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Nanotopographical cues for regulation 
of macrophages and osteoclasts: emerging 
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Abstract 

Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment 
of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage line-
age cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts 
has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate 
macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of mac-
rophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and 
preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characteriza-
tions of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-
cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages 
and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide 
the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune 
response to external implant.
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  Graphical Abstract

Introduction
Since Brånemark, Schroeder and their colleagues dis-
covered the phenomenon of osseointegration in the late 
1960s and early 1970s, titanium (Ti) based biomateri-
als have been widely used as bone implants [1–4]. In 
brief, osseointegration refers to the direct structural and 
functional connection between living bone and implant 
surface, which is the basis for the stable placement and 
maintenance of implants in bone [5]. Many research-
ers are committed to improving the osseointegration of 
implants, including establishing effective osseointegra-
tion in the early stage of implantation and maintaining 
the long-term stability of osseointegration [6]. However, 
the process of bone healing is complex, involving a vari-
ety of cell types from multiple systems. In addition to 
bone mesenchymal stem cells (BMSCs), osteoblasts and 
vascular endothelial cells that performing direct osteo-
genic and angiogenic functions, there are also immune 
cells, mainly macrophages for osteoimmune response, as 
well as osteoclasts for bone resorption and remodeling 
[7]. Therefore, the regulatory potency of macrophages 
and osteoclasts in bone healing also deserves adequate 
attention [8, 9].

Inflammation is a necessary reaction throughout the 
whole process of osseointegration [10, 11]. Improper 
inflammatory reaction is not only harmful to osseointe-
gration, but also an important reason for delayed failure 
of bone implants. Therefore, the role of immune system 

in the process of bone healing cannot be ignored. Mac-
rophages and osteoclasts are both derived from mono-
cytes and are two important immune cells in bone tissue 
[9, 12]. Although osteoclasts, as terminal cells, are more 
thought to play the role of bone resorption, they can also 
provide coupling signals to osteoblast lineage cells [12, 
13]. Therefore, how to regulate macrophages and osteo-
clasts by the surfaces and interfaces of implant materials 
has received extensive attention in recent years [14, 15].

The surface characteristics, as inherent properties of 
biomaterials, have decisive impacts on the speed and 
quality of osseointegration [6]. From the perspective of 
bionics, nanotopographies are more conducive to simu-
late the natural nanostructure of bone tissue, which act 
influentially on surrounding cells and further effectively 
promote the bone healing post implantation [16–19]. 
Furthermore, there are various kinds of nanotopogra-
phies according to different chemical compositions of 
materials and preparation methods. Each of them has 
their own advantages and characteristics. However, in 
addition to the direct effects on osteoblast lines and bone 
formation, the systematic evaluation of nanotopographi-
cal cues for regulation of macrophages and osteoclasts is 
still lacking.

In this review, we firstly introduce the physiological 
functions of macrophages and osteoclasts and their 
crosstalk between osteoblastic lineage in bone healing. 
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Then, the preparation methods of nanotopographies, 
the regulation of different kinds of nanotopographies 
on macrophages and osteoclasts and the underlying 
mechanisms are thoroughly summarize. At last, we 
will propose challenges and future directions, hoping 
to shed light on successful surface design of implanted 
biomaterials.

The role of macrophages and osteoclasts in bone 
formation
Bone healing process
Bone healing process encompasses four stages, which are 
hematoma formation, an inflammatory phase, callus for-
mation, and tissue remodeling [20]. Upon implantation, 
the blood clot forms and acts as the temporary scaffold, 
further recruiting other innate immune cells such as neu-
trophils, lymphocytes, and macrophages. The platelets 
activated by fibrin and the activated immune cells release 
cascades of chemokines/cytokines, eliciting early inflam-
matory response [21]. From this perspective, moderate 
inflammatory response is verified to be conducive to early 
anti-infection and osteogenic differentiation of stem cells. 
The bone formation usually occurs from the first week 
after implantation, both for animals and human beings 
[22–24]. The initially formed woven bone connects the 
mother bone and the implant surface through the tra-
becular strut. Subsequently, the bone density increases 
and lamellar bone deposits when trabecula reaches a cer-
tain thickness, forming primary bone eventually. With 
the advance of bone formation, bone remodeling begins, 
which involves the bone resorption orchestrated by oste-
oclasts and following bone matrix formation through 
osteoblasts. The whole process relies on the interactions 
between tissue and the implant surface [6]. The bone 
resorption process begins between 1 and 2 weeks in ani-
mals and can be observed near the implant surface at 2 
weeks in humans [22, 23]. Under physiological condi-
tions, bone resorption and formation maintain a reason-
able relative speed and the osseointegration of implants 
is achieved when there is no relative movement between 
the contacted implant and the bone [25]. The imbalance 
of bone remodeling will occur when the absorbed bone 
outweighs the new bone, further damaging the quality of 
osseointegration and leading to implant failure eventu-
ally. However, this process usually cannot be found imme-
diately with the slowness of the whole bone remodeling. 
What we should do is to maintain bone balance so that it 
does not develop in the direction of bone destruction. For 
this purpose, it is a reasonable choice to balance the oste-
ogenesis and osteoclastogenesis by regulating the mono-
cyte/macrophage lineage cells [26].

Macrophages and polarization
Macrophages play indispensable roles in regulating the 
innate inflammatory outcome and tissue healing and 
remodeling [27]. During the early periods of inflamma-
tion (0–48  h), macrophages and polymorphonuclear 
leukocytes (PMNs) identify implant and produce a large 
number of chemokines such as IL-8, chemokine (C-C 
motif ) ligand 4 (CCL4) and monocyte chemoattract-
ant protein-1 (MCP-1), which induce further activation 
and migration of monocyte-macrophages, dendritic cells 
and lymphocytes [28–30]. After that (> 48  h), apopto-
sis of PMNs occurs, which are cleaned by macrophages. 
With continuous infiltration and activation, macrophages 
gradually acquiring its dominant position in inflam-
matory reaction [26]. Physiological inflammation will 
quickly subside and enter the tissue healing period, 
which is conducive to osseointegration. Under pathologi-
cal conditions, the inflammation will become chronic, 
leading to fibrous tissue wrapping, blocked bone forma-
tion and implant failure [11, 31]. The outcome of inflam-
matory response depends to some extent on the state of 
macrophages.

According to diverse functional spectra, macrophages 
can generally polarize into classically (M1) and alterna-
tively (M2) activated macrophages [32]. M1 macrophages, 
which could be activated by IFN-γ or lipopolysaccharide 
(LPS), are known to play important roles in pro-inflam-
matory response [33]. The pro-inflammatory cytokines 
(IL-1, IL-6 and TNF-α), proteolytic enzymes and reactive 
oxygen species released by M1 macrophages are beneficial 
to the phagocytotic clearing of the surface and removal of 
dying neutrophils, dead bone tissue and necrotic debris 
by releasing [34, 35]. On the contrary, M2 macrophages 
could be triggered by IL-4 or IL-13 (M2a), IL-1R ligands 
or immune complexes (M2b), and IL-10, glucocorti-
coid as well as TGF-β (M2c), exerting anti-inflammatory 
effects such as wound healing and tissue reconstruction 
[36]. M2 macrophages recruit osteoblasts by secreting 
a variety of cytokines, such as IL-10, BMP2 and TGF-β, 
and improve osteogenesis, thereby promoting the forma-
tion of new bone around the implants [19, 37]. An in vivo 
study confirmed that the increase in the balance of M2/
M1 macrophages was related to the higher bone proxim-
ity and volume around Ti implants after 10 days of healing 
time[38]. Therefore, a higher M2/M1 ratio may contribute 
to successful osseointegration. Despite M2 polarization 
facilitates bone healing, M1 polarization weighs equally 
in the process. Macrophages depletion could result in 
reduced formation of new bone around the implants in 
the early stage [39]. Thus, early inflammation response 
mediated by moderate activation of M1 macrophages is 
not only acceptable and inevitable, but also a prerequisite 
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for tissue regeneration [40, 41]. After timely M1-to-M2 
switch, M2 macrophages become the dominant cells in 
the bone formation phase, is necessary for both osteo-
genesis and angiogenesis [7, 41]. M1 macrophages secrete 
inflammatory factors such as vascular endothelial growth 
factor (VEGF) and TNF-α to start angiogenesis, while M2 
macrophages stabilize blood vessels and promote vascular 
maturation [41, 42].

