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Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation 
and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted 
widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic 
effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we 
investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes 
in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in 
osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze 
MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of 
the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-
Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular 
matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy 
in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged 
as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified 
as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in 
F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular 
matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. 
Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes 
provides a promising strategy for the clinical treatment of osteoarthritis.
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Introduction
Osteoarthritis (OA) is a prevalent degenerative joint 
disease that affects millions of people worldwide [1]. It 
is characterized by the gradual breakdown of cartilage, 
chronic inflammation, and functional limitations in the 
affected joints [2]. It poses a significant global health bur-
den, affecting millions of individuals and impairing their 
quality of life. Traditional management approaches for 
OA primarily focus on alleviating symptoms and improv-
ing joint function through the use of medications, physi-
cal therapy, and surgical interventions in severe cases [3, 
4]. However, despite these available treatments, the bur-
den of OA remains substantial, necessitating the explora-
tion of innovative approaches. In recent years, there has 
been a growing interest in investigating novel therapeu-
tic strategies that target the underlying mechanisms of 
OA, with the aim of halting or reversing disease progres-
sion. Researchers have turned their attention to emerg-
ing fields such as regenerative medicine, gene therapy, 
and tissue engineering, in an effort to revolutionize the 
approach to OA treatment [5, 6].

Regenerative medicine, particularly stem cell therapy, 
holds great promise in the realm of OA [7]. Mesenchy-
mal stem cells (MSCs) possess remarkable properties, 
including the ability to undergo multi-lineage differentia-
tion and self-renewal [8]. Moreover, MSCs play a crucial 
role in immune regulation, inflammation suppression, 
secretion of diverse cell growth factors, and tissue repair 
processes [9]. The paracrine mechanism serves as the pri-
mary mode of action for MSCs, with exosomes derived 
from MSCs representing a crucial avenue through which 
mesenchymal stem cells exert their therapeutic effects 
[10]. Exosomes, small extracellular vesicles released by 
cells, have emerged as key players in intercellular com-
munication [11]. MSC-derived exosomes, in particular, 
have gained attention for their regenerative and immu-
nomodulatory properties. They carry a diverse cargo of 
microRNAs (miRNAs), messenger RNAs (mRNAs), and 
proteins, enabling them to exert profound effects on the 
recipient cells through epigenetic regulation [12]. Fur-
thermore, the contents of exosomes can dynamically 
change in response to environmental stimuli, altering 
their biological effects and enhancing their therapeutic 
efficacy through remodeling of the recipient cell’s epigen-
etic chromatin [13].

Previous studies have shown that fucoidan exhibits 
potent anti-inflammatory, antioxidant, anti-diabetic, 
and immune-modulatory effects in vitro [14–16]. It has 
been observed to effectively suppress M1 macrophage 
polarization, and demonstrate strong therapeutic efficacy 
in rheumatoid arthritis [15]. Additionally, research has 

indicated that fucoidan-loaded nanogels have the ability 
to reduce the release of inflammatory factors in rat chon-
drocytes [17]. Fucoidan and its chemical modification 
have aroused great interest in drug development. There-
fore, we hypothesize that pretreatment of MSC-derived 
exosomes with fucoidan enhances their biological activ-
ity, leading to enhanced protection of osteoarthritic 
chondrocytes. In this study, we have developed fucoidan-
pretreated exosomes derived from MSCs (F-MSCs-Exo) 
and demonstrated that they exhibit superior efficacy 
compared to MSCs-Exo in suppressing inflammatory 
responses and extracellular matrix degradation in osteo-
arthritic rats. Furthermore, F-MSCs-Exo were found 
to activate autophagy in the affected cells. Through fur-
ther investigation, we have identified miR-146b-5p as a 
key component enriched in F-MSCs-Exo, which acts by 
silencing TRAF6 and inhibiting the PI3K/AKT/mTOR 
pathway. This miRNA plays a critical role in regulating 
both inflammation and autophagy processes.

These findings suggest that the development of exo-
some-based therapies utilizing a combination of fucoidan 
and MSCs holds great promise in providing innovative 
strategies for the treatment of osteoarthritis. The eluci-
dation of the underlying mechanisms further enhances 
our understanding of the therapeutic potential of these 
approaches.

Results
The isolation and characterization of exosomes
Exosomes were isolated from the supernatants of bone 
marrow mesenchymal stem cells (MSCs) treated with or 
without fucoidan by ultracentrifugation (Fig. 1A). Trans-
mission electron microscopy (TEM) was used to visu-
alize the morphology of MSCs-Exo and F-MSCs-Exo, 
showing that both are membrane-intact spheres with 
no significant difference (Fig.  1B). The positive markers 
of exosomes CD9, CD63, CD81, TSG101 and the nega-
tive marker Calnexin were detected by Western blot, and 
there was no difference between the two (Fig.  1C). As 
shown in Fig. 1D, the average protein concentrations of 
exosomes extracted from 106 cells were 5.30 ± 0.29  μg/
ml (MSCs-Exo) and 5.82 ± 0.47  μg/ml (F-MSCs-Exo), 
respectively. Therefore, there was no difference in protein 
between the two. The results of dynamic light scattering 
(DLS) show that the average diameters of MSCs-Exo and 
F-MSCs-Exo are 156.7  nm and 144.0  nm, respectively, 
and the size ranges of both are in line with the charac-
teristics of exosomes and there is no significant differ-
ence (Fig. 1E, F). The above results jointly confirmed the 
successful separation and extraction of MSCs-Exo and 
F-MSCs-Exo. In order to further explore the feasibility 
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Fig. 1  Isolation and identification of MSCs-Exo and F-MSCs-Exo. (A) Schematic diagram of obtaining MSCs-Exo and F-MSCs-Exo by ultracentrifugation. 
(B) TEM analysis of the morphology of MSCs-Exo and F-MSCs-Exo. (C) Western blot evaluation of surface markers of MSCs-Exo and F-MSCs-Exo. (D) Quan-
tification of protein concentration by BCA method. (E, F) The particle size and zeta potential of MSCs-Exo and F-MSCs-Exo were analyzed by DLS method. 
(G) Cellular internalization of MSCs-Exo and F-MSCs-Exo. (ns, no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)
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of using exosomes to treat OA, the internalization of 
exosomes by chondrocytes was detected, and MSCs-
Exo and F-MSCs-Exo were labeled with PKH67, and the 
results showed that MSCs-Exo and F-MSCs-Exo can 
be effectively taken up by target cells (Fig.  1G). CCK-8 
assay showed that treatment with the IL-1β significantly 
reduced the proliferation of chondrocytes, however, after 
MSCs-Exo and F-MSCs-Exo treatment, especially 10 μg/
ml F-MSCs-Exo, significantly attenuated IL-1β-induced 
inhibition of chondrocyte proliferation (Fig. S1B, C).

