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Introduction
Intestinal diseases such as inflammatory bowel diseases 
(IBD), necrotizing enterocolitis (NEC), colorectal cancer 
(CRC), intestinal ischemia and reperfusion injury (IR) are 
generally characterized by clinical symptoms, including 
intestinal dysfunction and injury, intestinal inflamma-
tion, intestinal mucosal immune disorder, and microbi-
ome imbalance [1–4]. Exosomes are cell-derived vesicles 
which are widely involved in the progression of intesti-
nal diseases as well as play an important role in disease 
diagnosis and also serve as drug carriers [1–4]. Exosome 
is obtained via merging multivesicular bodies and is the 
latest family member of bioactive vesicles that play func-
tional roles in promoting cell-cell communication [5]. In 
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Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular 
communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application 
of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. 
Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in 
preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, 
current novel methods used for the extraction and identification of exosomes, as well as discussed the role of 
milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, 
colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, 
restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such 
as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) 
and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the 
standardization of milk exosome production platform to obtain higher concentration and purity, and complete 
exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an 
effective and efficient drug delivery system, and promote its application in the treatment of various diseases in 
both humans and animals.
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addition, exosomes were reported to be originated from 
endosome, in consequence contained many biomolecu-
lar elements based on their cell of origin, hence, they are 
described as a ‘‘fingerprint’’ of the origin of the cell [6].

Biogenesis, secretion and structure of exosomes
Attention on exosome research has broaden due to their 
description in antigen-presenting cells as well as the 
reports that they play active role in enhancing immune 
response in vivo [7]. Exosomes are membranous vesi-
cles with a diameter ranging from 30 ~ 150 nm. They are 
released outside the cell after the cellular polyvesicles 
fused with the cell membrane originating from the endo-
cytic pathway through the inward budding of the plasma 
membrane [8, 9]. This process generates the early endo-
some, which by a subsequent inward budding process 
creates the multivesicular bodies (MVB) characterized by 
the presence of vesicles in their lumen (intraluminal vesi-
cles, ILV). The MVB is responsible for releasing exosomes 
by the transport and fusion of MVB with the plasma 
membrane, thus, the ILV are released into the extracel-
lular space and then referred to as “exosomes” [10–12]. 
The exosomes are coated with bilayer phospholipid 
membranes and contain high levels of cholesterol, sphin-
gomyelin, ceramides, and short/long chain saturated fatty 
acids [10, 13]. In addition, the exosomes contain cell-
specific proteins, lipids, and nucleic acids (nucleic acids, 
namely mRNA, noncoding RNA species, and DNA) [14, 
15]. The exosome biogenesis is the mechanism for pro-
tein quality control. Once the exosomes are released, 
they are involved in several activities such as extracellular 

matrix remodeling, as well as serving as signaling mol-
ecule to other target cells, thereby altering their functions 
[16, 17], however, their effects on target cells vary due to 
the differences in the expression profile of receptors on 
the cell surface. Such functional heterogeneity cause exo-
somes to modulate cell survival induction, apoptosis, and 
immune regulation in different target cell types [11]. In 
addition, exosome heterogeneity increases the functional 
diversity and complexity of exosomes in an intercellu-
lar communication. Exosomes originating from differ-
ent cell types may have different compositions, however, 
they possesses similar conserved proteins such as CD63, 
CD81, CD9, etc. [18] (Fig.  1). In general, exosomes are 
found in a variety of living cells including dendritic cells 
(DCs), lymphocytes, epithelial cells, endothelial cells, etc. 
They are also found in the body fluids of eukaryotes, such 
as blood, urine, saliva, cerebrospinal fluid and emulsion 
[19, 20]. Studies have reported that exosomes are also 
involved in progress of diseases, such as neurodegenera-
tive diseases [21–23], obesity and diabetes [24–27], can-
cer [28–30], etc., as well as play important role in disease 
diagnosis and also serve as a drug carrier [31–36].

Current methods for the extraction of milk-derived 
exosomes
Milk obtained from animals or humans is a complex, 
heterogeneous fluid containing a non-nutritive, bioac-
tive extracellular vesicle known as exosome. Milk-derived 
exosomes (MDEs) are very difficult to characterize 
because of the lack of effective and efficient standard-
ized methods used for milk pre-processing, storage, 

Fig. 1  Exosomes biogenesis, secretion and structure
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and exosome segregation [37]. Several techniques such 
as ultracentrifugation, size exclusion chromatography 
(SEC), and density gradient centrifugation (DGC) are 
currently available for separating exosomes from milk 
[38, 39]. Among these exosome isolation methods, ultra-
centrifugation (differential centrifugation) is the most 
standard, and with this procedure, raw milk can be cen-
trifuged at approximately 2,000×g to remove fat globules, 
dead cells, and bulky apoptotic debris. Thereafter the 
exosomes are precipitated approximately at the speed 
of 100,000 to 150,000×g [37, 40–42]. Then the exosome 
pellets are loaded on a SEC column to get four fractions 
of exosomes for further characterization and analysis 
[42]. SEC is the method used to extract milk exosomes 
according to the size of the exosomes. In present stud-
ies, the extraction of milk exosomes by the SEC method 
is mostly combined with the ultracentrifugation method 

[42, 43]. Studies have extracted milk exosomes by using 
ultracentrifugation method combined with the SEC and 
DGC methods [44, 45]. In our previous study, we suc-
cessfully separated bovine milk-derived exosomes using 
the ultracentrifugation method combined with SEC 
method (Fig. 2). At present, isolating exosomes from milk 
using these methods may be superior compared to the 
single method. For the DGC method, samples are added 
into an inert gradient medium for centrifugal sedimenta-
tion [46]. Various ingredients of the sample will settle on 
their respective isodensity zone under a centrifugal force, 
after which the exosomes will be separated from each 
other. In addition, the sucrose gradient centrifugation 
could effectively avoid the co-precipitation of nucleoso-
mal fragments, apoptotic bodies, or protein aggregates 
[47] to achieve greater separation efficiency than the 

Fig. 2  The isolation process of bovine milk-derived exosome. ①: Dairy cow; ②: Raw milk; ③: Divide milk into EP tubes; ④: Centrifuge at 12,000×g, 4 ℃ for 
30 min to remove the remaining fat and cell debris; ⑤: Skimmed milk; ⑥: Skimmed milk was transferred into an ultracentrifugation tubes; ⑦: Centrifuge 
at 150,000×g, 4 ℃ for 2 h; ⑧: The exosome pellet was collected and transferred into a low binding tube and resuspended in phosphate buffer solution 
(PBS) to 500 µL; ⑨: the suspension sample was loaded on a qEV original 35 nm SEC column; ⑩ After 3 mL of void volume, 4 fractions (A, B, C, D) of each 
500 µL were immediately collected
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conventional method, thereby providing exosomes with 
high purity [48].

