor cell proliferation. As mentioned in Section

Introduction, tumor cell proliferation can be correlated to oxygen concentration, and
indeed one could think that the higher the oxygen concentration the higher the tumor
cell proliferation. However, this is not always like that. In particular, elevation of anaero-
bic metabolism in tumor cells during avascular or even vascular tumor growth has been
described, a phenomenon calledWarburg effect [54], which involves a shift inmetabolism
away from oxidative phosphorylation (i.e., aerobic) towards anaerobic glycolisis. There-
fore, tumor cells are resistant to hypoxia which indeed, depending on the threshold, may
stimulate cell proliferation. In this regard, unpublished results from our lab using two
ovarian cancer cell lines, HEY andUCI, were cultured under two different oxygen concen-
trations, 21% (normoxia) and 5% oxygen (hypoxia) respectively. Under these conditions,
UCI cells were significantly more sensitive to oxygen variations than HEY cells. Indeed
under 21% oxygen UCI cell proliferation was accelerated about 3 times compared to 5%
oxygen, whereas in the case of HEY cells, the proliferation did not significantly change
from both different oxygen concentrations (see Fig. 4). Considering these last results into
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Fig. 2 Four snapshots of tumor evolution in absence of treatment at times t = 10, 70, 159 and 250[ 12 h]. (Left)
Spatial distribution of proliferative plus quiescent tumor cells. (Right) Spatial distribution of endothelial cells
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Fig. 3 Three layers fully developed distribution of the tumor at time t = 270[12 h]. Spatial distribution of
proliferative cells (up), quiescent cells (middle) and necrotic cells (down)
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Fig. 4 Different cell proliferation in ovarian cancer cells. Two cell lines derived from human ovarian cancers
were used (HEY and UCI). Cells were cultured under 21% and 5% oxygen during 0, 3, 6, 12 and 24 hours. Cell
proliferation was analyzed by bromouridine incorporation as previously reported [58]. Data is presented as
the logarithm of t50 (replication time) ± SEM. N = 4 per group and analyzed time. *p < 0.05 vs HEY at 21%
oxygen. **p < 0.05 vs UCI at 21% oxygen

the mathematical modelling described before, net tumor growth rate � in Eq. 8 need to
be remodelled. In Fig. 4, it is clearly seen that UCI cells behave as one would expect, i.e.,
the higher the oxygen concentration the higher the tumor cell proliferation; in contrast,
no matter the oxygen concentration, HEY cells undergo the same proliferation rate. Con-
sequently, whereas net proliferation rate for UCI cells behaves as function � defined by
(8), one should modify the equation for HEY cells. In addition, parameters Chyp and γ0
could be estimated using the same experimental setting.
The second example is concerned with tumor drug resistance in gastrointestinal stro-

mal tumors (GIST) liver metastases. In our very recent work [42], we have modelled and
simulated resistance to two standard treatments: imatinib and sunitinib. In this regard,
the specific tyrosine kinase inhibitors, imatinib, is used as standard first-line treatment.
In most of the cases this drug leads to tumor reduction during several months, but then,
most of the patients relapse and the tumor is no longer responding to treatment. Then the
standard care switches to a second-line treatment using a multi-targeted tyrosine kinase
inhibitor (sunitinib), which has both cytotoxic and antiangiogenic effects. After use this
second drug, metastasis is controlled for some additional time before a new therapeutical
failure occurs. Considering this clinical data, we have splitted the density P of proliferative
cells (P-cells) into 3 subpopulations P1, P2 and P3, such that P = P1 + P2 + P3, where

• P1 denotes the fraction of proliferative cells that are sensitive to the first-line
treatment, based on imatinib molecule, and also to the second-line treatment, based
on sunitinib;

• P2 describes the density of proliferative cells that are resistant to the first-line
treatment and sensitive to the second-line treatment; and

• P3 stands for proliferative cells that are resistant to both treatments.
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According to the clinical observations, it seemed relevant to consider that the three cell
sub-populations are present when the GIST metastasis is detected. In the mathematical
models, we describe tumor growth evolution in terms of tumor area, as well as, its spatial
structure and compared with the CT-scans measurements. We believe that intra-tumoral
spatial heterogeneity may be related to an increase in the cellular activity, which would
mean that a resistant phenotype should be emerging. Indeed according to our modeling,
such heterogeneity may be seen as the first stage of the treatment failure, while Response
Evaluation Criteria In Solid Tumors (RECIST) [55] do not bring any information about
this fact. Therefore our work can be seen as a first step in developing new tools to evaluate
tumor response to treatment based on tyrosine kinase inhibitors. Consequently, as men-
tioned in the previous section, retrieving the evolution of the tumor shape may provide
useful information for clinical applications.
According to the discussion above, data coming from clinical observations were cru-

cial in order to develop a complex model that takes into account tumor heterogeneity
and treatments resistance. In addition, our model parameters were calibrated in a patient-
dependent way, in particular, estimating parameters for two patients and fitted with their
specific tumor evolution. Consequently, in this example, mathematical modelling dis-
cussed before (in particular Eq. 7 among others) was adapted from cross-talk between
physicians and mathematicians based on clinical observations, leading to a new mod-
elling capable to provide better insights for enhancing clinical meaning of mathematical
modelling.