F-MSCs-Exo inhibit inflammatory response and M1 
polarization in vitro
In recent years, a wealth of research has strongly impli-
cated cartilage inflammation as the leading factor con-
tributing to the development of osteoarthritis [18]. To 
investigate whether MSCs-Exo and F-MSCs-Exo can 
suppress inflammatory responses in rat chondrocytes, 
and whether this effect is further enhanced by pre-treat-
ment with fucoidan, we found that after pre-treatment 
with 10ng/ml IL-1β, the inflammatory markers COX2 
and iNOS significantly increased. However, treatment 
with both MSCs-Exo and F-MSCs-Exo suppressed the 
elevation of inflammatory markers, with F-MSCs-Exo 
exhibiting a stronger effect than MSCs-Exo (Fig. 2A, B). 
In addition, the concentrations of IL-6, TNF-α, and PGE2 
in the cell supernatant were measured using ELISA assay 
kits, as shown in Fig.  2C, after treatment with IL-1β, 
these inflammatory factors increased. However, treat-
ment with MSCs-Exo and F-MSCs-Exo reduced the 
release of inflammatory factors, with F-MSCs-Exo dem-
onstrating a more significant effect. Previous studies 
have indicated that inflammation is primarily associated 
with macrophage polarization, specifically M1 macro-
phages, which are the main producers of pro-inflamma-
tory cytokines [19]. In this study, Raw264.7 cells were 
initially treated with LPS (100ng/ml) for 24  h, followed 
by a 24-hour co-culture with MSCs-Exo and F-MSCs-
Exo. Flow cytometry analysis revealed that M1 macro-
phages can be identified by their expression of CD86 and 
F4/80. Compared to the LPS group, both MSCs-Exo and 
F-MSCs-Exo significantly reduced the percentage of M1 
macrophages. Notably, F-MSCs-Exo exhibited a more 
pronounced effect compared to MSCs-Exo (Fig. 2D, E).

F-MSCs-Exo attenuated IL-1β-induced downregulation of 
anabolic markers and upregulation of catabolic markers in 
chondrocytes
One of the primary functions of chondrocytes is to main-
tain the synthesis and degradation of the extracellular 
matrix (ECM) [20]. To investigate the potential effects 
of MSCs-Exo and F-MSCs-Exo on cartilage matrix 
functionality, we assessed the expression of key mark-
ers involved in ECM synthesis, such as Collagen II and 

Aggrecan, as well as markers of degradation, includ-
ing MMP-13 and ADAMTS4, in chondrocytes follow-
ing IL-1β treatment. The results obtained from Western 
blotting and ELISA analyses demonstrated that IL-1β 
treatment led to a reduction in Collagen II and Aggre-
can levels, while increasing the levels of MMP-13 and 
ADAMTS4 in rat chondrocytes. However, treatment 
with MSCs-Exo and F-MSCs-Exo resulted in a signifi-
cant upregulation of Collagen II and Aggrecan levels, 
coupled with a notable downregulation of MMP-13 and 
ADAMTS4 levels. Importantly, F-MSCs-Exo exhib-
ited a more pronounced effect compared to MSCs-Exo 
(Fig. 3A, B, C). The cartilage matrix primarily consists of 
cartilage proteoglycans and polysaccharides. Due to the 
affinity between acidic sulfate groups and basic toluidine 
blue dye, toluidine blue staining is commonly employed 
to visualize and represent the cartilage matrix [21]. Tolu-
idine blue staining of chondrocytes also showed similar 
results as above (Fig. 3D). Furthermore, the results from 
immunofluorescence analysis also revealed a significant 
suppression of Collagen II downregulation and MMP-13 
upregulation by F-MSCs-Exo (Fig. 3E to H). In summary, 
these results unequivocally indicate that both MSCs-Exo 
and F-MSCs-Exo provide protection to chondrocytes 
against IL-1β-induced degradation of the extracellular 
matrix. Furthermore, it is noteworthy that F-MSCs-Exo 
exhibit superior protective effects in this regard.

F-MSCs-Exo increase IL-1β-induced autophagy in 
chondrocytes
Emerging research suggests that inflammatory or aging 
chondrocytes have the ability to regulate their intra-
cellular metabolic activity through cellular autophagy, 
thereby slowing down the progression of osteoarthritis 
[22]. The potential of F-MSCs-Exo in alleviating osteoar-
thritis through the modulation of chondrocyte autophagy 
remains a complex area of investigation. Western blotting 
and PCR results demonstrate that in IL-1β-stimulated 
chondrocytes, the expression levels of autophagy-related 
proteins ATG7, LC3, and beclin1 decrease, while P62 
levels increase. However, treatment with both MSCs-
Exo and F-MSCs-Exo activates cellular autophagy, with 
F-MSCs-Exo exhibiting a more remarkable effect com-
pared to MSCs-Exo (Fig.  4A, B, C). Additionally, the 
results from cellular immunofluorescence similarly reveal 
that F-MSCs-Exo treatment enhances the expression of 
autophagy-related protein LC3. In other words, F-MSCs-
Exo display a higher efficacy in activating cellular autoph-
agy (Fig. 4D, E).

Protective effect of F-MSCs-Exo on osteoarthritis in rats
To investigate the in vivo effects of MSCs-Exo and 
F-MSCs-Exo, a rat model of osteoarthritis was estab-
lished. The animals were divided into four groups: 
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Fig. 2  Effects of MSCs-Exo and F-MSCs-Exo on inflammatory response and M1 polarization in vitro. (A, B) Western blot analysis was performed to de-
tect the effects of MSCs-Exo and F-MSCs-ExoOD on inflammatory factors in chondrocytes induced by IL-1β. (C) The levels of IL-6, TNF-α, and PGE2 in 
the chondrocyte culture supernatant after IL-1β induction were measured using ELISA kits to assess the impact of MSCs-Exo and F-MSCs-Exo on these 
inflammatory mediators. (D, E) Flow cytometry was used to investigate the influence of MSCs-Exo and F-MSCs-Exo on M1 polarization. (ns, no significant 
difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)
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Fig. 3  Effects of MSCs-Exo and F-MSCs-Exo on the synthesis and metabolism of cartilage extracellular matrix in vitro. (A, B) Western blot analysis was 
performed to detect the impact of MSCs-Exo and F-MSCs-Exo on cartilage extracellular matrix synthesis and metabolism markers. (C) ELISA kits were 
used to measure the levels of Collagen II, Aggrecan, MMP-13, and ADAMTS-4 in the cell culture supernatant. (D) Cartilage extracellular matrix was directly 
visualized using toluidine blue staining (scale bar = 200 μm). (E ,F) The expression of Collagen II was quantitatively analyzed using immunofluorescence 
staining and ImageJ software (scale bar = 10 μm). (G, H) The expression of MMP-13 was quantitatively analyzed using immunofluorescence staining and 
ImageJ software (scale bar = 20 μm). (ns, no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)
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Fig. 4  Effects of MSCs-Exo and F-MSCs-Exo on autophagy of chondrocytes in vitro. (A, B) Western blot analysis was performed to detect the impact of 
MSCs-Exo and F-MSCs-Exo on autophagy-related indicators of chondrocytes. (C) Real-time PCR technology was used to evaluate the effects of MSCs-Exo 
and F-MSCs-Exo on autophagy-related indicators of chondrocytes at the gene expression level. (D, E) The expression of LC-3, a marker for autophagy, was 
quantitatively analyzed using immunofluorescence staining and ImageJ software to provide a detailed assessment of the autophagy levels in response 
to MSCs-Exo and F-MSCs-Exo treatment (scale bar = 10 μm). (ns, no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)

