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Abstract 

High doses of radiation can cause serious side effects and efficient radiosensitizers are urgently needed. To over-
come this problem, we developed a biomimetic nanozyme system (CF) by coating pyrite (FeS2) into tumor-derived 
exosomes for enhanced low-dose radiotherapy (RT). CF system give FeS2 with immune escape and homologous tar-
geting abilities. After administration, CF with both glutathione oxidase (GSH-OXD) and peroxidase (POD) activities can 
significantly lower the content of GSH in tumor tissues and catalyze intracellular hydrogen peroxide (H2O2) to produce 
a large amount of ·OH for intracellular redox homeostasis disruption and mitochondria destruction, thus reducing RT 
resistance. Experiments in vivo and in vitro showed that combining CF with RT (2 Gy) can provide a substantial sup-
pression of tumor proliferation. This is the first attempt to use exosomes bionic FeS2 nanozyme for realizing low-dose 
RT, which broaden the prospects of nanozymes.
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Introduction
Despite advances in scientific study, cancer, which can 
strike at any age, remains a severe threat to human life 
and health in today’s society [1–3]. Radiotherapy (RT) is 
used to keep almost half of all cancer patients alive, either 
alone or in combination with other innovative treat-
ments [4–6]. From a mechanical standpoint, RT relies 
on the use of high-energy X-rays or gamma rays to cause 
radiation-induced DNA damage or to stimulate the for-
mation of large amounts of toxic reactive oxygen species 
(ROS), of which about 90% are produced by mitochon-
dria [7]. Cell apoptosis occurs when the rate of ROS syn-
thesis exceeds the cell’s ability to neutralize these free 
radicals [8]. This allows tumor cells to be killed and the 
tumor to be abated. Long-term exposure to higher doses 
of radiation, on the other hand, can induce a variety of 
negative side effects, including fatigue, nausea and some 
digestive system diseases, etc. [9]. Furthermore, the 

tumor microenvironment (TME) in solid tumors exhib-
its high levels of GSH expression, which can inhibit anti-
tumor RT [10, 11]. Moreover, because GSH is a reducing 
agent, it can directly eliminate ROS which reduces the 
effectiveness of ROS-based therapies [12]. Therefore, 
reducing GSH level can effectively improve RT efficacy.
GSH elimination can be accomplished through a variety 
of pathways due to the various pathways of glutathione 
metabolism and the various types of chemical reactions 
involving glutathione, and converting glutathione to an 
oxidation state through direct interactions has become 
one of the most commonly used methods for reduc-
ing glutathione levels [12–14]. Bao et  al. for example, 
created a composite nanomaterial containing MnO2 to 
improve tumor hypoxia, alleviate and lower intracellular 
GSH levels, and therefore achieve radiation sensitization 
[15]. Qu et  al. developed MoS2@AIBI-PCM, a compos-
ite nanomaterial in which MoS2 can efficiently produce 
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GSH oxidation without releasing hazardous metal ions, 
resulting in significant tumor death and good biocom-
patibility during therapy [16]. As a novel nano-materials, 
FeS2 nanozyme was verified to obtain both glutathione 
oxidase (GSH-OXD) and high-activity peroxidase (POD) 
[17]. Nanozymes have great advantages over natural 
enzymes [18–20]. FeS2 nanozyme can reduce GSH and 
catalyze H2O2 to produce sufficient ·OH to destroy mito-
chondria, which is expected to achieve a good synergis-
tic effect combined with radiotherapy [21]. Despite the 
fact that these elements have proven effective against the 
GSH system, they are hardly to reach the tumor site [22]. 
These nanomaterials have a low immune escape capacity 
and are easily cleared by liver and kidney organs in the 
bloodstream; thus, their targeting ability and anti-tumor 
efficiency are considerably reduced [23, 24].