Conclusions and future directions
In this work we described and discussed mathematical modelling of tumor progression,
including some aspects as vascular tumor growth, angiogenesis and effectiveness and/or
resistance to therapies. We also emphasized what we have called hybrid approach in
which inverse and progressive confirmation by biological experimentation and use of data
from patients with cancer is suggested for enhancing clinical meaning of mathematical
modelling. We believe that hybrid approach is a key tool for better understanding cancer,
which has been illustrated by two specific examples carry out by our group.
Hybrid approach also involves a big challenge for researchers in cancer field, since

despite cancer is deeply analyzed from the particular perspective in each disciplines, when
mathematical modelling and biological research face each other, an easier and common
language is required in order to go beyond understanding of the pathology. This is not
easy to deal with, because there are many differences in the expertise, nomenclature, lan-
guage and even in the way of thinking that could slow down the communication. Then,
one of the main challenges to be overcame is listening and learning each other, maintain-
ing academic discussions where we could bridge the gap on these differences. With hope
we have seen a growing number of publications and working groups which are seeking
to combine science, but it is still insufficient. In addition, at the same time another step
that can be done is the inclusion of physicians in this discussion/analysis in order to look
forward potential clinical interest and application of the generated knowledge from basic
sciences. These interactions not only will enhance knowledge of cancer, but also improve
clinical meaning of mathematical modelling.
Parameter estimation in mathematical modelling may ask very specific questions that

need to be designed and tested in vivo or in vitro. These questions might constitute a
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challenge for biologist due to limitation in available technology, and also because some
parameters are not easy to determine or even not necessarily represent an in vivo sys-
tem, but they are only associated with. For instance, reaction-diffusion Eq. 10 models
the balance between variation, diffusion, production and consumption of local oxygen.
Despite in mathematical modelling constitutes a usual equation, in biological terms series
of experimentation are required in order to analyze how oxygen is delivered towards
tumor, how is diffused from vessels to tumor, how tumor cells may control blood flow and
oxygen delivery, among others. In particular, future directions should focus in a suitable
design of in vitro or in vivo models for answering such mathematical questions. In this
regard, another experimental setting we would like to suggest is isolation of endothelial
cells derived from patient’s tissue after biopsies, as it has been already previously devel-
oped [56, 57]. This particular cell type might be used for testing specific questions such as
how and how much VEGF released from tumor cells may enhance tube formation capac-
ity of that endothelium. Interestingly, anti-angiogenic drugs could also be tested using this
experimental setting, which results might be used for parameter estimation.
Future directions in tumor growth modelling should include a cross-talk between

biological and theoretical researchers in order to unify effort and generate an active inter-
action between them. A more common language and understanding each other will be
helpful in order to enhance generation of high impact knowledge in tumor growth. In this
regard, combination of in vivo and in vitro experimentation with theoretical analysis is a
major challenge which hopefully is changing. In this manuscript we intend to contribute
in this field, which of course is limited in comparison with what is needed to be done in
order to achieve a better understanding of tumor growth, but it constitutes an example
which may alert both mathematicians and clinicians.

Appendix A: Tumor growth laws based on ordinary differential equations
In this appendix we give some details about of the non spatially-structured models of
tumor growth based on ordinary differential equations.
One of the simplest models that can be used to describe the way in which the number

of cells N(t) within a solid tumor changes over time is the exponential growth law which
states

dN
dt

= kN , with N(t = 0) = N0, (12)

whose solution is N(t) = N0 exp(kt). In Eq. 12, k > 0 represents the net rate at which the
cells proliferate, and N0 denotes the number of cells initially present within the tumor. In
this model, there are no constraints on cell growth: all nutrients and other vital growth
factors are assumed to be available in abundance. In consequence, the model predicts that
the population will increase exponentially, without limit.
Whilst the exponential growth law is not realistic enough, it provides an accurate

description of the early stages of a tumor development. In particular, reduced growth and
eventual saturation are observed when avascular tumors are grown in vitro or when vas-
cular tumors develop in vivo. This discrepancy arises because as the tumor increases in
size, competition for nutrients and other vital resources, such as space, can no longer be
neglected. A simplemodification of (12) which takes account of competition for resources
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(without specifying what those resources are) is the logistic growth law
dN
dt

= kN
(
1 − N

θ

)
, with N(t = 0) = N0. (13)