 



Page 8 of 21Lou et al. Journal of Nanobiotechnology          (2023) 21:486 

Fig. 5 (See legend on next page.)
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sham surgery group, DMM (destabilization of the 
medial meniscus) group, DMM + MSCs-Exo group, 
and DMM + F-MSCs-Exo group. Briefly, as depicted 
in Fig.  5A, after four weeks of establishing the DMM 
model in rats, weekly intra-articular injections of MSCs-
Exo and F-MSCs-Exo (10  μl/week) were initiated and 
continued for four weeks. Micro-CT is a non-invasive 
imaging technique that is utilized to evaluate changes in 
joint structure and tissues in the osteoarthritis model. 
The 3D reconstruction results obtained from micro-CT 
revealed that the DMM group of rats exhibited narrowed 
joint spaces, irregular joint surfaces, and an increase in 
osteophytes. However, following treatment with MSCs-
Exo and F-MSCs-Exo, remarkable improvements were 
observed. The knee joint surfaces became smoother, the 
presence of osteophytes reduced, quantitative scores 
also showed that these treatments were effective, and 
notably, F-MSCs-Exo exhibited a significantly enhanced 
therapeutic effect (Fig.  5B, C, D). Furthermore, we uti-
lized the H&E and S-O staining techniques to assess the 
condition of the articular cartilage tissue. In comparison 
to the sham-operated group, the DMM group exhib-
ited compromised cartilage surfaces with severe ero-
sion, as indicated by an elevated OARSI score. However, 
the treatment with MSCs-Exo and F-MSCs-Exo yielded 
remarkable improvements, resulting in smoother joint 
surfaces and a decrease in the OARSI score. Notably, 
F-MSCs-Exo exhibited a more pronounced efficacy in 
reducing cartilage cell erosion compared to MSCs-Exo. 
(Fig.  5E, F, G). Furthermore, through the implementa-
tion of immunohistochemistry and immunofluorescence 
techniques, we observed a significant elevation in the 
cartilage cell degradation marker MMP-13 and a notable 
decrease in the cartilage synthesis marker Collagen-II in 
the DMM group after 8 weeks of surgery. However, the 
administration of intra-articular MSCs-Exo and F-MSCs-
Exo injections partially ameliorated the imbalance in 
extracellular matrix metabolism. Notably, treatment with 
F-MSCs-Exo exhibited a reduced presence of MMP-13 
positive areas and an increased presence of Collagen-II 
positive areas, indicating a more favorable therapeu-
tic outcome in restoring a balanced extracellular matrix 
metabolism profile (Fig.  5H, I and Fig. S2A, B). P62 
serves as an adapter protein in autophagy, promoting the 
degradation of autophagy-related proteins. Interestingly, 
we observed a substantial upregulation of P62 expres-
sion in the DMM group. However, the administration 

of both MSCs-Exo and F-MSCs-Exo partially mitigated 
the elevation of P62. Notably, treatment with F-MSCs-
Exo displayed a more pronounced inhibition of this phe-
nomenon (Fig. 5J, K). In addition, the administration of 
MSCs-Exo and F-MSCs-Exo therapies has demonstrated 
the ability to decrease the upregulation of the inflamma-
tory marker INOS. Moreover, treatment with F-MSCs-
Exo exhibits a more pronounced reduction in the positive 
area associated with INOS expression (Fig. 5L, M). These 
findings unequivocally indicate that the therapeutic 
interventions using MSCs-Exo and F-MSCs-Exo effec-
tively mitigate inflammation and extracellular matrix 
degradation within the rat model. Furthermore, these 
treatments successfully activate intracellular autophagy. 
Notably, F-MSCs-Exo exhibit superior efficacy, corrobo-
rating the outcomes observed in in vitro experiments.

miR-146b-5p is a candidate effector for F-MSCs-Exo-
mediated improvement in osteoarthritis
Numerous studies have consistently indicated that exo-
somes exert their biological effects by transferring spe-
cific miRNAs, which in turn regulate the functionality 
of target cells [11]. In order to ascertain the precise 
mechanisms through which F-MSCs-Exo safeguard 
chondrocytes in osteoarthritis, we conducted miRNA 
sequencing and performed bioinformatics analysis to 
compare the distinct miRNA expression profiles between 
MSCs-Exo and F-MSCs-Exo (Fig. 6A). The miRNA heat-
map and volcano map analysis revealed the differential 
expression of miRNAs in MSCs-Exo and F-MSCs-Exo. 
Among the identified miRNAs, 13 exhibited significant 
upregulation, including rno-miR-146b-5p, rno-miR-615, 
rno-miR-23b-5p, rno-miR-411-5p, and rno-miR-1b. 
Conversely, 10 miRNAs displayed significant downregu-
lation, such as rno-miR-142b-3p, rno-miR-200a-3p, rno-
miR-702-3p, and rno-miR-16-5p. Notably, 189 miRNAs 
exhibited no statistically significant differences between 
the two groups (Fig.  6B, C, D). We performed KEGG 
and GO functional annotations on miRNA-related tar-
get genes. The results of the enrichment analysis revealed 
the significant involvement of the PI3K-AKT pathway 
and autophagy (Fig.  6E and Fig. S3A). Additionally, as 
illustrated in Fig.  6F, the most upregulated and highly 
expressed miRNA in F-MSCs-Exo is rno-miR-146b-5p. 
Considering previous research findings, there is a strong 
correlation between the PI3K-AKT pathway and miR-
146b-5p [23]. Moreover, miR-146b-5p has been proven 

(See figure on previous page.)
Fig. 5  Protective effects of MSCs-Exo and F-MSCs-Exo on osteoarthritis in rats. (A) A schematic diagram was provided, illustrating how MSCs-Exo and 
F-MSCs-Exo were used to treat osteoarthritis in rats. (B) Micro-CT 3D reconstruction of rat knee joints was conducted to visualize the structural changes 
and alterations in the knee join. (C, D) Quantitative analysis of the micro-CT results was performed to assess the changes in the knee joint’s structure. (E, 
F) H-E staining and S-O staining of rat knee joint sections at 8 weeks after operation were conducted for histological examination (scale bar = 500 μm). (G) 
The Osteoarthritis Research Society International (OARSI) score was used to evaluate the severity of osteoarthritis in rat cartilage, n = 6. (H to M) Immuno-
histochemical analysis was performed to visualize and quantify the expression levels of MMP-13, P62, and INOS in the rat knee joint (scale bar = 100 μm). 
(ns, no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)
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Fig. 6  miR-146b-5p is a candidate effector for F-MSCs-Exo-mediated improvement in osteoarthritis. (A) A schematic diagram was presented to illustrate 
the process of miRNA sequencing and subsequent bioinformatics analysis. (B) The heat map showed the differential expression profile of miRNAs be-
tween MSCs-Exo and F-MSCs-Exo. (C, D) The pie chart and volcano plot displayed the distribution of up-regulated and down-regulated miRNAs between 
MSCs-Exo and F-MSCs-Exo. (E) KEGG enrichment analysis of F-MSCs-Exo was performed to investigate the potential biological pathways and processes 
affected by these miRNAs in the treatment of osteoarthritis. (F) Expression of up-regulated miRNAs in F-MSCs-Exo. (G) Targetscan was used to predict the 
binding site of rat miR-146b-5p and TRAF6