Cancer cell-derived exosomes (CDE) are endoge-
nous vesicles ranging in size from 50 to 200 nm that are 

recovered from multivesicles or retrieved by incubating 
cell supernatants with appropriate separation kits [25–
27]. Because they may be generated from tumor cells and 
are less likely to elicit a clearance response than manu-
factured drug delivery platforms, such vesicles, given by 
cancer cells themselves, provide improved drug delivery 
prospects [28–30]. Furthermore, exosomes have a high 
level of non-immunogenicity, making them resistant to 
phagocytosis by macrophages [31]. Exosomes are also 
simpler to penetrate from blood arteries to tumor tis-
sues for precise medication administration or nanoma-
terial delivery [32]. Therefore, it stimulates us to coat 
nanozymes with CDE to overcome tumor RT resistance.

The combined application of FeS2 nanozyme and CDE 
to augment low-dose radiation was originally reported 
in this work. By coating FeS2 with CDE, a composite CF 
system was created (Scheme  1). Because CF has both 
homologous targeting and dual enzyme properties, the 

Scheme 1  Schematic illustration of tumor-derived biomimetic nanozyme with immune evasion ability for synergistically enhanced low dose 
radiotherapy
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exosome membrane can enhance FeS2 blood circulation 
time in vivo, and simultaneously help FeS2 actively target-
ing to tumor tissues. Subsequently, FeS2 nanozyme with 
GSH-OXD and POD activity can lower intracellular GSH 
levels. It catalyzes hydrogen peroxide in tumor cells to 
generate ·OH, which disrupts redox equilibrium and kills 
mitochondria, resulting in radiation sensitization. It’s 
important to mention that in the therapeutic process, we 
can get a powerful radiation sensitization with only 2 Gy 
of RT synergistic with CF, which is better than 6 Gy RT. 
CF system offers higher biological potential uses in the 
clinical. Finally, our findings broaden the use of exosomes 
and provide fresh insights into the development of 
exosom-based oncology therapeutic systems.

In this study, 4T1 cells were co-incubated with FeS2 
materials, and exosome separation kits were used to 
obtain exocytosed CF, which was then employed to 
build a CF system. Transmission electron microscopy 
(TEM) was used to confirm the successful production of 
CF material. Compared with pure FeS2, CF was coated 
with a layer of exosome membrane with a small thick-
ness (Fig. 1A, B), and this conclusion was further verified 
by western blotting assay (Fig.  1C). On the CDE mem-
brane, the exosome protein markers CD63 and CD9 were 
identified [21, 28]. On CF loaded with FeS2, the CD63 
marker and another exosome marker (CD9) were also 

found, showing that the exosome membrane proteins on 
CF were not disturbed. Exosome membranes offer a lot 
of potential in the field of material delivery, and they’re 
a lot better than standard drug delivery systems like 
erythrocyte membranes that don’t have any targeting 
and don’t improve the amount of material that gets into 
tumor tissues [33]. In addition, during the three days of 
pure FeS2 and CF stored in the phosphate buffer solution 
(PBS) environment (4 ℃), their particle sizes almost did 
not change significantly. During the 3  days, the particle 
sizes of FeS2 were 146.2 ± 1.6  nm, 152.6 ± 1.8  nm, and 
151.0 ± 1.4 nm, respectively, while the particle sizes of CF 
were 153 ± 2.1  nm, 159.4 ± 2.5  nm, and 157.5 ± 1.9  nm 
(Fig. 1D), which also indicates that both FeS2 and hybrid 
CF have good stability and can be used in subsequent 
biological experiments. This quality is unquestionably 
critical, as many materials have good properties, but their 
instability will prevent them from being used [34]. The 
Zeta potential of different particles was shown in Fig. 1E, 
with cancer cell vesicle (CV) and CF having zeta poten-
tials of roughly about − 23.1 and − 22.6, respectively. We 
investigated POD-like activity of FeS2 and CF based on 
the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in 
the presence of H2O2. The results show that both pure 
FeS2 and FeS2 encapsulated by exosome membrane can 
catalyze H2O2 to produce ·OH (Fig.  1F). These findings 

Fig. 1  TEM image of FeS2 (A) and CF (B) with the inset image showing the single image of corresponding materials. C Western blotting was used to 
measure the EXO markers CD9 and CD63. D Statistical graph of the measured diameter of FeS2 and CF. E Zeta potential values for FeS2, CV, and CF 
nanovesicles. F UV − vis absorbance spectra and color changes of TMB in different reaction systems
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show that CF has an exosomal membrane structure and 
that it will be endocytosed into 4T1 tumor cells via extra-
cellular action to alter the tumor microenvironment.