Furthermore, some receptor molecules such as 
CD9/63/81 on the membrane surface can be utilized to 
isolate exosomes by employing immuno-affinity cap-
ture method [49, 50]. The most commonly used immu-
nocapture kits are enzyme-linked immunosorbent assay 
(ELISA), and in recent years, immunomagnetic beads are 
also becoming popular [51]. Microfluidic technology is a 
recently developed technique which is specifically used 
for high demanding separation tasks. At present, micro-
fluidic technology is mainly divided into three categories: 
these are separation based on size, separation based on 
immunoaffinity, and dynamic separation [52]. To isolate 
exosomes from various milk fractions, other studies have 
introduced a novel approach based on natural nanosolid 
cellulose nanofibers (CNFs) and short time low gravity 
centrifugation, as well as encasing exosomes with flexible 
and entangled network of CNFs forms nanoporous [53].

Methods and markers for the identification of exosomes
Generally, exosomes are characterized using nanopar-
ticle tracking analysis (NTA) [54–58], transmission elec-
tron microscopy (TEM) [54–58], western blot (WB) [54, 
55, 57, 58], flow cytometry (FCM) [56–58], and PKH67 
fluorescent labeling [59, 60]. The size distribution and 
concentration of particles in exosomes are analyzed 
by NanoSight instrument. The fractions are diluted to 
1:25 − 1:1000 fold with PBS to keep the number of par-
ticles in the field between 50 and 200/frame. For TEM 
analysis, a total of 50 µL purified exosome are pipetted 

on Parafilm® and immediately adsorbed to an Athene 
old 400 mesh copper grid coated with 1% Piolofom® in 
chloroform (w/v), and then incubated for 5  min at RT. 
The grid will then be carefully washed twice with dis-
tilled water and negatively stained with 50 µL of 2% ura-
nyl acetate (w/v). Then the samples can be viewed using 
the Zeiss EM 109 TEM. The WB can also be performed 
to verify exosomal markers, such as CD9/63/81 [61–65], 
tumor susceptibility gene 101 (Tsg101) [63, 66–69], heat 
shock 70 kDa protein (HSP70) [70–72], Alix [73–75], and 
Flotillin 1 [74, 76, 77]. FCM is mostly used for exosome 
characterization. In brief, the freshly isolated exosomes 
are diluted in the 0.22 μm-filtered PBS and then stained 
under sterile dark conditions with green-RNA-binding, 
a liposoluble fluorophore SYTO that can penetrate the 
exosomal membrane. Before the samples can be loaded 
into the flow cytometer CytoFlex S, they are vortexed 
and bathed at 37 ℃ in the dark for 30 min, and then can 
be visualized using the CytExpert software [78]. PKH67 
is a novel dye that can fluorescently label exosomes by 
binding to lipid molecules in the exosomal membrane 
structure [60]. Several studies on cellular uptake have co-
cultivated cells with PKH67-labeled exosomes [79–81], 
and the results showed that PKH67-labelled breast milk 
exosomes can be taken up by macrophages [82] and IECs 
[80]. In our previous study, bovine milk-derived exosome 
was characterized by methods such as NTA, TEM, and 
WB (Fig. 3).

Fig. 3  Bovine milk-derived exosomes were characterized using NTA, TEM, and WB (Zhifu Cui unpublished data)
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Therapeutic effects of milk-derived exosomes on 
intestinal Diseases
The intestinal tract plays major role in nutrient digestion, 
absorption, as well as serves as an immune and endocrine 
organ. The intestinal tract is the main immune defense 
barrier which is composed of the mucosal immune sys-
tem and intestinal epithelial cells (IECs). Exosomes has 
key physiological and pathological implications on gut-
related diseases, such as Inflammatory Bowel Disease 
(IBD) [83–86], colitis [87, 88], Colorectal Cancer (CRC) 
[89–93], Necrotizing enterocolitis (NEC) [94–97], and 
intestinal ischemia and reperfusion (IR) injury [98–100]. 
Mammalian milk is rich in exosomes, which play key 
roles in intestinal development, prevention of exces-
sive inflammation, maintenance of intestinal epithelium 
integrity, and can also be used for disease treatment 
[101–105]. Mammalian breast milk exosomes transport 
proteins and nucleic acids to the neonatal intestinal sys-
tem, thereby protecting them from acidity degradation 
and digestion, and also promote their intestinal structural 
integrity and absorption, hence, milk-derived exosome 
promotes intestinal development [105]. A study analyzed 
the expression of miRNAs in the human breast milk and 
reported high expression levels of immune-related miR-
NAs in the first 6 months of lactation, which regulated 
the development of intestinal immune system in the 
infants [106]. Other studies have shown that milk derived 
exosomes are rich in transforming growth factor β (TGF-
β), which perform significant role in the development 
of intestinal barrier function, the production of immu-
noglobulin A (IgA) and mucosal immunity during the 
infancy period [107]. Reports have indicated that breast 
milk-derived exosomal circRNAs bind to related miR-
NAs promote IEC proliferation and migration through 
the vascular endothelial-derived growth factor (VEGF) 
signaling pathway, thereby promoting the development 
of intestinal tract [108].

In addition, studies have revealed that porcine milk-
derived exosomes promote proliferation and intestinal 
development of porcine’s small intestinal cells, improve 
the expressions of caudal-related homeobox transcrip-
tion factor 2 (CDX2), proliferate cell nuclear antigen 
(PCNA) and type 1 insulin-like growth factor recep-
tor (IGF-1R) genes in porcine small intestine cells, as 
well as inhibit the expression of tumor suppressor gene 
p53 [109]. CDX2 is a gut specific transcription factor 
that is directly involved in the intestinal development 
and maintenance of intestinal phenotypes [110]. It was 
reported that porcine milk-derived exosomal circ-XPO4 
plays a crucial role in the intestinal acquired immunity 
and mucosal homeostasis via inhibiting the expression 
of miR-221-5p, promoting the expression of polymeric 
immunoglobulin receptors and the production of intes-
tinal IgA [111]. Porcine milk-derived exosomal miRNAs 

were found to alleviate deoxynivalenol (DON) induced 
intestinal mucosal damage in mice by promoting cell 
proliferation and inhibiting apoptosis [112]. Specifically, 
porcine milk-derived exosomal miR-4334, miR-219 and 
miR-338 attenuate lipopolysaccharide (LPS)-induced 
intestinal cell inflammation and apoptosis, and relieve 
intestinal damage, as well as maintain the intestinal epi-
thelial integrity via inhibiting the activation of Toll-like 
receptor 4 (TLR4)/ NF-kappaB (NF-κB) and p53 signal-
ing pathways [113].