 



Page 11 of 21Lou et al. Journal of Nanobiotechnology          (2023) 21:486 

to play a critical role in the regulation of autophagy [24, 
25]. Therefore, we have compelling reasons to believe 
that rno-miR-146b-5p is an effective candidate factor for 
the treatment of osteoarthritis using F-MSCs-Exo. Con-
sequently, we focused our experimental efforts on further 
investigating rno-miR-146b-5p.

Enriched miR-146b-5p in F-MSCs-Exo alleviates 
osteoarthritis by targeting TRAF6 to inhibit PI3K/AKT/
mTOR pathway
Numerous previous studies have consistently shown 
that miR-146b-5p inhibits the synthesis of inflammatory 
mediators by targeting tumor necrosis factor receptor-
associated factor 6 (TRAF6) [26]. Additionally, the PI3K/
AKT/mTOR signaling pathway plays a vital role in the 
normal metabolism of joint tissues. Research has dem-
onstrated that inhibiting this pathway can alleviate osteo-
arthritis by promoting autophagy [27]. Notably, TRAF6 
has been identified as an effective E3 ubiquitin ligase 
for the PI3K catalytic subunit, exerting a significant role 
in autophagy [28]. Overexpression of TRAF6 greatly 
enhances PI3K activation, resulting in AKT phosphoryla-
tion. Consequently, it is reasonable to posit a close inter-
connection between miR-146b-5p, TRAF6, and the PI3K/
AKT/mTOR pathway. By employing protein blotting 
techniques, we have substantiated that both MSCs-Exo 
and F-MSCs-Exo can suppress the elevated expression 
of TRAF6 and the PI3K/AKT/mTOR pathway induced 
by IL-1β. Importantly, F-MSCs-Exo exhibited more pro-
nounced effects compared to MSCs-Exo (Fig. 7A, B). The 
results from cellular immunofluorescence also support 
the superior inhibitory potential of F-MSCs-Exo on the 
IL-1β-induced upregulation of TRAF6 (Fig. 7C, D).

To further explore whether F-MSCs-Exo can exert its 
inhibitory effects on the PI3K/AKT/mTOR pathway by 
silencing TRAF6 via miR-146b-5p, we conducted an 
analysis using the Targetscan database [29]. This analy-
sis revealed the existence of a specific binding region 
between miR-146b-5p and TRAF6 (Fig.  6G). Addition-
ally, our hypothesis was reinforced by the use of a miR-
146b-5p inhibitor. Staining results with Alizarin blue and 
Fast Red demonstrated that the therapeutic effects of 
F-MSCs-Exo were inhibited by the miR-146b-5p inhibi-
tor (Fig.  7E, F). Furthermore, protein blotting results 
indicated that F-MSCs-Exo effectively suppressed the 
IL-1β-induced upregulation of TRAF6 and the PI3K/
AKT/mTOR pathway, whereas the miR-146b-5p inhibi-
tor attenuated this effect (Fig.  7G, H). These findings 
strongly suggest that miR-146b-5p, enriched in F-MSCs-
Exo, exerts its inhibitory effects on the PI3K/AKT/mTOR 
pathway by targeting TRAF6.

Antagomir-146b-5p reversed the protective effect of 
F-MSCs-Exo on osteoarthritis in rats
To investigate the potential involvement of miR-146b-5p 
in the therapeutic efficacy of F-MSCs-Exo for treating 
osteoarthritis in rats, we utilized Antagomir-146b-5p, 
a modified miRNA antagonist. In brief, as depicted in 
Fig. 8A, we established a rat model of destabilization of 
the medial meniscus (DMM) and, after a 4-week period, 
initiated weekly intra-articular injections of F-MSCs-
Exo (10  μl/week) for a duration of 4 weeks. Concur-
rently, starting from the 4th week, we administered 
Antagomir-NC (5nmol/week) or Antagomir-146b-5p 
(5nmol/week) via intra-articular injection using a micro-
liter syringe. The results of 3D knee joint reconstruction 
using Micro-CT reveal that the articular surface of the 
F-MSCs-Exo + Antagomir-146b-5p group appears less 
smooth compared to the F-MSCs-Exo + Antagomir-NC 
group. Additionally, there is an increase in the formation 
of osteophytes, resulting in a significantly higher osteo-
phyte score in the F-MSCs-Exo + Antagomir-146b-5p 
group (Fig. 8B, C, D). H&E and S-O staining results also 
demonstrate that the use of Antagomir-146b-5p elimi-
nates the therapeutic effects of F-MSCs-Exo on osteo-
arthritis, leading to a significant increase in the OARIS 
score (Fig. 8E, F, G). Furthermore, immunohistochemis-
try analysis shows that F-MSCs-Exo effectively reduces 
the positive areas of MMP-13, iNOS, and P62. However, 
the use of Antagomir-146b-5p significantly diminishes 
the inhibitory effects of F-MSCs-Exo on MMP-13, iNOS, 
and P62 (Fig. 8H to M). In summary, the findings suggest 
that Antagomir-146b-5p can partially reverse the extra-
cellular matrix degradation, inflammation inhibition, and 
activation of autophagy mediated by F-MSCs-Exo. This 
further supports the notion that F-MSCs-Exo can deliver 
miR-146b-5p to the rat knee joint, silence TRAF6, and 
subsequently inhibit the PI3K/AKT/mTOR pathway to 
protect chondrocytes in osteoarthritis.