The CF system is well-structured and characterized 
in terms of performance. In  vitro anti-tumor trials are 

currently underway. Although FeS2 can alter the eco-
logical balance of the cancer cells and so enhance the 
efficacy of radiation, it can only do so when it is present 
in the tumor tissue. The immune system may recognize 
diverse foreign invaders’ stimuli, and a portion of that 

Fig. 2  Co-localization of Lyso-Tracker Green FM (blue) and Dil (red) for RF and CF over time in 4T1 tumor cells. B Dil fluorescence intensity of A 
determined using ImageJ software. C JC-1 (green) for JC-1 monomer and red for JC-1 aggregate fluorescence image under different treatment. 
D Nuclear condensation and DNA fragmentation were visualized using DAPI and γ-H2AX staining in cells treated as indicated, with representative 
pictures presented. E The density of γ-H2AX foci was determined based on analyses of 100 cells per treatment group (γ-H2AX foci/100 μm2, n  = 3). 
F Colony formation assays were conducted using 4T1 cells treated with 2 or 6 Gy of radiation (n = 3). G The impact of FeS2 on the intracellular level 
of GSH was estimated using a GSH assay kit (n  = 5). Significant differences among groups as calculated using the student’s t test. **P  < 0.01, ***P  
< 0.005
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stimulation can activate the immune response, resulting 
in immunity, while preventing other stimuli, resulting 
in tolerance [35]. Due to homology, which is connected 
to exosome membrane proteins, the immune system 
does not attack the exosomes released by cancer cells. 
Nanomaterial-coated exosomes can be directed to tumor 
cells, recognized by cancer cells, and engorged to release 
nano-material, whereas other drug delivery systems that 
do not have targeting capabilities. This internalization 
effect can be tracked by staining CF and red blood cell 
membranes coated FeS2 (RF) nanovesicles with Dil dye 
and co-incubation with 4T1 cells and staining with com-
mercial lysosome Lyso-Tracker Green probe to verify the 
ability of CF to be internalized by tumor cells in vitro (co-
localization assay). For comparison, red cell membranes 
were coated with FeS2 to form RF. After 2 h incubation, it 
was clear that a significant quantity of CF had been endo-
cytosed, whereas RF only had a partial Dil fluorescent 

impact (Fig. 2A, B), demonstrating that exosomes might 
be employed as a perfect carrier of FeS2 to target tumor 
tissues. As shown in Additional file 1: Figure S2, hemol-
ysis assay verified that CF is stable in blood, indicating 
good biocompatibility of CF. In order to demonstrated 
the universality of exosome systems, we then prepared 
manganese dioxide nanozyme (MnO2), as shown in 
Additional file 1: Figure S3, and used CDE to coat MnO2 
(CM) (Additional file  1: Figure S4). Furthermore, dur-
ing the several days of MnO2 and MF stored in the PBS 
environment (4 ℃), the diameter of MnO2 and CM has 
barely changed (Additional file 1: Figure S5). MnO2 has 
good catalase activity (CAT), which can catalyze H2O2 
into O2. CM also has good CAT activity, indicating that 
exosome membrane does not affect the enzyme activity 
(Additional file  1: Figure S6). Even at high concentra-
tions, the number of MnO2 swallowed by 4T1 cells was 
low (Additional file 1: Figure S8). As MnO2 can achieve 