Several studies have shown that bovine milk-derived 
exosomes escape the absorption in the digestive tract, 
and induce changes in the intestinal microbial commu-
nity, leading to the enrichment of the polymorphisms 
and mutations of the rectal bacteria in mice [114], 
improve the atrophy of the intestinal villus in mice [115], 
and also increase the production of the intestinal mucus 
and enhanced tight junction protein expression via miR-
NAs and TGF-β to aid in the restoration of the intesti-
nal barrier function induced by diseases [104]. Bovine 
milk-derived exosomes change the intestinal microbial 
community of mice and promoted the communication 
between the host and bacteria [114]. It was also reported 
that bovine milk-derived exosomal miRNAs are involved 
in immune response, growth and development, which 
is beneficial to dairy cows and the maturation of the 
intestinal structure of the neonate [116]. Another study 
have indicated that the oral administration of bovine 
milk-derived exosomes cause senescence of the primary 
intestinal tumors and accelerate cancer metastasis in 
mice [117], in addition, yak milk-derived exosomes were 
reported to promote proliferation and survival of IECs 
under hypoxic environment [72]. Goat milk-derived exo-
somes can be used as a natural probe to detect inflam-
matory process. Injection of goat milk-derived exosomes 
in peritonitis mice significantly increased the exosomal 
content of the intestine [118]. Rat milk-derived exosomes 
also significantly increased the expression of PCNA and 
leucine-rich repeat-containing G-protein coupled recep-
tor 5 (Lgr5) genes, as well as enhance the activity of 
IECs [119]. Other studies have shown that giant panda 
milk-derived exosomes promote the development of the 
intestinal immune system and absorption in newborn 
cubs [120]. Exosomes play significant physiological and 
pathological role on proper functioning of the intestine. 
The exosomes affect the progression of intestinal inflam-
matory response following the beginning of related 
pathologies. The existence of many uptake exosomal 
mechanisms of the intestine promotes the alleviation of 
pathological conditions of the intestine [102, 121]. Cells 
communicate with each other by releasing exosomes that 
transfer their composition, such as nucleic acids, pro-
teins, and lipids, to the nearby cells, hence play important 
function in several pathophysiological processes [122, 
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123]. For instance, during pathogenic bacteria infec-
tion, exosomes are secreted by infected cells to affect the 
innate immune responses of the neighbouring cells to the 
infection. These vesicles can release different biological 
fluids to allow changes in the content of the exosome to 
help in the discovery of non-invasive biomarkers related 
to inflammatory bowel disease and infectious diseases 
[122, 123]. Studies also indicated that exosomes could be 
utilized as a vaccine for boosting the immune system to 
get rid of various pathogenic bacteria and to attenuate 
intestinal damage [122, 123].

Inflammatory bowel Disease
Inflammatory Bowel Disease (IBD) is a recurrent and 
lifelong disease that includes Ulcerative colitis (UC) and 
Crohn’s disease (CD) characterized by chronic, recur-
rent, and nonspecific intestinal inflammation [124–126]. 
The clinical manifestations of IBD are persistent or recur-
rent abdominal pain, diarrhea, fever, rectal bleeding and 
other symptoms. The diagnosis and treatment of IBD are 
complicated [127, 128]. Currently, the pathogenesis of 
IBD is related to several factors such as genetics, intesti-
nal mucosal barrier damage, intestinal inflammation, gut 
dysbiosis and intestinal mucosal immune disorder [129–
132]. Several studies have shown that milk-derived exo-
somes play crucial roles in the prevention and treatment 
of IBD by participating in the interaction and commu-
nication of IECs-immune cell-intestinal flora to regulate 
the immune response and intestinal homeostasis, as well 
as attenuate intestinal inflammation [133–135].

Studies have also shown that bovine milk-derived exo-
somes alleviate UC by reducing inflammatory response 
through inhibition the production of pro-inflammatory 
factors via TLR4-NF-κB signaling pathway and the acti-
vation of nod-like receptor family pyrin domain con-
taining 3 (NLRP3) inflammatories, attenuating cytokine 
production disorder and restoring the balance between 
the interleukin-10+Foxp3+ regulatory T (Treg) cells and T 
helper type 17 (Th17) cells in the inflamed colon, and also 
restoring the α-diversity of gut microbiota effectively, as 
well as regulating intestinal immune homeostasis [136]. 
Bovine milk-derived exosomes were also reported to alle-
viate dextran sodium sulfate (DSS)-induced IBD in mice 
by restoring the intestinal impermeability and promot-
ing mucin secretion by regulating the intestinal micro-
bial flora, reducing inflammation by down-regulating 
the expression of colitis related miR-125b, increasing the 
expression of anti-inflammatory protein such as TNF-
alpha-induced protein 3 (TNFAIP3, A20), reducing the 
production and release of pro-inflammatory cytokines 
and increasing the production of anti-inflammatory cyto-
kines to restore the structure and integrity of the colon 
[137]. A study investigated the therapeutic effect of cow 
and human milk derived exosomes on colitis mice, and 