Discussion
Osteoarthritis is currently the most prevalent chronic 
joint disease, characterized by degenerative changes 
in cartilage and surrounding tissues [30]. The primary 
destructive forces in this condition are cartilage degra-
dation and inflammation [31]. Current treatments for 
osteoarthritis primarily focus on symptom relief and 
improving quality of life, often relying on medications 
such as non-steroidal anti-inflammatory drugs and pain 
relievers [32]. While these approaches can alleviate pain 
and improve joint function, they do not reverse or halt 
the progression of the disease or restore damaged joint 
tissues. Therefore, there is a need to explore more inno-
vative and effective treatment methods to achieve long-
term disease control and potential cure.
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Fig. 7  Enriched miR-146b-5p in F-MSCs-Exo inhibits PI3K/AKT/mTOR pathway by targeting TRAF6. (A, B) Western blot analysis was performed to detect 
the impact of F-MSCs-Exo on TRAF6 and the PI3K/AKT/mTOR pathway in rat chondrocytes. (C, D) The expression of TRAF6 was quantitatively analyzed 
using immunofluorescence staining and ImageJ software (scale bar = 10 μm). (E, F) Direct visualization of chondrocytes treated with nc-inhibitor and 
miR-146b-5p-inhibitor was performed using Alcian blue staining and safranin staining. (G, H) Western blot analysis was conducted to examine the 
expressions of TRAF6 and the PI3K/AKT/mTOR pathway in chondrocytes after treatment with nc-inhibitor and miR-146b-5p-inhibitor. (ns, no significant 
difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)
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Fig. 8 (See legend on next page.)
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In recent years, new treatment strategies have garnered 
attention, with mesenchymal stem cell-derived exosomes 
(MSCs-Exo) emerging as a promising approach for osteo-
arthritis therapy [33]. MSCs-Exo are vesicular structures 
released by MSCs, containing a diverse range of bioac-
tive molecules that can improve disease processes by 
modulating cellular signaling pathways and promoting 
tissue regeneration [34]. The proteins, nucleic acids, and 
growth factors within these vesicles play a crucial role 
in treatment outcomes. Research has demonstrated that 
MSCs-Exo contain abundant anti-inflammatory fac-
tors and immune regulatory factors, which can alleviate 
symptoms of osteoarthritis by suppressing inflammatory 
reactions, reducing inflammatory cell infiltration, and 
modulating immune cell functions [35, 36]. Studies by 
researchers such as Zhang have shown that MSCs-Exo 
have the ability to promote the proliferation and differ-
entiation of chondrocytes, stimulating the regeneration 
and repair processes of cartilage cells [37]. Additionally, 
Liu found that MSCs-Exo can inhibit enzymes associ-
ated with cartilage degradation and reduce chondrocyte 
apoptosis [38]. Overall, MSCs-Exo hold great promise 
in the treatment of osteoarthritis, but further research is 
needed to fully understand their biological mechanisms 
and therapeutic effects. Recent reports have highlighted 
the enhanced functionality of MSCs-Exos through exog-
enous preconditioning. Zhang et al. found that extra-
cellular vesicles subjected to hypoxic preconditioning 
significantly enhanced chondrocyte proliferation and 
inhibited chondrocyte apoptosis [39]. Shao et al. demon-
strated that exosomes from infrapatellar fat pad-derived 
MSCs pre-treated with Kartogenin enhanced cartilage 
regeneration and chondrocyte synthetic metabolism [40]. 
Thus, it is evident that exogenous preconditioning can 
influence the functionality of MSCs-Exo.

Fucoidan, a naturally occurring polysaccharide com-
pound extracted from brown algae, has been extensively 
studied due to its intriguing biological activities [41]. 
Particularly, its anti-diabetic and anti-cancer proper-
ties have received significant research attention over the 
past decade [42, 43]. In recent years, the anti-inflamma-
tory properties of fucoidan have been explored, and its 
application in the treatment of various diseases has been 
investigated. He et al. found that fucoidan could inhibit 
M1 polarization of macrophages, thereby improving 
colitis [44]. Liu et al. demonstrated that fucoidan treated 
ulcerative colitis by modulating gut microbiota and bile 

acid metabolism [45]. Phull AR et al.‘s research suggested 
that fucoidan effectively alleviated oxidative stress, thus 
providing a potential treatment for rheumatoid arthritis 
[46]. Based on these experiments, we selected fucoidan 
as a pre-treatment agent due to its potent anti-inflamma-
tory effects. It is hypothesized that Fucoidan-Modified 
MSCs-Exosomes (F-MSCs-Exo) will exhibit enhanced 
therapeutic effects for osteoarthritis.

In our research, we prepared MSCs-Exos and F-MSCs-
Exos after pretreating them with fucoidan (Fig. 9A). We 
characterized the exosomes using various techniques 
such as TEM, DLS, and BCA. The results showed no 
significant statistical differences in morphology, particle 
size, yield, and protein concentration between MSCs-
Exos and F-MSCs-Exos. Additionally, both types of exo-
somes were effectively internalized by chondrocytes. In 
our in vitro experiments, we observed that F-MSCs-Exos 
significantly reduced the expression of inflammation 
in chondrocytes induced by IL-1β, compared to MSCs-
Exos. We also found that this reduction in inflamma-
tion was associated with a decrease in M1 polarization 
of macrophages. Moreover, F-MSCs-Exos demonstrated 
superior abilities in maintaining the extracellular matrix 
and activating autophagy, surpassing the performance of 
MSCs-Exos. In our in vivo experiments, we used micro-
CT3D reconstruction, H&E staining, S-O staining, and 
immunohistochemistry to evaluate the therapeutic effi-
cacy of F-MSCs-Exos for treating osteoarthritis. The 
results consistently supported the superior treatment 
capacity of F-MSCs-Exos compared to MSCs-Exos.

To explain the underlying mechanism behind the 
enhanced bioactivity of MSCs-Exos after fucoidan pre-
treatment, we analyzed the differential expression pro-
files of miRNAs between MSCs-Exos and F-MSCs-Exos. 
The analysis revealed significant upregulation of miR-
146b-5p, miR-615, miR-23b-5p, miR-411-5p, and miR-1b 
in F-MSCs-Exos, with miR-146b-5p exhibiting the high-
est expression level. KEGG enrichment analysis indicated 
the involvement of the PI3K-AKT pathway and autoph-
agy in the functionality of F-MSCs-Exos. The PI3K/AKT 
pathway, a regulator of autophagy, plays a crucial role 
in chondrocyte metabolism. Prior studies have shown 
that artesunate modulates cellular autophagy through 
the PI3K/AKT/mTOR signaling pathway [47]. Through 
the Targetscan database, we identified a specific rela-
tionship between TRAF6 and miR-146b-5p. It has been 
demonstrated that miR-146b-5p inhibits the synthesis of 

(See figure on previous page.)
Fig. 8  Antagomir-146b-5p reverses the therapeutic effect of F-MSCs-Exo on osteoarthritis in rats. (A) Schematic diagram of the experiment evaluat-
ing whether miR-146b-5p is involved in the treatment of osteoarthritis in rats by F-MSCs-Exo. (B) Micro-CT 3D reconstruction of the rat knee joint was 
performed to visualize structural changes and alterations caused by Antagomir-146b-5p treatment. (C, D) Quantitative analysis of micro-CT results. (E, F) 
H-E staining and S-O staining of rat knee joint sections were conducted for histological examination, enabling the assessment of tissue morphology and 
cartilage integrity (scale bar = 500 μm). (G) The Osteoarthritis Research Society International (OARSI) score was used to evaluate the severity of osteoar-
thritis in rat cartilage, n = 6. (H to M) Immunohistochemical analysis was performed to visualize and quantify the expression levels of MMP-13, P62, and 
INOS in the rat knee joint after Antagomir-146b-5p treatment (scale bar = 100 μm). (ns, no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; n = 3)
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inflammatory mediators by targeting tumor necrosis fac-
tor receptor-associated factor 6 (TRAF6), which is a key 
player in autophagy induction [26].