Given the high heterogeneity of macrophages, the 
understanding of their phenotypes has been far beyond 
the original M1/M2 dichotomy [43]. Mosser et  al. clas-
sified macrophages based on their fundamental func-
tions in maintaining homeostasis, which were host 
defense, wound healing, and immune regulation mac-
rophages [44]. Responding to diverse stimuli, wide vari-
ety of macrophage phenotypes usually exist in the same 
colony, which requires single-cell analysis to achieve 
more accurate detection [45]. With regard to their oste-
oimmunomodulatory function, macrophages almost 
run throughout the whole process of bone healing [7, 
45]. Sequential activation of heterogeneous macrophage 
phenotypes has emerged as a novel strategy to improve 
bone regeneration [46]. In consideration of the fact that 
macrophages are of high plasticity and pivotal figures in 
inflammatory reaction, a more thorough understanding 
of its function in modulating the osteogenic microenvi-
ronment around the bone implants is required.

Osteoclasts and bone absorption
Osteoclasts can be differentiated from macrophages 
in  vitro under the stimulation of macrophage colony-
stimulating factor (M-CSF) and receptor activator of 
nuclear factor-kappa B ligand (RANKL) [47, 48]. In addi-
tion to their bone resorptive functions, osteoclasts have 
been proved to exert intensive immunoregulative func-
tions in tissue microenvironment via PD-L1 and secre-
tions [49].

A variety of substrates can be adhered by osteoclasts, 
including glass, plastic, bone, dentin, CaP or CaCO3 
substrates [50, 51]. However, it should be highlighted 
that osteoclasts can only absorb mineralized bone, while 
incompetent in demineralized bone resorption [52–54]. 
In terms of bone resorption, a specialized cell-matrix 
adhesion structure called ‘sealing zone’ forms, prevent-
ing the free diffusion of proteins, proteases, and acids 
from the absorption cavity with its dynamic actin-rich 
structure. At the same time, a characteristic “podosome 
belt” or “actin ring” can be observed at the marginal area 
of the sealing zone [55]. In addition, a typical absorp-
tion path takes shape with the migration of osteoclasts 
during the absorption process. The interaction between 
osteoclasts and extracellular matrix (ECM) is thought to 
be mediated by specific glycoproteins of the matrix, such 

as fibronectin or vitronectin associating with integrins. 
Integrin αvβ3 is generally considered to be dominant 
receptor in osteoclasts, which is responsible for transmit-
ting signals through cytoskeleton and tyrosine phospho-
rylation cascade after binding to extracellular proteins 
[56]. Furthermore, being considered as tissue resident 
macrophages possessing niche-specific functions, osteo-
clasts not only participate in bone resorption, but also 
couple the process of bone regeneration by secreting a 
variety of clastokines such as sphingosine-1-phosphate 
(S1P), BMP6, wingless type 10b (Wnt10b), hepatocyte 
growth factor (HGF), etc. [47, 57, 58].

Crosstalk and homeostasis among macrophages, 
osteoclasts and osteoblasts
Bone is a rigid yet dynamic tissue with continuous bone 
resorption and bone remodeling [59]. Osteoclast differ-
entiation, maturation and migration to the bone surface 
marks the beginning of bone remodeling, followed by 
formation of bone resorption lacunae and secretion of 
osteogenic coupling signals. Subsequently, osteoblasts 
secrete bone matrix and form new bone, during which 
some BMSCs also differentiate into osteoblasts [59]. As 
the core regulator of bone homeostasis, macrophages 
perceive stimuli from osteoblasts and osteoclasts, and 
then responses with corresponding polarization states 
[60]. The early stage of bone healing is mainly the inflam-
mation with macrophages population dominated by M1 
phenotype, which promotes the recruitment and dif-
ferentiation of osteogenic and angiogenic progenitors 
by secreting the highest levels of VEGF and CCL2 [37]. 
Similarly, the onconstain M (OSM) secreted by M1 mac-
rophages can also promote BMSCs recruitment and dif-
ferentiation, thus contributing to rapid peri-implant 
osteogenesis and angiogenesis [61–63]. Different from 
M1 macrophages, M2 macrophages and osteoclasts 
ensure the deposition and mineralization of bone matrix 
and the maturation of blood vessels [46]. The effective 
and timely transformation of macrophage phenotype 
from M1 to M2 will facilitate the release of osteoblast 
cytokines and promote the formation of new bone tis-
sue [26]. Moreover, growing evidence proves that the 
secretory products of M1 macrophages also encourage 
osteoclast differentiation and maturation, while M2 mac-
rophages take the opposite effect [64]. With regard to the 
mechanism behind, the osteoprotegerin (OPG)/RANKL/
receptor activator of nuclear factor-kappa B (RANK) 
pathway acts as a pivotal role in promoting bone healing 
and maintaining bone homeostasis. Secreted by osteo-
blasts, RANKL elicits the activation and differentiation 
of osteoclasts through binding to RANK on osteoclast 
precursor cells or osteoclasts, thereby boosting bone 
resorption. Meanwhile, OPG from osteoblasts can also 
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competitively bind with RANKL, preventing the differen-
tiation of osteoclasts [65]. Therefore the ratio of RANKL/
OPG in local environment is considered to indicate the 
level of osteoclast differentiation and maturation [66]. 
Another study found that RANK in extracellular vesicles 
secreted from mature osteoclasts can bind to osteoblas-
tic RANKL to promote bone formation by triggering 
RANKL reverse signaling [67]. Thus, osteoclasts are not 
only the executor of bone resorption, but also the direct 
regulator of osteoclastic- osteogenic balance. The roles 
and interactions of macrophages, osteoclasts and osteo-
blasts during the natural bone healing process is summa-
rized in Fig. 1.

Effect of implant surface nanotopographies 
on macrophages and osteoclasts
Bone is a natural nanostructure composed of collagen 
fibers and hydroxyapatite nanocrystals, which means that 
the surface topographies of bone implants should also 
have biomimetic nanoscale characteristics [16]. In fact, 
natural ECMs in a variety of tissues, including bones, 
teeth and skin, have highly oriented nanostructures [68, 
69]. It is a valuable strategy to accelerate the process of 
bone healing with the help of the bionic nanotopogra-
phies of implants [70–72]. Since the crosstalk among 
macrophages, osteoclasts and osteoblasts are crucial 
for osseointegration, the key regulatory role of mac-
rophages and osteoclasts has gradually attracted exten-
sive attention recently [15, 73]. Here, we focus on recent 
studies reporting fabrication method of surface nano-
topographies and characterizing the response of mac-
rophages and osteoclasts to various nanotopographies 

of biomaterials. Some of the biomaterials are beyond 
the range of bone implant materials, while being incor-
porated to provide enlightenment for design and 
understanding.