they have found that the oral administration of cow and 
human milk-derived exosomes play an anti-inflamma-
tory and therapeutic role to reduce the severity of DSS-
induced UC in mice by down-regulating the expression 
of pro-inflammatory cytokines tumour necrosis factor 
alpha (TNF-α) and interleukin 6 (IL-6), and also up-reg-
ulates the expression of TGF-β [138]. Oral administra-
tion of bovine milk-derived exosomes alleviates clinical 
symptoms and colon damage in mice with UC induced 
by DSS by attenuating oxidative stress, as well as reduc-
ing the expression of inflammatory cytokines and chemo-
kines in the colon [139]. In addition, bovine milk-derived 
exosomes can attenuate DSS-induced UC in the mice by 
remodeling and optimizing the abundance of intestinal 
flora, regulating intestinal gene expression, and restor-
ing the structure and integrity of the intestinal surface 
epithelium [140]. Moreover, bovine milk-derived exo-
some was reported to help in the restoration of metabolic 
abnormalities induced by DSS-induced UC in the mice, 
and also prevent intestinal inflammation by regulating 
lipid and amino acid metabolism, thereby providing new 
insights into the identification and utilization of lacta-
tion-derived exosomes as potential regulators for the pre-
vention and treatment of IBD [141]. Goat milk-derived 
exosomes were also reported to show anti-inflammatory 
and immunomodulatory effects, hence can reduce LPS-
induced inflammation of the porcine jejunal epithelial 
cells (IPEC-J2 cells) and also restore cellular homeostasis 
by decreasing the level of expressions of IL18, IL12p40, 
matrix metalloproteinase 9 (MMP9) and nitric oxide 
synthase (NOS2), but increase the level of expressions 
of mucin 2 (MUC2), epstein-barr virus-induced gene 3 
(EBI3), and IL-8 [142].

Necrotizing enterocolitis (NEC)
Necrotizing enterocolitis (NEC) is one of the most dev-
astating diseases of premature infants, characterized by 
high morbidity and mortality rates [143, 144]. Therefore, 
it is urgent to develop effective treatments for this devas-
tating condition. Breast milk, which has been known for 
decades to have health benefits, contains large amounts 
of exosomes and has the potential to treat NEC diseases 
[145]. Breast milk has been shown to reduce the inci-
dence of NEC, however, NEC condition is rare in infants 
whose diets contain breast milk [146]. Compared with 
formula milk, breast milk feeding reduces the risk of 
NEC [147]. Various studies have shown that the activa-
tion of TLR4 induced-inflammation inhibits IEC prolifer-
ation, reduces intestinal microcirculation, and promotes 
the occurrence and progression of NEC [148, 149], how-
ever, other studies have reported that epidermal growth 
factor in breast milk inhibits TLR4 signaling, protects 
IECs from apoptosis, promote intestinal cell prolifera-
tion, and inhibit the occurrence of NEC [150]. Breast 
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milk-derived exosomes have been shown to prevent NEC 
in premature infants [151]. In vitro and in vivo studies 
have demonstrated that peptides highly enriched in milk-
derived exosomes can reduce ileal damage by promoting 
the intestinal cell proliferation and migration, which may 
be an effective preventive method for NEC [152]. Human 
breast milk-derived exosomes were found to protect the 
intestinal stem cells from oxidative stress damage via the 
Wnt/β-catenin signaling pathway to prevent and treat the 
development of NEC [153]. Reports indicated that the 
incidence of NEC is 0% in breastfed pups, and human 
breast milk-derived exosomes significantly increased the 
IEC proliferation and also inhibited apoptosis, as well as 
reduced the incidence and severity of NEC [154]. Other 
studies have reported that human breast milk-derived 
exosomes exert protective effect on IECs, and also pro-
mote cell viability by alleviating oxidative stress, thereby 
preventing the occurrence of NEC and intestinal injury 
[155]. Human milk-derived exosomal lncRNAs and 
mRNAs prevent the occurrence of NEC by promoting 
intestinal tissue proliferation and development, reduc-
ing intestinal tissue necrosis and epithelial injury, as well 
as reducing the severity of NEC through the JAK-STAT 
and adenosine monophosphate-activated protein kinase 
(AMPK) signaling pathways [95]. Human milk-derived 
exosomal lipids reduce the severity of NEC through the 
extracellular signal-regulated protein kinase/mitogen 
activated protein kinase (ERK/MAPK) pathway to rescue 
the apoptosis and migration inhibition of IECs induced 
by LPS [156]. In other studies, human milk-derived 
exosomes were reported to alleviate hypoxia and LPS-
induced NEC inflammation, mucosal damage, and mucus 
production [103]. It was also established that human 
milk-derived exosomal miR-148a-3p prevents NEC 
by promoting Sirtuin 1 and inhibiting p53 and NF-κB 
expression [94]. Moreover, a study revealed that human 
milk-derived exosomes play a beneficial role in the pre-
vention of NEC by reducing inflammation and injury of 
LPS-induced NEC of the intestinal epithelium, and also 
protect the integrity of the intestinal epithelial barrier, 
and also promote cell proliferation, as well as reduce the 
level of pro-inflammatory cytokines, and also increase 
the expression of the intestinal tight junction proteins 
[157]. A recent study indicated that human breast milk 
derived exosomes alleviate NEC associated intestinal 
injury and NEC ileal inflammation by reducing the NEC 
scores, restoring the number of damaged ileal crypts, and 
also inhibit the inflammatory responses of IECs [96], in 
addition, the human breast milk-derived exosomes pre-
vent the development of NEC by reducing the expres-
sion of inflammatory cytokines such as TNFα and TLR4, 
as well as protecting the intestinal tract from epithelial 
inflammatory damage induced by LPS [158]. Further-
more, studies have established that porcine milk-derived 

exosomal miRNAs promote cell proliferation, inhibit the 
formation of tight junction proteins (TJs), and protect 
IECs from intestinal mucosal damage induced by DON 
[112]. Porcine milk-derived exosomal miRNAs such as 
miR-4334, miR-219, and miR-338 were reported to pro-
tect IEC damage induced by LPS by inhibiting apoptosis 
and inflammation via the p53 and TLR4/NF-κB path-
ways [113]. In other study, it was reported that bovine 
milk-derived exosomes enhance goblet cell activity and 
prevent the development of experimental NEC [159], 
furthermore, rat milk-derived exosomes exert several 
biological functions such as enhancing IEC activity, pro-
moting cell proliferation, stimulating intestinal stem 
cell activity, and preventing the development of NEC in 
infants with breastfeeding intolerance [119].