Based on these findings, we propose that the enriched 
miR-146b-5p in F-MSCs-Exos directly targets TRAF6, 
thereby inhibiting the PI3K/AKT/mTOR signaling path-
way (Fig.  9B). This mechanism contributes to the anti-
inflammatory effects, maintenance of the extracellular 
matrix, and activation of autophagy observed in chon-
drocytes. In vitro experiments confirmed that F-MSCs-
Exos treatment effectively suppressed the activation of 
TRAF6 and the PI3K/AKT/mTOR signaling pathway, 
surpassing the effects of MSCs-Exos. We further demon-
strated the involvement of miR-146b-5p by using a miR-
146b-5p inhibitor, which partially reversed the inhibitory 
effects of F-MSCs-Exos on TRAF6 and the PI3K/AKT/
mTOR signaling pathway. Moreover, in vivo experiments 
using an antagonist, Antagomir-146b-5p, injected into 
the joint cavity of rats, also partially reversed the thera-
peutic effects of F-MSCs-Exos on osteoarthritis. Over-
all, our study provides strong evidence supporting the 
direct targeting of TRAF6 by miR-146b-5p enriched 
in F-MSCs-Exos, leading to the inhibition of the PI3K/
AKT/mTOR signaling pathway. This process contrib-
utes to the suppression of inflammation, degradation of 
the extracellular matrix, and activation of autophagy in 
chondrocytes.

Due to the enhanced paracrine effects achieved 
through MSC pre-processing, F-MSCs-Exo not only 
manifest the aforementioned benefits but also guard 
against enzymatic degradation in bodily fluids. Further-
more, exosome transplantation presents advantages such 
as non-tumorigenicity, non-immunogenicity, and ease of 
storage and transport. However, the safety and efficacy 
of F-MSCs-Exo therapy still necessitate further clinical 
trials for validation. Additionally, although there is evi-
dence indicating that TRAF6 may act as a downstream 
target protein for miR-146b-5p within F-MSCs-Exos, it 
is evident that other miRNAs within exosomes can also 
impact TRAF6 and other proteins. For instance, miR-
23b-5p targets TRAF6 to inhibit cell apoptosis and alle-
viate myocardial inflammation [48], while miR-615 can 
suppress the PI3K-AKT pathway, influencing the apopto-
sis of hippocampal neurons [49]. Therefore, it is crucial 
to consider the potential synergistic effects of these miR-
NAs, and studying miR-146b-5p and TRAF6 in isolation 
may oversimplify their true biological characteristics.

Conclusion
In conclusion, pretreatment with fucoidan signifi-
cantly enhances the efficacy of MSC-derived exosomes 
in suppressing cartilage inflammation, degrading the 
extracellular matrix, and activating autophagy. It also 
demonstrates a more effective protective role in a rat 

model of osteoarthritis. Additionally, our study further 
elucidates that F-MSCs-Exo exerts its effects by targeting 
TRAF6 through the enrichment of miR-146b-5p, conse-
quently inhibiting the PI3K/AKT/mTOR pathway. This 
research introduces a novel approach for the endogenous 
modification of MSC-derived exosomes using fucoidan 
and sheds light on its potential regulatory mechanism. 
In essence, F-MSCs-Exo emerges as a satisfying candi-
date drug for the treatment of osteoarthritis and holds 
promise for clinical application. This paves the way for 
a prospective and innovative therapeutic approach to 
clinical osteoarthritis treatment, suggesting that a future 
non-cellular therapeutic strategy could involve the com-
bination of exosomes with miRNA.

Materials and methods
Cell culture
Mesenchymal stem cells (MSCs) were isolated and cul-
tured from bone marrow using a previously established 
method. In simple terms, bone marrow stromal cells 
(BMSCs) were isolated from the femurs of 4-week-old 
male Sprague-Dawley rats (90–100 g) and then cultured 
in α-MEM (Minimum Essential Medium) supplemented 
with 1% penicillin-streptomycin (Gibco, NY, USA) and 
10% fetal bovine serum (FBS, Gibco, USA) [50]. The cells 
were incubated at 37 °C in a 5% CO2 environment. Pas-
sage 3–4 BMSCs were selected for subsequent experi-
ments. Chondrocytes were obtained from rat knee joints. 
The small pieces of cartilage tissue (roughly 1mm3 in 
size) were subjected to digestion using 0.2% type II col-
lagenase ( Sigma-Aldrich, USA) at a temperature of 37 °C 
for a duration of 6  h [51]. Following centrifugation at 
1500  rpm for 5  min, the cells were suspended again in 
DMEM/F-12 and placed in culture within DMEM/F-12 
medium. This medium was enriched with 1% peni-
cillin-streptomycin and 10% fetal bovine serum, all 
under identical conditions as those for BMSCs. Passage 
1–3 chondrocytes were used for cellular experiments. 
Raw264.7 cells (Beyotime, Shanghai) were cultured in 
DMEM (Dulbecco’s Modified Eagle Medium) contain-
ing 10% FBS and 1% penicillin-streptomycin [52]. For 
the treatment of BMSCs, fucoidan (Santa Cruz, USA) 
was used for pretreatment (Fig. S1A) [53]. After 48 h of 
pretreatment, the BMSCs were collected for exosome 
extraction.

MSCs-Exo and F-MSCs-Exo preparation and 
characterization
MSCs-derived exosomes (MSCs-Exo) and Fucoidan-
preconditioned MSCs-derived exosomes (F-MSCs-Exo) 
were isolated from the supernatant using an ultracen-
trifugation-based method [54]. In short, the superna-
tant was collected and centrifuged at 300 and 2000 g for 
10  min each, respectively, to remove dead cells and cell 
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Fig. 9  Schematic diagram of the protective effect of F-MSCs-Exo on OA. (A) Obtain MSCs-Exo and F-MSCs-Exo by ultracentrifugation. (B) Enriched miR-
146b-5p in F-MSCs-Exo plays a role in the treatment of osteoarthritis by targeting TRAF6 and inhibiting PI3K/AKT/mTOR signaling pathway
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debris. Subsequently, an additional centrifugation step at 
10,000 g for 30 min was performed to eliminate apoptotic 
bodies. Afterward, ultracentrifugation at 100,000  g for 
30 min using Ultraclear™ tubes (Beckman Coulter, USA) 
was carried out to remove residual proteins. Finally, the 
purified samples were resuspended in PBS following cen-
trifugation at 100,000 g for 90 min and stored at -80  °C 
for further experiments. The total protein concentration 
in the exosomes was determined using the bicinchoninic 
acid assay (BCA) protein detection kit (Beyotime, China). 
The size distribution and zeta potential of the exosomes 
were measured using a Zetasizer Nano ZS90 (Malvern, 
UK) through dynamic light scattering (DLS). Further-
more, the morphology of the exosomes was examined 
using transmission electron microscopy (TEM, Hitachi, 
Japan). Additionally, Western blotting was employed 
to identify the expression of the marker proteins CD9, 
CD63, CD81, TSG101, and Calnexin (ProteinTech, USA) 
in the exosomes.