Fig. 3  A Pharmacokinetic behavior of FeS2, RF, and CF in mice following i.v. administration at doses of 2.5 mg Fe/kg. Data are presented as mean  ±  
SD (n  = 3). B Quantitative analysis of FeS2 biodistribution in tissues and tumors of tumor-bearing mice injected with FeS2, RF, or CF at FeS2 dose of 
2.5 mg Fe/kg, respectively. C Change in tumor-volume curves of 4T1 tumor-bearing mice after treatments. D Changes in tumor weight following 
treatment. E The body weight of 4T1 tumor-bearing mice was measured every 2 days after therapy. F Following therapy, TUNEL and H&E-stained 
tumor slice photos of mice are shown. Significant differences among groups as calculated using the student’s t test. **P  < 0.01, ***P  < 0.005
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radiotherapy sensitization by alleviating tumor hypoxic 
microenvironment, while CM can actively target cells, as 
shown in Additional file 1: Figure S7, the colony forma-
tion assays also proves that CM has better synergetic cell 
killing effect compared with MnO2. Then, the changes of 
mitochondrial membrane potential (MMP) in tumor cells 
were monitored by JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethyl-imidacarbocyanine) probe method. The JC 
dye normally builds up in the mitochondria, where it 
clumps together to give a red fluorescence. When mito-
chondria are injured and MMP levels are low, however, 
the JC monomer is released into the cytoplasm, resulting 
in green fluorescence [36]. Figure 2C demonstrates that 
cells treated with FeS2  +  RT had a high green/red fluo-
rescence ratio, which is consistent with the reduced mito-
chondrial damage generated by FeS2. FeS2 will enter TME 
with twofold enzyme activity once CF is endocytosed by 
tumor cells, reducing GSH content while also catalyzing 
enough H2O2 to generate ·OH in situ, causing significant 
mitochondrial damage. Radiotherapy ought to be more 
sensitive as a result of mitochondrial injury. Double-
stranded DNA breaks (DSB) in tumor cells when exposed 
to radiation, which provides insights into the radiation 
sensitization, and measuring the fluorescence intensity of 
γ-H2AX, is a good and intelligent way to verify the DSB 
formation after cell damage [37]. Therefore, we detected 
H2AX foci in the nucleus after treatment in different 
groups. After 2 Gy of radiotherapy, there was substantial 
DNA damage, and the DSB effect increased as the dose 

was increased. It’s important to mention that 2 Gy radia-
tion mixed with RF only got about 40% γ-H2AX forma-
tion, but 2 Gy paired with CF got up to 76.8% γ-H2AX 
foci development. The synergistic effect of the targeting 
ability of the exosome membrane, the dual nano enzyme 
activity of FeS2, and radiation sensitization was linked 
to the uniform and substantial difference between each 
experimental group. Furthermore, Colony formation 
assays revealed that the control group’s cell viability was 
largely unaltered, whereas the RT with RF group had 
moderate tumor growth inhibition (Fig.  2F). CF  +  RT 
system had the best tumor growth inhibition rate (90%), 
there are significant differences compared with each 
other experiment group, indicating that CF mediated 
improved ·OH content of TME can effectively exert influ-
ence on mitochondria and thus enhance the RT effect 
to realize tumor growth inhibition. Figure  2G also veri-
fies that our FeS2 has a good effect on GSH consumption. 
Together, these results drive our continued exploration of 
anti-tumor efficacy in vivo.

Given that in  vitro testing of the tumor-killing action 
revealed significant potential. We investigate how CF 
effects can be amplified in  vivo. As a result, we con-
ducted in vivo pharmacokinetic studies to see how exo-
some membranes affect blood retention. Mice were given 
FeS2, RF, or CF at a dose of 2.5  mg Fe/kg intravenously 
(Fig. 3A). Both RF and CF demonstrated a greater effect 