Colorectal cancer (CRC)
Colorectal cancer (CRC) is the third most common 
malignancy in the world, with an average of one person 
diagnosed with colorectal cancer every 1.5  min, result-
ing in nearly 900,000 deaths annually. With the process of 
urbanization and the aging population, the incidence and 
mortality cause by colorectal cancer is on the rise, there-
fore, developing ways to control and prevent the colorec-
tal cancer disease is urgently needed. This is because, the 
symptoms of this disease only appear in advanced stages. 
Hence, several countries worldwide promote screen-
ing programs with the aim of increasing early detection 
rates of colorectal cancer in order to reduce morbidity 
and mortality [160–163]. Recent studies have reported 
that exosomes can be used as delivery vectors in vivo, 
to deliver valuable genetic cargo, containing biomarkers 
and load drugs for delivery to specific tissues, attracting 
an increasing interest because exosomes exert no adverse 
immune responses as well as prevent tumor formation 
[164, 165], hence, exosomes can be employed as poten-
tial biomarkers and target therapies for colorectal can-
cer [166]. Studies have shown that exosomal delivery of 
miR-128-3p is a novel strategy to enhance CRC chemi-
cal sensitivity through negative regulation of Bmi1 and 
MRP5 [90]. Exosomal delivered circRNAs promote gly-
colysis and chemotherapy resistance in CRC via the miR-
122/PKM2 axis [167]. Exosomal circPACRGL promotes 
colorectal cancer proliferation and metastasis through 
the miR-142-3p/miR-506-3p-TGF-β1 axis [92]. Mes-
enchymal stem cells (MSCs)-derived exosomes contain 
tumor-inhibiting miRNAs (miR-3940-5p/miR-22-3p/
miR-16-5p), which inhibits the proliferation, migra-
tion and invasion of CRC cells by regulating Ras-asso-
ciated protein B2 (RAP2B)/phosphoinositide 3-kinase 
(PI3K)/AKT signaling pathway and integrin alpha 2/6 
(ITGA2/6), thereby showing therapeutic potential in the 
UC and CRC [168]. Adipocyte derived exosomal micro-
somal triglyceride transfer protein (MTTP) inhibits 
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ferroptosis and promotes chemotherapy resistance in 
CRC [2]. Tumor-derived exosomal miR-934 induces 
macrophage M2 polarization to enhance liver metastasis 
of CRC [169].

Due to its potential in preventing and treating CRC, 
milk is receiving increasing attention due to the abun-
dance of exosomes it contains. Milk exosomes have been 
widely reported to exert direct antitumor effects on 
colorectal cancer. For instance, bovine milk-derived exo-
somes were reported to exhibit intrinsic antitumor activ-
ity by inhibiting the growth and activity of CRC cells, 
providing an effective alternative to oral administration 
for the treatment of CRC [170]. In addition, human milk-
derived exosomes were shown to increase the expres-
sion level of miR-148a in the CRC cells but decrease the 
expression of its target gene DNA methyltransferase1 
(DNMT1) to reduce the occurrence of CRC [171, 172]. 
It was also revealed in other studies that human milk-
derived exosomes alter the miRNA expression profile of 
colon epithelial cells and also promote the proliferation 
of healthy colon epithelial cells without affecting the 
growth of CRC cells [173]. Furthermore, bovine milk-
derived exosomes were also reported to attenuate the 
primary CRC by decreasing the number of CRC cell colo-
nies as well as increase the cell death [117]. In goats, the 
milk-derived exosomes showed potential biological func-
tions such as anti-inflammation, tumor retention, and 
increase production performance and high biosafety, and 
also act as ideal nanocarriers for the construction of CRC 
comprehensive diagnosis and treatment. The nanoprobes 
designed by goat milk-derived exosomes are used to trig-
ger anti-tumor immune and inflammatory responses to 
enhance their potential in CRC therapy [174]. High lev-
els of miR-27b in buffalo milk-derived exosomes exert 
their anti-CRC activity in vitro through the promotion of 
apoptosis of CRC cells, and increasing the accumulation 
of lysosome and mitochondrial reactive oxygen species 
(ROS), as well as aggravating the endoplasmic reticulum 
(ER) stress-mediated CRC cell death via protein kinase 
RNA-like ER kinase (PERK)/inositol-requiring enzyme 1 
(IRE1)/X-box binding protein 1 (XBP1) and CHOP pro-
tein pathways [175].

Intestinal ischemia and reperfusion injury (I/R)
Intestinal Ischemia/reperfusion (I/R) injury is a com-
mon clinical event caused by acute mesenteric isch-
emia, intestinal obstruction, intestinal transplantation 
and other pathophysiological factors, which cause micro 
vascular injury, mitochondrial oxidative damage and 
cell apoptosis [176, 177]. Due to the hidden onset and 
lack of effective treatment of I/R, the morbidity and 
mortality are high. Exploring strategies to reduce intes-
tinal I/R injury is of great significance for improving 
organ recovery and patient survival [178, 179]. NLRX1/

FUNDC1/NIPSNAP1-2 axis mediated mitophagy [180], 
live kinase B1 (LKB1)/AMPK mediated autophagy [181], 
and mtDNA-STING pathway [182] were reported as 
key mechanisms in the pathogenesis of intestinal I/R 
injury. Bone marrow mesenchymal stem cell-derived 
exosomes were found to ameliorate the intestinal I/R via 
the miR-144-3p-mediated oxidative stress and the phos-
phatase and tensin homolog (PTEN)/Akt/nuclear factor 
E2-related factor 2 (Nrf2) pathway [98], and also regulate 
the immune responses and attenuate neuronal apoptosis 
[183] and intestinal I/R injury-induced lung injury via the 
TLR4/NF-κB pathway [184]. During the intestinal I/R 
injury, gut-derived exosomes induce liver injury by pro-
moting hepatic M1 macrophage polarization [185], medi-
ate memory impairment by activating microglia [186]. In 
addition, the inhibition of the secretion of gut-derived 
exosome may be a therapeutic target for the prevention 
of hepatic impairment and memory impairment after the 
intestinal I/R. Human breast milk provides neonates with 
the protective and therapeutic for intestinal IR injury and 
NEC through deceasing the IL-1β-induced activation of 
NF-κB pathway [187]. Milk exosomes have the potential 
to cross physiological boundaries and cell membrane 
[188], however, exert no systemic toxic effects or anaphy-
laxis [189]. Human breast milk-derived exosomes allevi-
ate intestinal damage in IR rats by reducing the intestinal 
hyperplasia and decrease the expression of an inflamma-
tory cytokine TNFα [190].

In general, it is increasingly clear that milk-derived 
exosomes are significantly involved in alleviating intes-
tinal diseases, such as IBD, NEC, CRC, and intestinal IR 
injury, via regulating gut microbiota intestinal immune 
homeostasis, oxidative stress, inflammatory response, 
and proliferation and apoptosis (Fig.  4 and Table  1). 
The application of the exosomes based on their proper-
ties such as stability, transportability, and bioavailability, 
milk derived exosomes may be used as drug carriers for 
the transportation of drugs used for the treatment of tar-
geted diseases.