Cellular uptake assay
Exosomes were labeled using the green fluorescent dye 
PKH67 (Sigma-Aldrich, USA), while the cellular cyto-
skeleton was labeled with the red fluorescent dye TRITC 
Phalloidin (Thermo Fisher Scientific, USA). The co-cul-
ture of exosomes (10 μg/ml) with rat chondrocytes took 
place in a serum-free medium at 5% CO2 and 37  °C for 
12 h. Subsequently, the cells were fixed with 4% parafor-
maldehyde. DAPI (Beyotime, China) was used for nuclear 
staining. Finally, the uptake of exosomes was visualized 
and captured using a fluorescence microscope (Zeiss, 
Germany).

Cell viability assay
The effects of MSCs-Exo and F-MSCs-Exo on cell viabil-
ity were analyzed using the CCK-8 method. Rat chon-
drocytes (8*103 cells per well) were seeded into the wells 
of a 96-well plate and allowed to incubate for 12 h. Sub-
sequently, the cells were treated with varying concen-
trations (0, 1, 5, 10 μg/ml) of MSCs-Exo, as well as with 
10 μg/ml of both MSCs-Exo and F-MSCs-Exo [39]. After 
24, 48, and 72  h of treatment, 10  μl of CCK-8 solution 
(Meilunbio, China) was added to each well, followed by 
a 4-hour incubation at 37  °C [55]. The absorbance was 
measured at 450  nm using a microplate reader (Leica 
Microsystems, Germany) to assess cell viability.

Cell toluidine blue, alcian blue, safranin O staining
Rat chondrocytes were seeded into a 24-well plate and 
allowed to grow until they reached 75% confluency. 
Afterward, the cells were gently washed three times with 
PBS and fixed with 4% paraformaldehyde for 15 min, fol-
lowed by another round of PBS washing. Subsequently, 
carefully add the respective staining solutions, including 

toluidine blue, Alcian blue, and safranin O (solarbio, 
China), to the wells, and let them incubate undisturbed at 
room temperature for 30 min. Finally, remove the excess 
dye by washing with PBS, and observe the stained cells 
under an ordinary light microscope.

Western blotting
For protein extraction, chondrocytes from the 1st to 3rd 
passages were utilized. In brief, the cells were lysed in 
RIPA lysis buffer (Beyotime, China) containing protease 
and phosphatase inhibitors. The lysate was maintained 
on ice for 15  min, after which it underwent centrifuga-
tion at 12,000 rpm for 30 min at a temperature of 4  °C. 
This procedure was performed to gather the resultant 
supernatant. Using the BCA method, the protein con-
centration was established. Following this, 15 μg of pro-
tein was segregated on an 8–12% SDS-PAGE gel and 
subsequently transferred to a polyvinylidene fluoride 
(PVDF) membrane. The membrane was blocked with 5% 
non-fat milk at room temperature for 2 h and then incu-
bated overnight at 4 °C with the primary antibody. After 
washing, the membrane was incubated with an HRP-
conjugated secondary antibody at 37  °C for 2 h. Finally, 
protein imaging and quantification were performed using 
the ChemiDoc™ XRS + and Image Lab 3.0 imaging system 
(Bio-Rad, USA).

The experiment utilized the following primary anti-
bodies: COX2 (27308-1-AP), INOS (18985-1-AP), Col-
lagen II (28459-1-AP), Aggrecan (13880-1-AP), MMP-13 
(18165-1-AP), ADAMTS4 (11865-1-AP), all of which 
were purchased from Proteintech Group. Addition-
ally, the antibodies ATG7 (ab133528), LC3 (ab192890), 
beclin1 (ab207612), P62 (ab109012), and TRAF6 
(ab40675) were acquired from Abcam. The antibodies 
PI3K (AF6241), AKT (AF0836), mTOR (AF6308), P-PI3K 
(AF3242), P-AKT (AF0016), P-mTOR (AF3308), GAPDH 
(AF7021), and β-actin (AF7018) were purchased from 
Affinity Biosciences. Goat anti-rabbit and anti-mouse 
IgG-HRP antibodies were also procured from Affinity 
Biosciences.

Enzyme-linked immunosorbent assay (ELISA)
The cell culture supernatant is collected and stored at 
-20  °C for subsequent ELISA testing. In each well, the 
concentrations of IL-6, TNF-α, Collagen II, Aggre-
can, MMP-13, and ADAMTS4 were quantified using 
ELISA kits [56]. Concisly, the cell culture supernatant 
was introduced onto a plate, followed by the introduc-
tion of a primary antibody to establish binding with the 
antigen present in the sample. Subsequently, an enzyme-
labeled secondary antibody was administered onto the 
plate, leading to the formation of a complex. Finally, a 
substrate was added to initiate the enzyme-catalyzed 
color reaction. The absorbance was measured using a 
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spectrophotometer (Leica Microsystems, Germany) to 
calculate the specific protein or molecule’s concentration.

Real-time quantitative reverse transcription PCR (RT-qPCR)
Total mRNA was extracted from rat chondrocytes using 
TRIzol reagent (Sangon, China), and the RNA content 
was quantified using the Nanodrop 2000 spectropho-
tometer. cDNA synthesis was performed using the cDNA 
synthesis kit (Takara, Japan). RT-qPCR was conducted 
with the SYBR Green detection reagent (Takara, Japan) 
on the LightCycler® 96 real-time PCR system (Roche, 
USA). The relative expression levels of mRNA were 
determined using the 2 − ΔΔCq method. The primer 
sequences for mRNA can be found in Table S1.

Immunofluorescence
In brief, the cells were subjected to a series of steps as 
follows: first, they were washed with PBS and then fixed 
with 4% formaldehyde for 15  min. After another round 
of washing, the cells were permeabilized using 0.2% Tri-
ton X-100 for 15 min at room temperature. Subsequently, 
the cells were treated with 10% goat serum for 30 min at 
37 °C to block non-specific binding. Next, the cells were 
incubated overnight with a panel of primary antibodies, 
namely Collagen II (1:200), MMP-13 (1:200), LC3 (1:200), 
and TRAF6 (1:200). On the following day, the cells 
were exposed to secondary antibodies conjugated with 
Alexa®488 (1:400) for 1  h. Following another wash, the 
samples were stained with 4’,6-diamidino-2-phenylindole 
(DAPI) for 60  s to visualize the cell nuclei [57]. Finally, 
the samples were visualized under a fluorescence micro-
scope (Carl Zeiss, Germany), and the ImageJ software 
was employed for quantitative analysis in each specified 
region.