By using elementary calculus one arrives to

N(t) = θN0
N0 + (θ − N0) exp(−kt)

→ θ as t → ∞. (14)

In (13), θ > 0 represents the carrying capacity of the tumor cells population. Whilst
the logistic growth law predicts almost exponential growth of small tumors and growth
saturation when the tumor reaches its carrying capacity (N = θ), the symmetry of N(t)
about its point of inflection (where d2N

dt2 = 0 and N = θ/2) means that it is not particu-
larly flexible to fit or describe experimental data. A more general family of curves, which,
depending on the choice of a parameter α can saturate more or less fastly than (13), is
given by (1), which solution is

N(t) = θ

( Nα
0

Nα
0 + (θα − Nα

0 ) exp(−kt)

)1/α
. (15)

We remark that the logistic growth law is a special case of (1) (set α = 1) and that the
Gompertzian growth law is recovered in the limit as α → 0+. Gompertzian growth law
is given by

dN
dt

= kN ln
(

θ

N

)
, with N(t = 0) = N0, (16)

whose solution is

N(t) = N0 exp
( r
k
(1 − exp(−kt))

)
, for r = k ln

(
θ

N0

)
. (17)

The Gompertzian growth law states that the net proliferation rate of tumor cells
exponentially decreases with time. This is apparent because of that

dN
dt (t)
N(t)

= k ln
(

θ

N(t)

)
= r exp(−kt), (18)

and noting that k exp(kt) ln
(

θ
N(t)

)
= k ln

(
θ
N0

)
(i.e. k exp(kt) ln

(
θ

N(t)

)
remains constant

in time).
In order to compare the four models presented above, we plot in Fig. 1 growth curves

for each model for fixed values of the proliferation rate k, the carrying capacity θ and the
initial condition N0.

Appendix B: Tumor growth laws based on partial differential equations
In this appendix we give some details about of the spatially-structured model of tumor
growth based on partial differential equations, from which we have obtained the simu-
lation results depicted in Figs. 2 and 3. It is worth noting that this is a work in progress,
therefore the previous simulation results are not yet definitive. Moreover, we have not
included yet in this model the influence of drugs.
Our model consists in a system of partial differential equations of type advection-

diffusion-reaction. This system describes the evolution of the cell densities and of the
molecules (oxygen and VEGF), as well as, the interaction between them. The rules that
regulate such interactions are, in general, non-linear expressions of the coefficients in the
equations. All of these variables undergo temporal dependency (noted by t) and spatial
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Table 2 Notations used in the model

Variable Description


 Computational domain

P Proliferating tumor cells density

Q Quiescent tumor cells density

N Necrotic tumor cells density

S Host cells density

ρ Endothelial cells density

α VEGF concentration

C Oxygen concentration

v Advection velocity

k Permeability of the medium

dependency (noted by �x). However, to simplify the notation, such a dependence will be
omitted and by instance P shall be written instead of P(�x, t).
The notations used in the model are shown in Table 2, and the full model proposed for

the evolution of tumor growth coupled with tumor angiogenesis is shown in Table 3.
In above equations, � represents the specific tumor proliferation rate, given by Eq. 8;

fQP the specific rate of transition from the quiescent to the proliferative state; conversely,
fPQ the specific rate of transition from the proliferative to the quiescent state; fPN and
fQN represent the specific rate of necrosis, from the proliferative and the quiescent state,
respectively. These transition functions are given by:

fQP = γ0
1 + tanh(R(C − Chyp))

2
, (19)

fPQ = γ0

(1 − tanh(R(C − Chyp))

2

) (
1 + tanh(R(C − Csev

hyp))

2

)
, (20)

fPN = γ0

(
1 − tanh(R(C − Csev

hyp))

2

)
, (21)

fQN = γ0
1 − tanh(R(C − Cnec))

2
, (22)

where Csev
hyp is the severe hypoxia threshold, that is to say, the oxygen concentration under

which proliferative tumor cells die, and similarly Cnec is the oxygen concentration under
which quiescent tumor cells die. One obviously has that 0 < Cnec < Csev

hyp < Chyp to take
into account the fact that it is more difficult the quiescent tumor cells die.