Milk exosome-based drug delivery systems for 
Disease therapy
Presently, drug delivery system is a novel area that many 
researchers are experimenting. This research area is 
rooted in the difficulty of treating some diseases with 
traditional therapeutic drugs and several drug delivery 
methods. Interestingly, exosomes can act as clinical drug 
carriers and they are also immune compatible. However, 
due to the lack of sources and methods for obtaining ade-
quate exosomes, the therapeutic application of exosomes 
as drug carriers is limited. Milk-derived exosomes have 
several advantages such as higher yield, additional thera-
peutic benefits and oral delivery characteristic compared 
with other delivery vectors [191]. Milk-derived exosomes 
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are highly biocompatible and remain intact after absorp-
tion in the gastrointestinal tract, indicating good stability. 
These properties make lacto-derived exosomes suitable 
drug carriers, but these lacto-derived exosomes already 
have substantial immunomodulatory functions on their 
own, and these vesicles can be used as therapeutic agents 
even when they are not loaded. However, milk exosomes 
show cross-species tolerance, no adverse immune and 
inflammatory responses, and further, milk exosomes are 
good drug deliverers, carrying cargo with tumor targeted 
therapy capabilities [192]. Multifunctional lacto-derived 
exosomes provide solutions to the challenges posed 
by the oral drug delivery, thus providing new insights 
into the development of oral drug delivery nanocar-
riers for natural equipment [193] [135]. Milk-derived 

exosome-loaded insulin (MDEI) elicited a more excel-
lent and sustained hypoglycemic effect, the excellent oral 
delivery ability of MDEI attributed to versatile effects 
include high biocompatibility and bioavailability, active 
multi-targeting uptake, nutrient assimilation related 
ERK1/2 and p38 MAPK signal pathway activation, and 
intestinal mucus penetration, which is simple and cost-
effective approach for the preparation of MDEI contrib-
uted to their large-scale production [193]. Studies have 
indicated that milk-derived exosomes serve as nanocar-
riers to deliver curcumin and resveratrol to breast tis-
sues and enhance their anticancer activities [194], loaded 
with curcumin to improve the cell uptake and intestinal 
permeability of curcumin [195], and also act as agents 
for anticancer drug delivery [196], as well as have higher 

Fig. 4  The regulatory mechanisms of milk-derived exosomes in the intestinal diseases
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Exosomal 
sources

Intestinal disease 
model

Mechanisms Effect factors Ref.

Cow milk DSS-induced UC Mice Alleviates colitis by regulating the intestinal immune homeo-
stasis via inhibiting NLRP3 and TLR4-NF-κB signaling pathways, 
restoring the α-diversity of the gut microbiota effectively and 
Treg/Th17 cell balance.

IL-1β, TNF-α, IL-6, IL-2, and IL-22↓; 
IL-17 A, L-23R, MPO↓; TLR4, Myd88, 
iNOS, COX2, p-IκBα, p65↓; ASC, 
NLRP3, and pro-caspase-1↓; IL-10↑; 
Akkermansia↑

 
[136]

Cow milk DSS-induced UC Mice Modulates the inflammatory response through the interplay 
between the NFκB and A20, and restore a normal gut microbiota 
profile.

TNFAIP3, Zo-1↑; NFκB, COX2, and 
miR-125b↓; pro-inflammatory 
cytokines↓; anti-inflammatory 
cytokines↑

 
[137]

Cow and 
human milk

DSS-induced UC Mice Attenuates the severity of colitis and reduce colon shortening, 
reduce the expression of pro-inflammatory cytokine.

TNF-α, IL-6, DNMT1/3↓; TGF-β, miR-
320/375, and Let-7↑

 
[138]

Cow milk DSS-induced UC Mice Alleviates the severity of acute colitis, reduce the expression of 
pro-inflammatory cytokines, chemokine ligands and chemokine 
receptors.

CXCL2/3/5, CCL3/4/11↓; PTGS2, IL-
1a, IL-1β, IL-33, IL-6 and IL-17 A↓

 
[139]

Cow milk DSS-induced UC Mice Attenuates colitis through optimizing gut microbiota abundance 
and by regulating the expression of the intestinal genes.

IL-6 and TNF-α↓; Dubosiella, Bifido-
bacterium, UCG-007, Lachnoclos-
tridium, Lachnospiraceae↑; butyrate 
and acetate↑

 
[140]

Cow milk DSS-induced UC Mice Regulates the concentrations of lipids and amino acids in both 
fecal samples and colonic tissues, recover the metabolic abnor-
malities caused by inflammation.

Acetate, butyrate, L-arginine↑;
C13:0, C15:1, C20:1, C20:2, C20:5, 
C22:6↓; L-valine, L-serine and 
L-glutamate↓

 
[141]

Goat milk LPS-induced IPEC-J2 
cells

Increases the antimicrobial peptides, defensins and toll like 
receptors, induce the preferential expression of the anti-inflam-
matory, improve intestinal homeostasis.

IL18, IL12p40, MMP9, NOS2↓; 
MUC2, EBI3, IL-6, IL-8↑

 
[142]

Human 
breast milk

LPS-induced NEC mice 
(intestinal epithelial 
cells, IEC-6 cells)

Protects against NEC and attenuate TLR4 signaling via EGF/EGFR 
activation, inhibit enterocyte apoptosis and restore enterocyte 
proliferation

TLR4, NF-κB, IL-6, IL-1β, GSK3β, 
iNOS↓; EGFR, PCNA↑

 
[150]

Human 
breast milk

hypoxia and gavage-
induced NEC rat 
and human normal 
intestinal epithelial cell 
line (FHC)

Protects against NEC by promoting intestinal cell proliferation 
and migration

Ileum injury area↓; villous integrity, 
proliferation and migration↑

 
[152]

Human 
breast milk

H2O2-induced NEC 
(intestinal stem cells, 
ISCs)

Increases ISC viability, protect ISCs from oxidative stress injury via 
the Wnt/β-catenin signaling pathway

Axin2, c-Myc, and Cyclin D1↑  
[153]

Human 
breast milk

LPS-induced NEC rat 
(intestinal epithelial 
cells, IEC-6 cells)

Decreases the incidence and severity of experimental NEC, 
increase IEC proliferation and decrease apoptosis, protect IEC 
from injury in vitro