Flow cytometry analysis
Raw264.7 cells were cultured in a 6-well plate until they 
reached 80-90% confluency. Upon reaching the desired 
confluency, the cells were carefully harvested and col-
lected in centrifuge tubes after being washed with PBS. 
To minimize non-specific antigen binding, the cells were 
then incubated with 3% BSA for 1 h. After centrifugation, 
the cells were resuspended in PBS and incubated at 37 °C 
in a light-protected environment along with the following 
fluorescently-labeled antibodies: FITC-conjugated anti-
F4/80 antibody and PE-conjugated anti-CD86 antibody 
(BD Biosciences, USA) for 30  min [58]. Subsequently, 
a thorough washing step was performed to remove any 
unbound antibodies, and the samples were subjected to 
flow cytometry for analysis.

miRNA sequencing
Total RNA was extracted using the mirVana miRNA Iso-
lation Kit (Ambion). The RNA quantity was assessed with 

Nanodrop 2000 (Thermo Fisher Scientific Inc., USA), 
while its integrity was evaluated using the Agilent 2100 
Bioanalyzer (Agilent Technology, USA). To construct 
small RNA libraries, the NEBNext Small RNA Library 
Prep Set for Illumina kit (NEB, USA) was utilized. After 
confirming the high-quality libraries with the Agilent 
2100 Bioanalyzer, sequencing was performed on the Illu-
mina Novaseq 6000 platform. For the analysis of differ-
entially expressed miRNAs, the criteria used for filtering 
were a q-value < 0.05 and fold change (FC) > 2 or FC < 0.5. 
The DEG algorithm from the R package was employed 
to calculate q-values. Target gene prediction was carried 
out using the miranda software, with the parameters set 
as follows: S ≥ 150, ΔG ≤ -30 kcal/mol, and strict demand 
for 5’ seed pairing. Finally, differential expression miR-
NAs’ target genes were subjected to GO enrichment and 
KEGG pathway enrichment analyses using R packages. 
All small RNA sequencing and data analyses were per-
formed by Eurofins Genomics (Shanghai, China).

Animals
A total of 48 male Sprague-Dawley rats, aged 10 weeks, 
were generously provided by the Chinese Academy of 
Sciences Animal Center. Ethical approval for all animal 
experiments was obtained from the Wenzhou Medical 
University Animal Ethics Committee, with the approval 
number wydw2023-0355. The experimental groups were 
carefully designed as follows: the sham surgery group 
(undergoing only joint incision), the OA group (induced 
by anterior cruciate ligament transection and medial 
meniscus resection), the OA + MSCs-Exo group, and the 
OA + F-MSCs-Exo group, each comprising 6 rats [59]. In 
brief, starting from the fourth week after the establish-
ment of the OA model, the OA + MSCs-Exo group and 
OA + F-MSCs-Exo group received intra-articular injec-
tions of MSCs-Exo or F-MSCs-Exo (10 μl/week), respec-
tively [60]. The main aim of this study was to investigate 
and compare the therapeutic effects of MSCs-Exo and 
F-MSCs-Exo in the rat model of osteoarthritis.

To elucidate the role of miR-146b-5p in F-MSCs-Exo, 
the rats were further divided into four groups: the sham 
surgery group, the OA group, the OA + F-MSCs-Exo 
group, and the OA + F-MSCs-Exo + Antagomir-146b-5p 
group, with 6 rats in each group. In summary, starting 
from the fourth week after the establishment of the OA 
model, the rats in the OA + F-MSCs-Exo group received 
weekly intra-articular injections of F-MSCs-Exo (10  μl/
week). Additionally, from the fourth week, the rats in 
the OA + F-MSCs-Exo group and the OA + F-MSCs-
Exo + Antagomir-146b-5p group were treated with intra-
articular injections of a negative control (nc) (5 nmol) or 
Antagomir-146b-5p (5 nmol) directly into the joint cavity. 
The experiment was conducted for a total of eight weeks 
post-surgery. At the end of the eight weeks, the rats were 
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humanely euthanized under anesthesia, and knee joint 
samples were collected to assess the disease progression.

Microcomputed tomography scans
Following the humane euthanization of the rats, knee 
joint specimens were carefully collected and preserved 
by overnight fixation in 4% paraformaldehyde. Subse-
quently, the fixed knee joint specimens underwent metic-
ulous micro-computed tomography (micro-CT) using 
the advanced SkyScan-1276 micro-CT system (Bruker 
micro-CT, Kontich, Belgium). The micro-CT scans were 
conducted in three planes for each knee joint, encom-
passing the sagittal, transverse, and coronal planes. The 
acquired images were then employed to reconstruct the 
intricate 3D representation of the knee joint. Leverag-
ing the 3D reconstructed images, comprehensive three-
dimensional structural parameters were employed to 
meticulously evaluate the subchondral bone residing 
within the tibial plateau. This comprehensive evaluation 
facilitated a detailed and insightful analysis of both the 
cartilage and the underlying bone architecture within the 
knee joint.

Histological analysis
After an 8-week duration, the knee joints of the rats 
were carefully harvested and fixed in 4% paraformalde-
hyde for 24  h. Following fixation, a 4-week decalcifica-
tion process was carried out using a 10% EDTA solution 
(Solarbio, China). Subsequently, the tissues underwent 
meticulous processing, including dehydration, paraffin 
embedding, and sectioning. The obtained sections were 
then subjected to histological staining using Hematoxy-
lin and Eosin (H-E) staining (Beyotime, China) as well as 
Safranin O-Fast Green (S-O) staining (Beyotime, China) 
for morphological analysis [61]. High-quality images 
of the stained sections were captured using an optical 
microscope. To comprehensively assess the condition of 
the cartilage, the internationally recognized Osteoarthri-
tis Research Society International (OARSI) scoring sys-
tem was employed [62]. This established scoring system 
enabled a detailed evaluation of structural changes in the 
cartilage and provided valuable insights into the extent of 
osteoarthritis pathology.

Immunohistochemical analysis
The knee joints of the rats were fixed in 4% paraformal-
dehyde, followed by a series of processing steps, includ-
ing decalcification, paraffin embedding, and sectioning. 
After dewaxing and dehydration, antigen retrieval was 
performed using 3% hydrogen peroxide. Subsequently, 
the sections were blocked with 10% goat serum (Solarbio, 
China) for 30 min at 4  °C and then incubated overnight 
at 4  °C with the primary antibodies (diluted at 1:200) 
for MMP-13, P62, and INOS. On the following day, the 

sections were incubated with HRP-conjugated secondary 
antibodies at 37 °C for 1 h [63]. Finally, visualization was 
carried out to examine the immunohistochemical analy-
sis of the tissues.

Statistical analysis
All data were expressed as mean ± standard deviation 
(SD) and analyzed using SPSS 20.0 software (Chicago, 
IL, USA). To identify intergroup differences, independent 
t-tests were performed, while one-way analysis of vari-
ance (ANOVA) was used for multiple group compari-
sons. Each experiment was conducted with a minimum 
of 3 biological replicates to ensure robustness and reli-
ability. The significance levels were indicated as follows: 
*P < 0.05, **P < 0.01, and ***P < 0.001, representing the 
respective levels of statistical significance.
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