Possible strategies to fabricate nanotopographies
Various of methods have been developed to fabricate 
nanotopographies based on specific material. Compared 
to other materials, Ti stands out with outstanding advan-
tages, thus being the most widely applied as bone implant 
material. The micro/nano-topographies on Ti prepared 
by sand blasting and acid etching, also called sandblasted 
large grit and acid-etched (SLA) together, have been 
already used in clinic and regarded as the golden stand-
ard for dental implant surface treatments [6, 74–76]. 
Another mature technology is anodic oxidation, which 
can contrive TiO2 nanotube arrays on Ti surface with 
controllable parameters such as diameter, length and 
thickness through changing the anodizing voltage, elec-
trolyte composition, electrolyte pH value and electrolysis 
time [77–81]. Additionally, nanopillars or nanopores can 
be prepared on the surface of Ti by adding the alumina 
masks or using NaOH electrolyte during anodic oxida-
tion [82, 83]. Moreover, laser surface treatment emerges 
as an environment-friendly technique to acquire nano-
pores on Ti substrate [84, 85]. The method boosts the 
instantaneous melt and vaporization of Ti in a non-con-
tact way and prepares nano pores by controlling the laser 
energy, power and beam [85].

Materials such as degradable metals (magnesium 
and zinc) and polyetheretherketone (PEEK) can also be 

Fig. 1  The roles and interactions of macrophages, osteoclasts and osteoblasts during bone healing process. A Different stages of bone healing 
process. Since the formation of blood clots, the process of bone healing begins. Chemokines released from blood clots recruit innate immune cells. 
Macrophages undergo M1 polarization and release a variety of pro-inflammatory factors, which mediate moderate early inflammatory response. 
With the timely M1-to-M2 transition, M2 macrophages gradually become the mainstream and mediate tissue repair through the release of a variety 
of pro-healing cytokines. Osteoclasts play the role of bone absorption and bone remodeling in the middle and late stages of bone healing, and 
communicate with macrophages and osteoblasts through the secretion of a variety of clastokines. B Crosstalk among macrophages, osteoclasts 
and osteoblasts
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candidates for bone implanting. For example, magnesium 
alloy screws can be applied to internal fixation of fracture 
and has antibacterial properties [86]. PEEK is suitable for 
dental implants because of its closer mechanical proper-
ties to natural bones [87]. To generate nanotopographies, 
magnesium metal is more suitable for surface modifica-
tion with alkali solution [88]. For PEEK, nanosturctures 
can be prepared by argon plasma immersion implanta-
tion and hydrogen peroxide treatment [89]. The etching 
action by concentrated sulfuric acid on PEEK can gener-
ate a porous network structure [90]. In addition, nanofib-
ers, nanopillars and nanodots can be respectively made 
through elctrospinning [91], reactive ion etching (RIE) 
[92], laser surface treatment/femtosecond laser lithogra-
phy [93, 94], colloidal lithography/electron beam lithog-
raphy [95–97] and polymer demixing [98] based on 
different polymer materials.

Most of the surface modification methods suitable for 
bone implant materials, such as aforementioned SLA and 
anodic oxidation, hold the ability to fabricating nano-
topographies with increased roughness, while incompe-
tent in defining and controlling the geometric features 
accurately. Those fabricated nanotopographies can only 
be called as random patterns or partially ordered patterns 
[99]. When the roughness is generated by randomly pat-
terns, it is difficult to eliminate the influence of rough-
ness and infer the precise role of surface topographies 
[100]. Therefore, the law that periodic nanopatterns act 
on cells cannot be accurately applied to such random 
surface topographies [99]. An ingenious method is to 
accurately prepare the ordered patterns by using poly-
mer materials, and then spray a layer of Ti coating on its 
surface by plasma spraying [101]. However, the materials 
prepared by this method only stay in the research stage 
of biological effect, still with difficulty in robust clinical 
application.

Regulation of nanotopographies on macrophages
Tailoring the nanotopographies of biomaterials can 
actively modulate the macrophage performance and 
immune response, which serves as an effective and bio-
safe approach. The topographic modulation mainly 
involves two schemes to guide adherent macrophages. 
One moderately reduces macrophage M1 polarization in 
the early phase of bone healing, and the other strength-
ens M2 polarization at the stage of bone formation and 
bone remodeling. In addition, the condition and secre-
tory spectrum distant cells are also indirectly affected by 
macrophages on the material surfaces. Therefore, suitable 
nanotopographies are conducive to the profound regula-
tion of the surrounding tissues and cell networks through 
macrophages.

Nanopores
Nanopores could simulate the reported “lacy” motifs of 
nanoscale bone organization, which display irregular 
voids 20 to 50 nm in diameter [102]. Due to the unique 
topographical characteristics, nanopores are benefi-
cial bone formation by manipulating the morphologies, 
expression of genes and proteins and the functional sta-
tus of adherent macrophages (Table 1). For example, both 
a nanoporous TiZr alloy surface and a tunable nanopo-
rous thin membrane on PEEK were reported to suppress 
the inflammatory response of macrophages, especially 
after LPS treatment (Fig.  2A) [103, 104]. The changed 
macrophages polarization could further perform func-
tion in bone tissue regeneration. The expression of oste-
ogenic factor genes such as BMP2, BMP6 and Wnt10b 
by macrophages was remarkably enhanced, while the 
expression of fibrosis related genes (VEGF and TGF-
β1) was reduced [105]. Using nanopores/macrophages-
conditioned medium, the BMP pathway expression and 
the osteogenic differentiation of BMSCs was mostly 
enhanced [19, 105]. Therefore, the microenvironment 
generated by macrophages grown on nanopores are ben-
eficial to osteogenic differentiation of BMSCs.

With the change of pore size, macrophages on nanop-
orous surfaces exhibit diverse morphologies and polar-
ize into heterogenous states. By increasing the alumina 
nanopore size from 0 to 100  nm, macrophages were 
observed to became rounder and had less pseudopodia. 
When growing on the 200 nm porous structures, mac-
rophages inclined to be more elongated and had more 
pseudopodia [105, 106]. Chen et  al. found that mac-
rophages on a nanoporous anodic alumina tended to be 
rounder and showed M2 polarization with increasing 
pore size (0-200 nm), which conflicted the “elongation 
factor” rule [105, 107]. The increased expression of M2 
surface marker (CD206) and the decreased expression 
of M1 surface markers (CD86 and CCR7) were detected 
(Fig.  2B, C). Corresponding to the surface markers, 
the secretion of cytokines run toward the direction of 
inflammation inhibition. The downregulated TNF-α, 
IL-1β, IL-6, IL-18 expression, together with upregulated 
expression of inhibitor of NF-κB (IκB), an inhibitor of 
pro-inflammatory gene NF-κB implied the weakened 
inflammation jointly [105, 108]. Macrophages also 
obviously expressed autophagy related proteins such 
as LC3A/B, Beclin-1, Atg3, Atg7, and P62, which could 
also account for the inhibited inflammatory functions 
of macrophages [105, 109]. On the contrary, another 
study showed that 200 nm nanoporous alumina mem-
brane induced higher level of reactive oxygen species 
(ROS) and pro-inflammatory cytokines secretion, com-
pared to the 20 nm group [106]. A study by Ariganello 
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and coworkers also showed that 20  nm TiO2 nanopo-
res were more conducive to reducing the expression 
profile of pro-inflammatory cytokines in human mac-
rophages than the smooth Ti surfaces [110]. Similarly, 
honeycomb structures with smaller pore sizes (90 and 
500  nm) were found to activate the anti-inflammatory 
macrophage phenotype (M2) compared to larger pore 
sizes (1000 and 5000  nm) [19]. In addition, although 
amounts of studies tend to emphasize the relation 
between the macrophage elongation and functional 
state, Zhu et al. elaborated the phenomenon from a dif-
ferent point of view. They suspected that formation of 
filopodia across the smaller nanopores (90 and 500 nm) 
contributed to macrophage M2 polarization, which 
provides a new perspective for explaining the morphol-
ogy induced polarization of macrophages (Fig. 2D) [19].