Cell proliferation rate↑;
Late apoptotic cells↓; intestinal 
damage↓; NEC incidence↓

 
[154]

Human 
breast milk

H2O2-induced NEC 
(intestinal epithelial 
cells, IECs)

Increases IEC viability, protects IECs from oxidative stress and cell 
toxicity induced by H2O2

cell viability↑  
[155]

Human 
breast milk

hypoxia and gavage-
induced NEC rat

reduce ischemic necrosis and epithelial damage, increase the 
number of BrdU-positive cells in the intestinal mucosa, decrease 
the severities of NEC

intestine length, number of BrdU-
positive cells↑; NEC score↓

 [95]

Human 
breast milk

LPS-induced NEC mice 
and human normal 
intestinal epithelial cell 
line (FHC)

Enhances epithelial cell proliferation and migration, and amelio-
rate the severity of LPS-induced NEC via ERK/MAPK pathway

gut damage and necrosis↓; NEC 
score↓; proliferation and migra-
tion↑; p-ERK↓

 
[156]

Human 
breast milk

Hypoxia, LPS-induced 
NEC mouse and intesti-
nal epithelial cells (IEC)

Attenuates NEC damage by reducing the intestinal epithelial 
injury and inflammation, restoring the intestinal mucous produc-
tion, and increasing goblet cells

IL-6↓; injury condition↓; injury 
score↓; MPO activity, MUC2↓; gob-
let cells↑

 
[103]

Human 
breast milk

LPS-induced NEC mice 
(Caco-2 and NCM460 
cell lines)

Prevents NEC by reducing inflammation and injury in the intes-
tinal epithelium as well as restores the intestinal tight-junction 
proteins

ZO-1, Claudin 1, and OCLN↑  
[157]

Human 
breast milk

LPS-induced NEC mice 
(intestinal epithelial 
IEC6 cells)

Exerts significant protective effect on NEC mice, including inhib-
iting inflammation and cell apoptosis, and improving intercel-
lular tight junctions

miR-148a-3p, SIRT1↑;
p53, NF-κB↓

 [94]

Table 1  Milk-derived extracellular vesicles alleviate intestinal related diseases
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mucus penetration to improve the efficacy of the oral 
administration in the treatment of the intestinal bacterial 
infection. Natural flavonoid such as alpha-mangosteen 
was loaded into the milk exosomes and it was observed 
that it has eliminated approximately 99% of the bacteria 
in the macrophages [197], hence, milk-derived exosomes 
can be used as stable oral drug delivery carriers. Cur-
cumin encapsulated in milk exosomes can resist human 
digestion and has enhanced in vitro intestinal permeabil-
ity, and effectively penetrate the intestinal barrier [198]. 

Oral chemotherapy drug paclitaxel encapsulated in milk 
exosomes replaces conventional intravenous therapy to 
improve the efficacy and also reduce toxicity, thereby 
inhibiting the effect on tumor growth [199].

Recently, milk-derived exosomes have attracted atten-
tion as vehicles for delivering RNA therapeutics to 
cancers [200]. Milk-derived exosomes act as a novel 
system for the delivery of miR-31-5p, and also success-
fully encapsulated miR-31-5p mimics into milk exo-
somes through electroporation dramatically to improve 

Exosomal 
sources

Intestinal disease 
model

Mechanisms Effect factors Ref.

Human 
breast milk

asphyxia and cold 
stress-induced NEC 
mice and LPS-induced 
intestinal epithelial 
IEC-6 and IEC-18 Cell 
Lines

Attenuates the severity of experimental NEC and intestinal 
damage through reducing NEC score and ileal inflammation, 
restoring the number of damaged ileal crypts

Lgr5, MBP↑; IL-6, Iba1↓; NEC score↓; 
ileum crypts number↑; cell migra-
tion rate↑

 [96]

Human 
breast milk

LPS-induced NEC 
C57BL/6 mice

Attenuates NEC-induced epithelial injury by reducing inflamma-
tion through inhibiting TNFα and TLR4 expression, and stimulat-
ing intestinal regeneration

TNF-α, TLR4, Ki67 and Lgr5↓;  
[158]

Porcine milk DON-induced NEC 
mice and porcine 
jejunum intestinal en-
terocytes IPEC-J2 cells

Protects the intestine against DON-induced damage by promot-
ing cell proliferation and TJs and by inhibiting cell apoptosis

β-catenin, cyclin D1, p-Akt↑; ZO-1, 
OCLN, and CLDN1↑; p53, p21, 
Caspase 3, Caspase 9, Fas, and 
SERPINE1↓; miR-181a, miR-365-5p, 
miR-30c, and miR-769-3p↑

 
[112]

Porcine milk LPS-induced NEC mice Protects against the LPS-induced intestine epithelial cell injury 
by inhibiting cell apoptosis and inflammation through the p53 
and TLR4/NF-κB pathway via the action of exosome miRNAs

IL-1β, IL-6, and TNF-α↓;
p53, FAS, and Caspase-3↓; TLR4, 
Myd88, p-IκBα and p-NF-κB↓; miR-
4334, miR-219, and miR-338↑

 
[113]

Bovine milk LPS, hypoxia, and 
hyperosmolar formula 
feeding induced NEC 
mouse and human 
colonic LS174T cells

Prevents NEC-induced mouse intestinal injury by increasing 
goblet cell production and ER function

MUC2, TFF3, and GRP94↑; mucin 
production and goblets cell↑; 
MPO↓

 
[159]

Rat milk Intestinal epithelial cells 
(IEC-18)

Prevents NEC by promoting IEC viability and proliferation, and 
stimulating intestinal stem cell activity

PCNA, Lgr5, and cell viability↑  
[119]

Bovine milk Human colon cancer 
(HCT116) cell lines

Inhibits colon cancer cell growth and survival, and anti-inflam-
matory activity, providing an effective alternative for oral delivery

cell growth and survival↓  
[170]

Human 
breast milk

Colon epithelial cell line 
(CRL 1831)

Reduces risk of colon cancer by elevating the expression of miR-
148a and decreasing DNA methyltransferase1

miRNA-148a↑; DNMT1↓  
[171]

Human 
breast milk

Colonic epithelial cells 
(CCD 841) and colonic 
tumor cells (LS123)

Alter the miRNA expression profile of the colon epithelial cells 
and promote the proliferation of healthy colon epithelial cells 
without affecting the growth of the colon cancer cells

miR-148a↑; collagen-type I, PTEN, 
and DNMT↓

 
[173]