Table 3 Summary of the equations used for the numerical simulation depicted in Figs. 2 and 3

Variable Equation

Proliferative tumor cells density Pt + ∇ · (vP) = �P + fQPQ − (fPQ + fPN)P

Quiescent cells density Qt + ∇ · (vQ) = fPQP − (fQP + fQN)Q

Necrotic tumor cells density Nt + ∇ · (vN) = fPNP + fQNQ

Host cells density St + ∇ · (vS) = 0

Endothelial cells density ρt + ∇ · (vρ) + ∇ · (gCH) = fρρρ

[O2] Ct − ∇ · (DC∇C) = −gC + hC
[ VEGF] αt − ∇ · (Dα∇α) = −gα + hα

Advection velocity v = −k∇ϕ

Pressure −∇ · (k∇ϕ) = �P + fρρρ − ∇ · (gCH)
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The transport of endothelial cells, which are responsible by tumor vascularization, is
mainly driven by chemotaxis toward the source of VEGF. This transport term is modelled
by

gCH = χ ρ ∇α, (23)

whereas the source of endothelial cells is given by

fρρ = χprol

(
α

αhalf + α

)
. (24)

In Eq. 23, χ denotes the sensibility to the chemotaxis, which is given by

χ = χchemo (1 − ρ), (25)

with χchemo is the maximum effect of VEGF on endothelial chemotaxis; χprol is the max-
imum effect of VEGF on the proliferation of endothelial cells; αhalf is a half-proliferation
constant, i.e., it denotes the VEGF concentration such that the proliferation of endothelial
cells is exactly half of its maximum (0.5χprol).
For the oxygen concentration C the source and the consumption are given respectively

by:

gC = (λC + εCP + βCQ)C, hC = Csouρ

(
1 − C

Cmax

)
, (26)

where λC is the oxygen half-life, εC is the consumption rate by the proliferating cells, βC
is the consumption rate by the quiescent cells, Csou the maximum oxygen level available
in functional blood vessels and Cmax the maximum oxygen level in the host tissue.
In a similar way, the source and consumption terms for the VEGF concentration are

given respectively by:

gα = (λα + πρ)α, hα = αsouQ
(1 − tanh(R(C − Chyp))

2

) (
1 − α

αmax

)
(27)

where λα is the VEGF half-life, αsou is the source of VEGF located at quiescent tumor
cells, αmax the maximum VEGF concentration and π denotes the binding rate of VEGF
to the receptors of the endothelial cells.
We have assumed that the total number of cells per volume unit is constant (andwithout

loss of generality equal to 1):

P + Q + S + N + ρ = 1. (28)

Adding the equations for the cell densities P, Q, S, N and ρ (see Table 3), we get:

∇ · v = �P − ∇ · (gCH) + fρρρ. (29)

Thus by imposing the Darcy’s law v = −k∇ϕ for the advection velocity, where k is the
permeability of the medium, we deduce the equation for the pressure ϕ (see Table 3).
Finally, we have noted Dj the diffusion coefficients for the different molecules j = 1, 2

(oxygen and VEGF):

Dj = Dj,max(1 − ε(P + Q + N)), (30)

whereDj,max is the maximum diffusion coefficient of the molecule j and ε > 0 is a param-
eter that represents the percentage of diminution of the diffusion within the tumor, due
to the higher density of this last one with respect to the host tissue.
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Table 4 Summary of the parameter values used in the simulation depicted in Figs. 2 and 3

Parameter Description Value Units

Chyp Threshold of hypoxia 5.5 M

Csevhyp Threshold of severe hypoxia 1.52 M

Cnec Threshold of necrosis 0.02 M

DC,max Maximum diffusion of oxygen 1 mm2 h−1

Dα,max Maximum diffusion of VEGF 0.1875 mm2 h−1

ε Percentage of loss of diffusion 20 %

Csou Oxygen concentration in functional blood vessels 8 M h−1

λC Degradation rate of oxygen 0.01 h−1

εC Rate of oxygen consumption by proliferative cells 3 cells−1 mm2 h−1

βC Rate of oxygen consumption by quiescent cells 1.5 cells−1 mm2 h−1

Cmax Maximum concentration of oxygen 8 M

λα Degradation rate of VEGF 1.25 × 10−4 h−1

π Binding rate of VEGF to endothelial cells 0.791 cells−1 mm2 h−1

αsou Production rate of VEGF 2.11 M cells−1 mm2 h−1

αmax Maximum concentration of VEGF 2.11 M

αhalf Shape parameter of fρρ 1.25 × 10−3 M

χchemo Maximum effect of VEGF on endothelial chemotaxis 1.25 × 10−2 mm2 M−1 h−1

χprol Maximum effect of VEGF on endothelial proliferation 5 × 10−2 h−1

For the boundary conditions, we assumed that the molecules will not go out or in
through of the boundary of the computational domain, that is to say, we assumed
homogeneous Neumann boundary conditions for C and α.
For the pressure field ϕ we imposed ϕ|∂
 = 0. This homogeneous Dirichlet condition is

used since we consider that the domain of interest is not isolated, and the outer medium
does not impose a pressure on the tumor. This assumption is valid for small tumors that
are not mechanically constrained by the extratumoral region.
Finally, Table 4 below shows the parameter values for which simulation depicted in

Figs. 2 and 3 was carried out. In Table 4 we use the following notations: h(hour),
mm(millimeter), M(molarity).
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