In conclusion, the implant surface with nanopores 
topography can alleviate inflammatory response and 
promote macrophages M2 polarization for bettering 
osteogenic microenvironment, though the nanopores 
diameter and macrophages polarization are not critically 
correlated.

Nanotubes
There are four main methods for synthesize TiO2 nano-
tubes: hydrothermal, templating, sol-gel, and anodic 
oxidation methods, with the first two of them preparing 
nanotube particles mostly, instead of nanotube arrays 
[112–114]. Compared to other methods, anodic oxida-
tion has been widely applied in the surface modification 
of Ti implants, with the ease of fabrication process and 
the controllability of nanotube arrays. What cannot be 
neglected is that amorphousness exists after anodization, 
which is not conducive to its application as biomateri-
als. Thermal annealing is always performed to transform 
the amorphous nanotubes into the required crystalline 
phase, but it has the disadvantages of additional energy 
consumption and the barrier layer formation [112, 115]. 
To address the mentioned drawbacks of the traditional 
approaches, a novel water-assisted crystallization (WAC) 
technique to crystallize the amorphous TiO2 nanotubes 
was proposed by Wang et al. This new strategy only adds 
one simple procedure after the conventional anodization, 
which is simply soaking the anodized foils in water for a 
while. This process allows the amorphous TNTs arrays 
transform into the anatase phase and widen the applica-
tion scope [112].

Fig. 2  Nanopores affect macrophage phenotype. A Macrophage morphology and the M1- and M2-related genes expression were influenced by 
the tunable nanoporous thin membrane on PEEK. Reproduced with permission [103]. Copyright 2020, Elsevier. B The structures anodic alumina 
structures with different sized pores. Reproduced with permission from Ref. [105]. Copyright 2017, Royal Society of Chemistry. C the expression 
of macrophage-related cytokines and markers was detected by the real-time quantitative polymerase chain reaction (RT-qPCR). Reproduced 
with permission from Ref. [105]. Copyright 2017, Royal Society of Chemistry. D Morphological changes of macrophages on TiO2 honeycomb-like 
nanostructures. Reproduced with permission from Ref. [19]. Copyright 2021, Science
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Efforts have been paid to deepen the understanding of 
the topographical effect of nanotubes on the macrophage 
phenotypes. The diameter of the nanotube is a critical 
parameter acting on the macrophage behavior, which 
is also called ‘size effect’ (Table  2) [116]. Ma et  al. con-
firmed that the macrophages appeared to be oval on the 
30  nm nanotubes but exhibited an elongated shape on 
the 80 nm nanotubes [117]. The 30 nm surfaces induced 
the anti-inflammatory cytokines secretion with increased 
expression of M2 markers (Arg1, CD163 and CD206), 
while the 80 nm surfaces enhanced the pro-inflammatory 
cytokines expression with upregulated expression of M1 
markers (iNOS, CD86 and CCR7) [117]. Another study 
also showed that macrophages on the 30 nm nanotubes 
tended to exhibit the M2 phenotype, while more M1 
macrophages were founded on the 100  nm group. The 
variation of pro-inflammatory and anti-inflammatory 
cytokines showed a time-dependent manner [118]. Nev-
ertheless, some studies suggested that large diameter 
nanotubes are more beneficial to M2 polarization. Lü 
et  al. reported that, compared to the 30  nm nanotubes, 
80  nm nanotubes was more conducive to reduce pro-
tein secretion and mRNA expression of pro-inflamma-
tory cytokines (TNF-α) and chemokines (MCP-1 and 
MIP-1α) by macrophages [119]. A study about nano-
tubes with the diameter of 50 and 100 nm revealed that 

both of the groups could downregulate the expression 
of TNF-α and MCP-1 [120]. Besides, 80  nm nanotube 
held the potential to reduce the inflammatory response 
of macrophages stimulated by LPS [116, 121]. By using 
organic electrolyte, nanotubes with greater range (about 
50–140 nm) of diameters were fabricated and larger size 
nanotubes were confirmed to promote macrophage M2 
polarization stronger [122, 123]. A study reported that 
the generated nanotubes with large diameter induced 
obvious macrophage M1 polarization under oxida-
tive stress, while the following secreted inflammatory 
chemokine enabled co-cultured stem cells recruitment 
and osteogenic differentiation [124]. In brief, the disso-
nances of results concerning the effects of diameters are 
probably caused by multiple factors such as the cell types, 
culture conditions and culture time. In addition, the spe-
cific nanotube topography engineered in each research 
exists differences compared to others. For example, the 
gaps between adjacent nanotubes may be different even 
with same diameter [125].

Through the immunomodulatory effect on mac-
rophages, nanotubes have a promoting effect on bone 
tissue formation. Nanotubular surfaces were reported to 
promote the expression of platelet-derived growth factor 
BB (PDGF-BB) by macrophages compared to the smooth 
surfaces [117]. The release of PDGF-BB is associated with 

Table 2  Representative studies illustrating how size effect of nanotubes affect macrophage polarization

Diameter of nanotubes Cells/Animals M1 markers M2 markers Overall polarization References

30 and 80 nm Human monocyte-
derived macrophages and 
human BMSCs
Sprague Dawley rats

↓CD86, CCR7
↓IL-1β, IL-6

↑CD206, CD163
↑IL-10
↑TGF-β, Arg1

M2 on 30 nm [117], [18]

↑CD86, CCR7
↑IL-1β, IL-6, IFN-γ
↑iNOS

N/A M1 on 80 nm

30 and 80 nm J774A.1 ↓TNF-α
↓MCP-1, MIP-1α
(especially on 80 nm)

N/A M2 (especially on 80 nm) [119]

20, 50 and 120 nm RAW 264.7 ↓TNF-α
↓MCP-1, MIP-1a

N/A M2-like (especially 50 and 
120 nm)

[120]

About 80 nm RAW 264.7 ↓IL-6, IL-1β
↓TNF-α
↓MCP-1, MIP-1α, RANTES
↓NO

N/A M2-like [116], [121]

About 50–140 nm THP1 and HUVECs ↓CD86, CCR7
↓IL-1β, IL-8
↓TNF-α, iNOS

↑CD206
↑IL-10
↑Arg1, VEGF

M2 [122], [123]

30, 70 and 110 nm RAW 264.7 and rat BMSCs ↑CCR7 (70 and 110 nm)
↑IL-1β, IL-6, IL-8 (70 and 
110 nm)
↑TNF-α (110 nm)
↑NO (110 nm)

↓TGF-β1 M1 on 110 nm under 
oxidative stress

[124]

30, 70 and 120 nm RAW 264.7 N/A ↑BMP2
↓TGF-β1 (30 nm)
↑ICAM-1 (30 and 70 nm)

Not clearly defined [128]
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accelerated regeneration process of bone and periodontal 
tissues [126, 127]. Another study showed that increasing 
nanotube diameters led to increased BMP2 expression 
and secretion and the highest BMP2 level was detected 
in the 120 nm nanotubes group [128]. Furthermore, cell 
migration, osteogenic genes expression, alkaline phos-
phatase (ALP) synthesis and ECM mineralization of 
BMSCs were promoted by nanotubes/macrophages-
conditioned medium. Nanotubes modified Ti implants 
also contributed to improved bone formation in vivo and 
higher bone volume and bone implant contact distance 
were found [18]. Angiogenesis is another key strategy 
for stimulating the repair of damaged bone tissues [129]. 
Conditioned media from macrophages on nanotubes 
were confirmed to accelerate endothelialization of human 
umbilical vein endothelials (HUVECs) [122]. Besides, the 
structure of nanotubes is beneficial to drug loading. After 
implantation, the drugs released from nanotube arrays 
were in favor of further regulation of macrophages [130].