Bovine milk Colorectal cancer cells 
(LIM1215, SW620)

Attenuates tumor burden through decreasing the number of 
colonies and increasing cell death in the colorectal cancer cells

Number of colonies↓; percentage 
of cell death↑; tumor volume↓

 
[117]

Goat milk Mouse colon cancer 
cell line (MC38)

Enhances the antitumor effect of the photothermal therapy and 
reduce the inflammatory response after treatment

Ki67, TNF-α, IL-6, and IL-1β↓; 
tumor weights↓; CD3+CD4+ and 
CD3+CD8+↑;

 
[174]

Buffalo milk Colorectal cancer cells 
HCT116, and HT-29

High expression of miR-27b induce higher cytotoxic effects, CRC 
cell apoptosis, ROS and lysosome accumulation via PERK/IRE1/
XBP1 and CHOP protein modulation

ROS, PERK, IRE1, XBP1, ATF6, 
CHOP, Bax/Bcl-2, p-ERK/ERK, 
procaspase-12, p-p38/p38, and 
p-JNK/JNK↑; apoptosis, lysosome, 
ER-tracker↑

 
[175]

Human 
breast milk

Intestinal IR injury rats Protects the intestine against damage from IR injury by de-
creasing the intestinal inflammation and enhancing epithelial 
proliferation

TNFα↓; Ki67↑; Intestinal IR injury 
score↓

 
[190]

↓: downregulation; ↑: upregulation.

Table 1  (continued) 
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the endothelial cell functions in vitro and promote the 
angiogenesis and also enhance the diabetic wound heal-
ing in vivo [201]. Bovine milk is a cost-effective source 
of potential exosomes which can be used as nanocarri-
ers of functional drug delivery vehicle for miRNA-based 
therapy, exosome-transported miR-148a-3p can be 
delivered and taken up by cells in-vitro, and exert a bio-
logical effect through the modulation of gene expression 
[202]. Milk-derived exosomes can be used as a natural 
nanoparticles for novel small interfering RNA (siRNA) 
delivery system, and can enhance mucus penetrability 
and penetrated multiple biological barriers for oral drug 
delivery of siRNA [203, 204], and delivered endogenous 
RNA payloads into the recipient cells, and loaded siRNA 
against specific genes such as KRAS which represents a 
viable natural nano-carrier for the delivery of siRNA for 
the therapeutic application against cancer [205]. Milk-
derived exosomes carrying siRNA-KEAP1 promote dia-
betic wound healing by alleviating oxidative stress [206].

Milk-derived exosomes have high concentration and 
diversity of cargos, which cross the blood-brain barrier 
and are absorbed and accumulated in tissues following 
oral administrations to deliver drugs to the diseased tis-
sues [207]. Milk-derived exosome as an oral drug delivery 
system with a great application potential improve drug 
safety, bioavailability, and effectiveness in the delivery 
of the oral preparations [208]. Milk-derived exosomes 
encapsulated doxorubicin can penetrate the tumor and 
delivery to triple-negative breast cancer cells would be 
effective in reducing triple-negative breast cancer cells’ 
survival [209]. Hyaluronic acid-coated bovine milk exo-
somes for tumor-specific delivery of miR-204 showed an 
excellent biocompatibility and exert no significant sys-
temic toxicity, but significantly increased antitumor effi-
cacy both in vitro and in vivo. Both hyaluronic acid and 
bovine milk-derived exosomes are low-cost and highly 
accessible biogenic materials with broad biomedical 
applications. The hyaluronic acid-decorated bovine milk-
derived exosomes are proven as practical drug delivery 
system of RNA drugs for targeted cancer therapy [210]. 
An in vitro experiment indicated that doxorubicin-loaded 
milk-derived exosomes with hyaluronic acid triggers 
tumor cell death, and therefore, demonstrates its poten-
tial use for tumor cell-specific drug delivery and feasible 
for targeted cancer therapy [211]. A study by Zhang et al. 
proved that milk-derived exosomes-based drug delivery 
system showed controlled drug-release and biocompat-
ibility, hence, they are effective in treating oral squamous 
cell carcinomas [212]. In addition, milk-derived exo-
somes encapsulation of hydrophilic biomacromolecule 
drugs could significantly improve the transepithelial 
transport and bioavailability of the oral drugs [213]. 
Milk-derived exosomes encapsulated with forsythiaside 
A combats liver fibrosis via regulating NLRP3-mediated 

pyroptosis [214]. This shows that milk-derived exosomes 
exert several advantages, such as no adverse immune 
and inflammatory responses, and have great application 
potential in the treatment of targeted diseases by clinical 
drug delivery systems.

Conclusions and future perspectives
Exosome is widely involved in the progression of various 
diseases, and plays an important role in disease diagno-
sis and also act as a drug carrier. In this comprehensive 
review, we summarized the biogenesis, secretion and 
structure, current methods for the extraction, and iden-
tification methods and markers of exosomes, and further 
highlighted the biological roles of the milk-derived exo-
somes in preventing and treatment of intestinal diseases, 
such as inflammatory bowel disease, necrotizing entero-
colitis, colorectal cancer, and intestinal ischemia and 
reperfusion injury via the regulation of intestinal immune 
homeostasis, restoring gut microbiota composition and 
promote the intestinal mucous production, by alleviating 
oxidative stress, cell apoptosis and inflammation, as well 
as reducing the ROS and lysosome accumulation.

Milk-derived exosomes have been confirmed to exert 
no adverse immune and inflammatory responses, non-
toxicity, high biocompatibility and bioavailability and has 
the potential of mass production for clinical therapy for 
various targeted diseases. However, further studies are 
required to establish and promote the standardization 
production platform of exosomes in milk to improve the 
utilization and obtain higher concentration and purity 
and more complete exosomes obtained from milk. In 
addition, several clinical in vivo studies should be car-
ried out to explore the pharmacological effects and the 
pharmacokinetics of the milk-derived exosome-based 
drug delivery carriers for the therapy of targeted diseases, 
thereby to establish milk-derived exosomes as a mature 
drug delivery system and promote its widely use in the 
treatment of various diseases. Taken together, the use of 
milk-derived exosomes is useful in preventing and treat-
ing diseases in both humans and animals. Studies on the 
dietary supplementation of milk-derived exosomes could 
alleviate piglet diarrhea post-weaning and proliferative 
enteropathy in pigs require further exploration.
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