Fig. 4  Result of in vivo safety experiments. A Histopathological analysis results (H&E) stained images of the major organs, heart, lung, liver, kidneys, 
and spleen, of mice that were exposed to different treatments 16 days post-injection under laser irradiation. Blood biochemistry data including 
kidney function markers: B liver function markers: BUN, C CRE, and D ALT, ALP, and AST after various treatments
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on blood retention when compared to the pure FeS2 
group. Although the erythrocyte membrane coating pro-
tected from the attack of the immune system, it lacked 
tumor targeting, and the accumulation of FeS2 in tumor 
tissues was only slightly increased, with the CF group 
having the most visible tumor accumulation. Following 
that, we investigated the biological dispersion (Fig.  3B). 
After 12  h of administration, the FeS2 mainly accumu-
lated in the liver and spleen of the FeS2 group of mice, 
whereas the CF group demonstrated good tumor tar-
geting and little organ accumulation, demonstrating the 
exosome membrane’s targeting capabilities. In order to 
verify the targeting ability of drugs-loaded exosomes, we 
conducted in  vivo pharmacokinetic studies using DOX 
loaded erythrocyte exosomes (RBC-EXO@DOX) and 
CDE (CDE-EXO@DOX), respectively. Simultaneously, 
DOX loaded CF was prepared (CF@DOX). As shown in 
Additional file  1: Figures  S9, S10, RBC-EXO@DOX and 
CDE both have long circulation. However, RBC-EXO@
DOX accumulates less in tumor tissues compared with 
CDE-EXO@DOX and CF@DOX (Additional file  1: Fig-
ure S10). This result shows that tumor-derived exosomes 
have good tumor targeting. Following that, we looked 
at the efficacy of CF-mediated anti-tumor therapy in 
mice with 4T1 tumors. BALB/c mice were subcutane-
ously injected with 1 × 106 4T1 cells into the right flank 
to determine the primary effect of the CF. When the 
primary tumor volume reached 200  mm3, the mice 
were divided into groups and treated. Tumor-bearing 
mice were divided randomly into 5 groups (each group 
included 5 mice): (1) control (PBS); (2) radiotherapy 
(RT, 2  Gy); (3) RF  +  RT; (4) high dose RT (6  Gy); (5) 
CF  +  RT. The FeS2 concentration was 5 mg/kg in groups 
3, and 5. For 16  days, the treatment was given every 
4 days. The tumor volumes of the control and RT treated 
groups increased rapidly during the 2  weeks of treat-
ment, as shown in Fig. 3C. The RF  +  RT group likewise 
had a nearly moderate tumor-suppressive effect. When 
these nanomaterials are injected into the caudal vein, 
when the RF circulates to the tumor tissue and is endocy-
tosed by tumor cells, FeS2 is released to the TME, playing 
the equivalent therapeutic impact. The CF  +  RT system, 
which included both FeS2, had the most potent thera-
peutic impact, with tumor volume growth curves nearly 
totally suppressed during therapy. The tumor mass in 
mice was also consistent with the volume curve (Fig. 3D). 
No weight changes were detected in the treatment group 
during this study, indicating that the treatment did not 
cause any significant systemic toxicity (Fig. 3E), which is 
significant because many treatments are associated with 
extremely systemic toxicity, which is extremely detrimen-
tal to the future clinical application of the material. We 
collected tumor tissue slices for staining. TUNEL and 

H&E staining (Fig.  3F) indicated the presence of a high 
level of cell necrosis in the CF combined RT therapy 
group. Furthermore, as shown in Fig.  4, after the treat-
ment of mice’s vital organs (heart, liver, spleen, lungs, 
and kidney) without any inflammation and damage in the 
body, liver, and kidney indices were also normal. Many 
nanomaterials have high therapeutic efficacy, however, 
they are also associated with systemic toxicity, limiting 
their future clinical applications. The in vivo results show 
that our innovative combined therapy not only achieves 
an excellent therapy with biological safety but also 
enhances tumor ·OH content and reinforces the effect of 
RT with substantial CF-enhanced therapy.

Conclusion
Finally, we developed a unique oxidative stress 
destroyer to enable better radiotherapy. The CF can 
decrease the content of GSH in the tumor microenvi-
ronment and catalyze H2O2 to produce a large amount 
of ·OH, the exosome membrane can render FeS2 with 
admirable homologous targeting ability, and all of these 
elements have an enhanced ability to low-dose RT. Both 
the in vitro and in vivo studies suggest that our method 
has a good tumor inhibition effect. Importantly, during 
treatment, our prepared system showed no evident side 
effects. In the future, we will continue to investigate the 
biological applications of the combination of FeS2 and 
other unique vehicles, as well as refine our treatment 
strategy by incorporating additional nanotechnology 
and new technologies.
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