Therefore, the implant surface with nanotubes topogra-
phy can effectively induce macrophages M1 or M2 polar-
ization at proper diameters. In addition, the nanotubes 
are considered as 2.5-D structure with larger surface 
area than nanopores, which serve as an ideal platform for 
drug delivery and multi-functional coating fabrication to 
realize M1-M2 sequential transition. Since the nanotubes 
nanotopography can be easily formulated on Ti implant 
surface via anodization, it may have an exciting future for 
clinical products development.

Nanofibers
As nanoscale fibers are main components of native 
ECM, nanofibrous structures architecturally mimic the 
native ECM and remain immunologically inertia at the 
same time [131]. Resorbable nanofiber scaffolds offer 

enormous promise to bone tissue engineering without 
a need for removal. Both synthetic and natural poly-
mers have been electrospun for use in bone engineering 
such as polyhydroxybutyrate (PHB), poly (epsilon-cap-
rolactone) (PCL), poly (lactic acid) (PLA) and chitin 
[132–135]. A study showed that a polyurethane (PU) 
nanofibrous membrane could induce indiscernible acti-
vation of macrophages with the expression levels of pro-
inflammatory or anti-inflammatory genes similar to those 
on tissue culture plates. The in  vivo study using mice 
model showed that no foreign body giant cells (FBGCs) 
were identifiable on nanofibrous membrane surfaces fol-
lowing a 2-month implantation, which verified the supe-
rior biocompatibility of the nanofiber membrane [91]. In 
addition, nanofibers can be fabricated in the form of 2D 
membranes/mats or 3D scaffolds. In comparison with 
the 2D nanofiber membranes, the 3D scaffolds better 
recapitulate the native ECM without the restriction of 
certain shape. Since the average pore size of the 3D scaf-
folds is larger than size of cells, nanofiber scaffolds usu-
ally could allow cells to penetrate and function in three 
dimensions [136].

Given the morphological similarities between the 
native ECM and the nanofibers, nanofibers mani-
fest their potential effects on macrophage polarization 
(Table  3). A study reported the M1 classified 27E10+ 
macrophages cultured in 3D poly (lactide-co-glycolide) 
(PLGA) nanofibers, which presenting a pro-healing 
effect at the same time [137]. Macrophages typically 
exerts pro-inflammatory effect with increased expres-
sion of M1 polarization markers, but the enhancement 
of pro-angiogenic chemokines (IL-8 and CCL4) release 
and the decrease of pro-inflammatory cytokines (IL-1β 
and TNF-α) expression of macrophages in 3D nanofib-
ers disagreed with previous cognition. The expression 

Table 3  Representative studies illustrating how nanofibers affect macrophage polarization

Fabrication methods and 
material features

Cells/Animals M1 markers M2 markers Overall polarization References

Electrospinning
(PU-nanofibers: 270 nm diam-
eter and 480 nm pore size.
PU-microfibers: 1.15 μm diam-
eter and 3.32 μm pore size)

RAW 264.7
Sprague Dawley rats and 
C57BL/6 mice

↑TNF-α, IL-1β and 
iNOS (microfibers)

↑CD206 and 
IL-10 (microfib-
ers)

Nanofibers caused minimal 
macrophage responses and 
only mild foreign body reac-
tions compared to microfibers

[91]

Electrospinning
(3D PLGA nanofibrous meshes)

Human monocyte-derived 
macrophages

↑27E10, MACRO
↓IL-1β
↓TNF-α

↓CD163 M1 but with decreased expres-
sion of pro-inflammatory 
cytokines

[137]

Electrospinning
(Aligned/random PLLA scaf-
folds, 550 nm and 1.6 μm)

RAW264.7 ↓G-CSF
↓IFN-Ύ
↓TNF-α
↓RANTES, MIP-1α

N/A M2-like [139]

Electrospinning
PDO scaffolds with different 
diameters and porosity)

C57BL/6 mice bone marrow 
derived macrophages and 
mouse endothelial cells

↓iNOS ↑TGF-β1
↑Arg1

M2 (on larger fiber/pore sizes) [140]
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of VEGF-vascular endothelial growth factor receptor 
(VEGFR) axis, which is an essential part of angiogen-
esis, was also upregulated. As a conclusion, the conven-
tional classification of macrophage phenotype via surface 
marker expression cannot explain the actual results. 
Besides, the fact that CD163+ macrophages expressed 
pro-inflammatory cytokines (IL-1β and TNF-α) can be 
found on flat surfaces, which only be reported in the 
human dermis of psoriasis patients [137, 138]. The con-
tradiction between conventional surface marker classi-
fication of macrophages and the expression of cytokines 
on nanofibers deserve to be given attention. Therefore, 
when studying cell behavior on biomaterials, we should 
evaluate it comprehensively from multiple indicators and 
criterions.

The fiber diameter, along with the pore size, are known 
to orchestrate macrophage responses collaboratively. 
Enrica Saino et  al. revealed that the diameter of elec-
trospun poly(L-lactic) (PLLA) fibers, rather than the 
alignment, acts relevantly in influencing macrophage 
activation and secretion of pro-inflammatory molecules 
[139]. Nanofibrous scaffolds could minimize the inflam-
matory response when compared with microfibrous 
scaffolds [139]. In addition, Garg and coworkers investi-
gated the macrophage behavior through polydioxanone 
(PDO) scaffolds with varying diameters and porosity. 
The increased expression of M2 marker (Arg1), increased 
secretion of angiogenic cytokines (TGF-β1, VEGF and 
bFGF) and decreased expression of M1 marker (iNOS) 
were found with the increase of fiber/pore size [140]. 
Therefore, larger pore size seems to be conducive to mac-
rophage M2 polarization and tissue regeneration, which 
needs to be confirmed by more studies.

The ideal nanofibrous membrane/scaffold should pos-
sess multiscale inter-connected porous structure to 
increase surface area as well as nutrients communica-
tion. This enables more cell adhesion and migration to 
the interior space, resulting in 3D network structs [141, 
142]. Further in combination with growth factors to pro-
mote osteogenesis and angiogenesis, this strategy may 
be a promising candidate for bone implant surface engi-
neering. Since most of the nanofibrous topography is 
fabricated by electrospinning, it may be more suitable for 
membranous implant modification.

Nanogrooves
When groove width is within a certain range, nano-
grooves are beneficial to the elongation of macrophages. 
Luu et al. investigated cell shape and phenotype of bone 
marrow derived macrophages (BMDMs) on Ti substrates 
with a range of groove widths (150 nm to 50 μm) [143]. 
Macrophage elongation and the promoted expression of 
M2 markers were found on grooves with intermediate 

width ranging from 400  nm to 5  μm. When the groove 
width was less than 200 nm or greater than 10 μm, mac-
rophages exhibited weak elongation, even diffused regu-
larly in multiple directions (Fig.  3A). This phenomenon 
revealed the restrict of minimal and maximal groove 
width, with wider width acting like smooth substrate 
without obstacle. Consistently, Edwin Lamers et al. found 
that macrophages cultured on grooves with pitch ranging 
from 200 to 1000  nm were stretched out and showed a 
spindle-like shape, while the 150 nm group obtained an 
amoeboid shape (Fig. 3B) [144]. Furthermore, Chen and 
coworkers incorporated parallel nanogratings with the 
width of 250 nm, 500 nm and 2 μm into PCL, PLA and 
poly (dimethyl siloxane) (PDMS). The RAW264.7 cul-
tured on the substrates showed greater elongation, with 
500 nm group being the most obvious one (Fig. 3C) [145]. 
The above-mentioned changes were observed on three 
different types of polymers, further indicating that it was 
nanogroove topography rather than chemical composi-
tion accounted for macrophages elongate [145]. Based 
on above publications, we conclude that nanogroove 
topography at the range of 200  nm-5  μm can elongate 
macrophages.

The polarization state changes with the alteration of the 
macrophage morphology [107, 146, 147]. Nanogrooved 
surfaces were reported to control macrophage activa-
tion and are promising to induce a fast wound-healing 
response [144]. Macrophages expressed M2 marker 
(Arg1) and anti-inflammatory cytokine (IL-10) evidently 
on Ti substrates with intermediate groove widths ranging 
from 400 nm to 5 μm [143]. In addition, TNF-α secretion 
levels were obviously downregulated in RAW264.7 cells 
on 300 nm, 500 nm and 1 μm nanogrooves at 48 h in vitro 
[145]. Despite the fact that further researches need to 
be carried out on the mechanism behind, nanogroove 
patterns with a suitable width are favorable to facili-
tate wound healing in response to biomaterial implants 
through modulating macrophage shape and behavior. 
Therefore, this topography may hold potential applica-
tion for the clinical cases with the deepen understanding.

Nanoprotrusions/nanodots
Nanoprotrusions/nanodots structure could acceler-
ate osseointegration by mitigating the inflammatory 
response of the macrophage (Table 4) [14, 95, 148]. Nan-
oprotrusion-like Ti thin films fabricated via an e-beam 
evaporator not only limited the migration ability of 
macrophages, but also depressed the expression of NO 
production and pro-inflammatory cytokines, includ-
ing TNF-α and IL-1β [148]. Through colloidal lithog-
raphy strategy to modify the implants with nanoscale 
semispherical protrusions, Dimitrios Karazisis et  al. 
observed inhibited macrophage infiltration and reduced 
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expression of inflammatory (TNF-α) and osteoclastic 
(CatK) gene [95]. Furthermore, the nanodot topogra-
phy was reported to elicit modulatory effects on the 
macrophages in a size-dependent way. The mouse pri-
mary macrophages on gold nanoparticles surfaces with 
the diameters of 16, 38 or 68  nm manifested inhibited 
pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) 
secretion in a size-dependent manner, with the 68  nm 
group manifesting the greatest reduction effect [149]. 
Chen and coworkers further employed hydrogen tetra-
chloroaurate to design similar gold nanoparticles (16, 
38, 68  nm) to regulate immune response. The designed 
nanostructures were able to inhibit gene expression of 
the pro-inflammatory cytokines (IL-1β, IL-6 and IL-18) 
and promote the expression of IκB, therefore induc-
ing macrophages M2 polarization [14]. In addition, the 
osteogenic gene expression profile (BMP2/6, Wnt10b and 

OSM) of macrophages was enhanced [14]. Ni et al. found 
that macrophages on nanodots surfaces, especially larger 
nanodots, showed M2 polarization with downregulated 
expression of CD86, TNF-α and IL-1β and upregulated 
expression of CD206 and IL-10 [150]. Besides, Rice et al. 
once explored the link between protrusion densities (3%, 
19%, 30% and 43%) and macrophage behavior. Though 
the results showed no statistically significant difference in 
PGE2 production and release, it suggested that in addi-
tion to the diameter, the density parameter of nanodots 
may also be an important regulatory factor [151].

The observed macrophages M2 polarization on nano-
protrusions/nanodots surface may be related to the cell 
adhesion sites selection and proper topography stimu-
lation [14, 152]. Although the nanodots topography 
can be finely tuned, the bonding between nanodots and 
substrate is limited. Anyway, the surface chemistry of 

Fig. 3  Grooved patterns regulate macrophage elongation. A Macrophage morphology and quantification of BMDMs elongation factor on Ti 
substrate with varied grating patterns and nonpatterned control. Reproduced with permission from Ref. [143]. Copyright 2015, ACS Publications. B 
Nanogrooved substrate characterizations and morphology of RAW264.7 cultured on substrates with different groove pitches for 24 h. Reproduced 
with permission from Ref. [144]. Copyright 2012, Elsevier. C Morphology changes of RAW 264.7 cultured on 3 different types of polymers, PCL, PLA 
and PDMS gratings. Reproduced with permission from Ref. [145]. Copyright 2010, Elsevier
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nanodots can be easily modulated, in order to provide 
more customized interface between implant and host tis-
sues [14].

Nanoneedles/nanospikes/nanorods
These types of topographies usually possess needlepoint-
like end, changing curvature of cell membrane via cellular 
acupuncture and therefore cell cytoskeleton and pheno-
type are regulated [153]. For example, macrophages on 
the nanoneedle hydroxyapatite with a diameter of 20 nm 
showed more anti-inflammatory tendency with round 
cell morphology and high M2 markers (Arg1 and CD206) 
expression [129]. On the contrary, some reports showed 
that these topographies would lead to macrophage M1 
polarization. Kartikasari et  al. adopted alkaline-etching 
treatment with different protocols to create two types of 
Ti surfaces patterned nanospikes with high or low distri-
bution density. J774A.1 cells (mouse macrophage-like cell 
line) cultured on both Ti nanostructured surfaces exhib-
ited circulated shapes and highly expressed M1 markers, 
not M2 markers [154]. These kinds of topographies can 
be a double-edged sword, presenting fatal damage with 
excessive sharpness. Zaveri et al. designed ZnO nanorods 
through a solution-based hydrothermal growth method. 
The cultured bone marrow-derived macrophages are 

capable of initially adhesion and spreading. While it is 
noteworthy that the number of adherent macrophages 
was reduced compared to ZnO flat substrate and glass. 
This may owe to the toxicity of the material itself and cell 
penetration by nanorods. The ZnO nanorods were 50 nm 
in diameter and 500 nm in height, which may drive cell 
death through piercing the cell membrane [155]. With 
confirmed modulation on macrophages, these topogra-
phies should be engineered with moderate sharpness for 
wide-ranging application.

Positive and negative regulation of nanotopographies 
on osteoclastogenesis
A variety of nanotopographies have been confirmed to 
possess the ability to regulate osteoclast differentiation, 
but there is still no unified understanding concerning 
the direction of regulation. Some studies indicated that 
osteoclast fusion and resorptive activity were impeded by 
nanostructured hydroxyapatite (HA) materials compared 
to smooth surfaces, which was partially associated with 
disruption of actin rings [156, 157]. Different grain sizes 
of HA from nanoscale (∼100  nm) to submicron scale 
(∼500 nm) lead to the changes of the substrate proper-
ties, including wettability, surface energy and porosity. 
These changes in physical and chemical properties may 

Table 4  Representative studies illustrating how nanoprotrusions/nanodots affect macrophage polarization

Fabrication methods and 
material features

Cells/Animals M1 markers M2 markers Overall polarization References

Electron beam evaporation
(Ti thin films, 35 nm thick)

J774A.1 ↓IL-1β
↓TNF-α
↓iNOS, NO

N/A M2-like [148]

Colloidal lithography and sputter-
coating
(80 nm semispherical protrusions 
with interparticle distance of 
165 nm)

Sprague Dawley rats ↓CD163
↓TNF-α

N/A Not clearly defined [95]

Plasma polymerization and 
electrostatic self-assembly 
technique (16, 38 and 68 nm gold 
nanoparticles)

C57BL/6 mice bone marrow 
derived macrophages

↓IL-1β, IL-6
↓TNF-α
(especially on 68 nm 
AuNPs modified with 
acrylic acid)

N/A M2-like [149]

Plasma polymerization and elec-
trostatic self-assembly technique
(16, 38 and 68 nm gold nanopar-
ticles)

RAW 264.7 and human BMSCs ↓IL-1β, IL-18, IL-6
↓iNOS

↑Arg1
↑IκB

M2 [14]

Anodization and subsequently 
immersion-coating treatment
(Nano-concave pits and nano-
convex dots with different 
diameters)

RAW264.7, human BMSCs and 
HUVECs

↓CD 86
↓IL-1β, IL-6
↓TNF-α

↑CD 206
↑IL-10

M2 on nanodots [150]

Electrostatic interaction, electron 
beam-induced thermal evapora-
tion and subsequently oxidization
(110 nm high hemispherical 
protrusions, 3%, 19%, 30% and 
43% densities)

Primary derived human mac-
rophages and
Osteoblasts

↑IL-1β
↑TNF-α

N/A M1-like [151]
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have a synergistic effect on osteoclast differentiation 
(Fig. 4A) [158]. There exists a negative relation between 
substrate porosity and osteoclast formation, which 
accounts for the inhibitory effect of nanotopographies on 

osteoclast differentiation [159]. Supporting the conclu-
sion, rabbit-derived osteoclasts differentiation induced by 
β-tricalcium phosphate (β-TCP) ceramic surfaces exhib-
ited a porosity-dependent pattern. When the surface 

Fig. 4  Nanotopographies affect osteoclast differentiation. A RAW 264.7 cells cultured on HA substrates with different surface nanoscales under 
RANKL stimulation at day 4. Reproduced with permission from Ref. [158]. Copyright 2019, Royal Society of Chemistry. B The linear correlation 
between the surface porosity of β-TCP substrate and the active rabbit-derived osteoclasts (OCs) per total OC number. Reproduced with permission 
from Ref. [159]. Copyright 2013, Wiley. C Tartrate-resistant acid phosphatase (TRAP) staining and quantification of total protein amount and TRAP 
activity after a 5-day culture of C57BL/6 mice bone marrow derived macrophages on Ti substrates with different nanotubes. Reproduced with 
permission from Ref. [163]. D F-action (green) of RAW264.7 cultured on Ti substrates with different nanotubes at day 4. Reproduced with permission 
from Ref. [15]. Copyright 2021, Elsevier. E Frames from a time-lapse movie of the sealing zones of OCs on rough and smooth calcite substrates 
viewed at 0, 3 and 300 min. In the color pictures of temporal ratio color, new pixels are red, pixels that disappeared are blue, and unchanged pixels 
are yellow. Scale bars: 10 μm. Reproduced with permission from Ref. [164]. Copyright 2010, the Company of Biologists
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porosity was lower than 33%, the higher porosity pos-
sessed stronger the inhibitory effect on osteoclastogen-
esis. Meanwhile, the surfaces within the porosity range 
of 33–41% completely inhibited formation of actin ring 
and the resorption ability of osteoclasts (Fig.  4B) [159]. 
In addition to the osteoid calcium phosphorus substrate, 
the topography of Ti significantly acts on the osteoclast 
differentiation. Several studies have been published on 
related topics, which reaches a consensus that the nano-
topographies (nanotubes, nanonets, nanopillars, nano-
spikes) of Ti surfaces take inhibitory effect on osteoclast 
differentiation [154, 160, 161]. With regard to nanotubes, 
inhibitory effect increased with the diameter (Fig.  4C, 
D) [15, 162, 163]. Additionally, nanoporous alumina and 
PEEK were confirmed to inhibit osteoclast differentia-
tion.[103, 105].

Nevertheless, some nanotopographies were also found 
to facilitate osteoclast differentiation. For example, a 
detailed study reported that actin rings were small and 
unstable when osteoclasts were cultured on calcite crys-
tals with 12 nm roughness while were large and stable on 
the same substrate with 530  nm roughness. The trend 
remains similar on glass substrate (Fig. 4E) [164]. Gross 
et  al. reported that sprayed HA coating could trigger 
stronger bone resorption capacity of osteoclasts com-
pared to polished HA coating [165]. Although recent 
advances provide insight for topography-related modu-
lation on osteoclasts, deeper understanding of the spe-
cific topographical influence on osteoclastogenesis is 
demanded to reach a general consensus. The discrepan-
cies are partly attributed to degradability of substrates, 
the type of nanotopographies, the source of cells and the 
culture environment.

In conclusion, current studies mainly focus on the 
regulation of surface topographies on osteoclast dif-
ferentiation or bone resorption, but pay less attention 
to the paracrine and immune regulatory functions of 
osteoclasts. Osteoclasts are derived from the monocyte-
macrophage lineage, so they are also important regula-
tors of local bone homeostasis by secreting a variety of 
clastokines or extracellular vesicles [13, 67]. Excessive 
inhibition of osteoclast differentiation is not conducive 
to coupling osteogenesis. Therefore, well-designed nano-
topographies should not only moderately inhibit osteo-
clastic bone resorption, but also regulate osteoclastic 
secretion profiles to promote local bone formation.

Nanotopographies act on macrophages/osteoclasts 
through focal adhesion‑cytoskeleton
Once sensing the ECM through protrusion structures 
(lamellipodia and filopodia), focal adhesions appear and 
further render the link between actin cytoskeleton and 
the ECM [166, 167]. Focal adhesions are composed of 

an intricate group of integrins and cytoplasmic proteins, 
including those directly link with integrins (α-actinin and 
talin) and those bind indirectly (paxillin, vinculin, etc.) 
[168]. Moreover, the structure and the position of focal 
adhesions are inherently dynamic, which contribute to 
the reorganization of cell structure [167]. Positioned in 
the ECM proteins, Arg-Gly-Asp (RGD) sequences act 
pivotally in the process, which induce cellular responses 
through mechantransduction, including integrin signal-
ing, focal adhesion organization, activation of cytoskele-
ton-associated molecules, calcium signaling and nuclear 
translocation of mechanosensitive transcriptional regula-
tors [99, 169, 170].

Podosomes is another nonnegligible adhesion structure 
mainly formed in macrophages and osteoclasts [171]. 
Podosome consists of a core of actin filaments and sur-
rounded ring structure involving actin cables with adhe-
sion molecules including integrins and vinculin around 
[172]. The podosomes can organize themselves into vari-
ous shapes under different conditions, such as array and 
belt [173]. Focal adhesions and podosomes share similar 
proteins and roles, but their structures are different, with 
podosomes being more unstable [147].

The nano-patterned topographies have been verified 
to manipulate the cell-matrix adhesion through influ-
encing the structure and distribution of focal adhe-
sions and posdosomes [174]. In turn, the regulated cell 
adhesion controls cell movement, differentiation and 
function (Fig. 5). When cells were cultured on the nano-
structured surfaces, the number of focal adhesions was 
changed [175]. A kind of anisotropic ligand nanogeom-
etry could assist the recruitment of integrin β1 of mac-
rophages and strengthen the adhesion, which facilitated 
the M2 polarization [176]. Macrophages cultured on 
the nanoscale Ti surface exhibited punctate actin, which 
were indicative of podosome formation and not seen on 
the polished surface [110]. Additionally, nanostructures 
on Ti surface were found to alleviate of the inflamma-
tory response of macrophages, whose podosome-related 
genes (Arp2 and Arp3) were up-regulated and integrin-
binding protein-related genes (paxillin, talin, and Src) 
were down-regulated. The promoted podosome forma-
tion subsequently activated the RhoA/ROCK signaling 
pathway, which correlated with M2 macrophage polari-
zation [19]. Furthermore, a study showed that increased 
integrin β1 expression in macrophages on the small 
nanopillars substrates was required for activation of the 
PI3K/Akt pathway, which further promoted macrophage 
M2 polarization [174]. Another research suggested that 
nanotopographies on Ti surfaces inhibited the integ-
rin β1/focal adhesion kinase (FAK) signaling pathway, 
thereby hindering osteoclast differentiation, in line with 
the previous conclusion that integrin β1 activation is an 
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indispensable part in RANKL-induced osteoclastogen-
esis [15, 177].

Most current studies on topographical regulation of 
osteoclasts mainly focus on the cellular function, leav-
ing the molecular mechanism to be further explored. 
However, insufficient knowledge of the interaction in 
sub-cellular scale is an obstacle to unravel the underly-
ing mechanisms concerning nanotopographies acting 
on macrophages/osteoclasts. In conjunction with the 
advancing understanding on the mechanism behind, 
nanotopographies can be designed and harnessed better 
to improve osseointegration.

Challenges and future directions
With its biomimetic property, nanotopographies have 
great potential to achieve better outcomes of osseointe-
gration. However, what leaves unsolved is that the same 
structure may not meet the optimal matching state of 
osteoblasts, macrophages and osteoclasts at the same 
time, especially in the dynamic changes of bone healing. 
Thus, the improvement of material design, the prediction 
of implant-cell interactions, as well as new strategies of 
harnessing cell behaviors in a sequential manner remain 
to be exploited.

Innovation of nanotopography fabrication methods
Even though great efforts have been devoted to advance 
the topography-related process, very few methods could 
construct completely ordered and controllable nano 
topography for bone implant materials, especially Ti 
[99]. Most of conclusions on the cell effect caused by 

topography only focus on a certain parameter, such as 
the diameter of nanotubes or the width of nanogrooves, 
which are not universal [117, 145]. To address the draw-
backs and accelerate clinical translation, various of nano-
topographies with diverse parameters and subsequent 
high-throughput screening are in demand, which relies 
on the breakthrough of the fabrication methods bot-
tleneck. It is well-known that 3D printing can precisely 
control biomaterial macro-structure[178]. In combina-
tion with nanofibers electrospinning, the interior micro-
architecture can also be tailored [179]. Therefore, one 
possible innovation direction may be the combination of 
newly developed biomaterials build-up method and tra-
ditional nanotopography creation.

In addition, stimulus-responsive nanotopography 
emerges as a novel approach, satisfying richer functional 
demands. To take a concrete example, magnetic nano-
particles (MNPs) decorated with RGD ligand-bearing 
gold nanoparticles with high/low density can be gener-
ated via multiple chemical modification on glass cover-
slips. Coupling with substrate through elastic PEG linker, 
MNPs move upward/downward through controlling the 
position of the permanent magnet. Thereby, the height 
between the nanoparticles and the substrate can be con-
trolled [180].

Optimization of biological evaluation
Although in  vitro experiments allow direct observa-
tion for topographical effect on cells, it cannot simulate 
all characteristics of environment in true physiological 
settings. Cell responses observed in  vitro do not fully 

Fig. 5  Focal adhesion mediated regulation of nanotopographies on cellular functional phenotype. Firstly, the distribution and quantity of RGD 
sequences in ECM proteins influenced by nanostructure on substrate are perceived by integrins. Then, the focal adhesion complexes transmit 
nanotopographical information to the nucleus via the cytoskeleton and related cascades. Finally, the nuclear skeleton and gene expression are 
altered accordingly, promoting the changes in macrophage polarization and osteoclastic differentiation



Page 17 of 22He et al. Journal of Nanobiotechnology          (2022) 20:510 	

represent in  vivo performance because of the lack of 
the delicate crosstalk with other cell types. Indirect co-
culture only provides unidirectional information of cell 
secretory products, ignoring the commutual commu-
nication and direct contact effect between different cell 
types [181]. The direct co-culture is suitable for fewer 
cell types and the culture conditions are still in need of 
further exploration [182]. It is difficult to understand the 
different contribution of each cell types just because they 
are mixed up in the same environment [181]. Moreover, 
the 3D culturing systems and organoid culture could 
unravel the diverse cell behavior under different dimen-
sions, but which are still in their infancy because of the 
complexity of bone tissue [183–186]. Thus, more empha-
sis should be placed on the importance and accuracy of 
in vivo experimental results.

It should also be noted that the technical difficulties 
and subjectivity of evaluation of in vivo experiments will 
cause large errors. For instance, immunohistochemical/
immunofluorescence could only observe the positive 
molecules expression on certain sections. Although the 
observation site can be more comprehensive by increas-
ing the number of slices, it is still impossible to observe 
all the tissues around the material. In recent years, tis-
sue transparency technology can realize nondestruc-
tive 3D observation of biological samples. It can also be 
applied to bone tissue by additional decalcification steps 
[187]. In addition, the appearance of multi-photon exci-
tation microscopy makes it possible to visualize inside 
bone tissues in living animals without sectioning [188]. 
Furthermore, cell types and subpopulations in bone tis-
sue around implants and how they change in the bone 
healing can be analyzed by mass cytometry and single-
cell sequencing [189, 190]. In all, increasing sample size 
and various experimental methods need to be incorpo-
rated into the experiment to achieve more accurate con-
clusions. Therefore, the future biological evaluation of 
nanotopography and other biomaterials will be closer 
to natural state, closer to clinical state and closer to the 
truth.

Taking advantage of the sequential effect 
of drug‑nanotopographies
With high plasticity, macrophages can response to 
diverse stimuli. Both M1 and M2 phenotypes are nec-
essary in bone healing, but excessive activation of any 
type or both types can lead to delayed or even com-
pletely prevented healing, with fibrous encapsula-
tion being the outcome of mixed M1/M2 phenotype 
[191, 192]. Furthermore, macrophages are capable 
of sensing and reacting to the topographical signal, 
owing to their mechanosensitive property. The lat-
est research has confirmed that the rearrangement of 

focal adhesion-cytoskeleton takes place following the 
sense of nanotopography, reducing the activation of 
pro-inflammatory response of macrophages by inhib-
iting src-h3 acetylation signaling axis, which is similar 
to the effects observed by soluble drug treatment [193]. 
From this standpoint, loading functional molecules 
based on the nanotopographies provides a useful con-
text for sequential treatment [194–196]. For example, 
the combinatory effects of surface properties and nano-
pores can direct the differentiation of macrophages to 
the pro-healing M2 phenotype, which is most evident 
on the surfaces featuring nanopores of 200  nm and 
-COOH functionality [197]. Local release of func-
tional molecules, coupled with continuous stimulation 
of nanotopography hold great promise for recruit-
ing more M1 macrophages at early stage and inducing 
more activated M2 macrophages subsequently [46]. 
Although the number of osteoclasts is limited, it is very 
important to maintain bone homeostasis. Therefore, 
targeted drugs such as bisphosphonates or nanoro-
bots for osteoclasts can be loaded on the nanostruc-
tured surfaces [198, 199]. Based on above mentioned 
reports, it can be inferred that with deeper understand-
ing of nanotopographical clues interaction with host 
tissues, the spatial-temporal sequential delivery of key 
regulation molecules might be a promising strategy 
to produce complementary or synergistic effects with 
nanotopography.
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