Najafi et al. Environmental Health (2020) 19:131

https://doi.org/10.1186/512940-020-00682-y E nVi ronme nt a | H ea |th

?.)

Check for
updates

Preconception air pollution exposure and
glucose tolerance in healthy pregnant
women in a middle-income country

Moslem Lari Najafi', Mehdi Zarei?, Ali Gohari?, Leyla Haghighi®, Hafez Heydari®” and Mohammad Miri*"

Abstract

Background: Preconception exposure to air pollution has been associated with glucose tolerance during
pregnancy. However, the evidence in low and middle-income countries (LMICs) is under debate yet. Therefore, this
study aimed to assess the relationship between exposure to ambient particulate matter (PM) and traffic indicators
with glucose tolerance in healthy pregnant women in Sabzevar, Iran (2019).

Methods: Two-hundred and fifty healthy pregnant women with singleton pregnancies and 24-26 weeks of
gestations participated in our study. Land use regression (LUR) models were applied to estimate the annual mean
of PM;, PM, 5 and PM;, at the residential address. Traffic indicators, including proximity of women to major roads as
well as total streets length in 100, 300 and 500 m buffers around the home were calculated using the street map of
Sabzevar. The oral glucose tolerance test (OGTT) was used to assess glucose tolerance during pregnancy. Multiple
linear regression adjusted for relevant covariates was used to estimate the association of fasting blood glucose
(FBG), 1-h and 2-h post-load glucose with PMs and traffic indicators.

Results: Exposure to PM;, PM, s and PM;, was significantly associated with higher FBG concentration. Higher total
streets length in a 100 m buffer was associated with higher FBG and 1-h glucose concentrations. An interquartile
range (IQR) increase in proximity to major roads was associated with a decrease of —3.29 mg/dL (95% confidence
interval (Cl): —4.35, — 2.23, P-value <0.01) in FBG level and — 3.65 mg/dL (95% Cl, — 7.01, — 0.28, P-value = 0.03)
decrease in 1-h post-load glucose.

Conclusion: We found that higher preconception exposure to air pollution was associated with higher FBG and 1-
h glucose concentrations during pregnancy.
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Introduction

Gestational diabetes mellitus (GDM) has been associated
with pregnancy complications, including macrosomia,
hypertension, preeclampsia and premature birth and
stillbirth [1]. In recent decades, the GDM prevalence has
increased significantly [2]; however, about half of them
have no classic risk factors [3, 4]. The available evidence
suggested that environmental pollutants, e.g., air pollu-
tion, could act as a risk factor in glucose tolerance and
glucose homeostasis in healthy women [5-15]. However,
the results of these studies are inconsistent. Some of
these studies reported a significant relationship between
exposure to particulate matter (PM) with impaired glu-
cose tolerance (IGT) [7, 16, 17] and increased risk of
GDM [8, 18, 19]; however, other evidence reported op-
posing results [9, 12, 16]. These studies used different
diagnostic criteria and had limitations in the timing of
GDM development [18]. Moreover, only three studies
investigated the preconception window [9, 18, 19]. In an
effort to clarify the potential mechanisms, the available
evidence has reported higher exposure to air pollution is
associated with elevated blood glucose levels, a potential
sign of increased insulin resistance, GDM and type 2
diabetes development in later life [20-23].

The emerging evidence indicated that the pre-
pregnancy period might be a crucial time-window and
higher exposure to pollutions could lead to glucose in-
tolerance and GDM development [24]. So far, limited
studies have been investigated the relationship between
exposure to traffic indicators and PMs with glucose tol-
erance in healthy pregnant women [16, 17]. Moreover,
the available studies on the association of preconception
exposure to traffic indicators and PMs with glucose con-
centrations obtained through oral glucose tolerance test
(OGTT) have been exclusively conducted in developed
countries. However, the available evidence in low and
middle-income countries (LMICs) with more rapid
urbanization is still scarce. Given the variation in the ob-
served associations between air pollution exposure and
OGTT in different settings [9, 18, 19], it is not clear to
what extent the results from developed countries could
be generalized to LMICs. Therefore, this study aimed to
assess the relationship between preconception exposure
to traffic indicators as well as PMs at mother residence
and OGTT results, a marker of glucose intolerance in
healthy pregnant women in a middle income country
(i.e., Iran).

Material and methods

Study area

This cross-sectional study was conducted in Sabzevar
(coordinates: 36°12" N 57°35’, elevation: 977.6 m) a town
in Khorasan Razavi province, Iran. Sabzevar is a city with
an arid climate and annual average rainfall lower than
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180 mm, the annual average temperature of 16 C and
relative humidity of 43%. Based on the last census in
2016, the population of Sabzevar is about 240,000 [25].
Figure 1 showed the air pollution monitoring stations,
street map and major roads of Sabzevar.

Population setting

The pregnant women how were recruited to only Sabze-
var Health Center for GDM screening during Jun 2019
to September 2019 were invited to this study. The inclu-
sion criteria were including the gestational age of 24 to
26 weeks at enrollment, lived in Sabzevar during and be-
fore the pregnancy (at least 1 year) and singleton preg-
nancy. The exclusion criteria were including mothers
who had GDM (because the glucose metabolism and
adipokine concentrations in the women with GDM is
different compare to healthy women; moreover, there is
insulin resistance and higher oxidative stress in these
women that can affect glucose regulation in the women
with GDM), preeclampsia, hypertension, change their
residence during pregnancy and work outside of the
home. Moreover, the mothers how were active smokers
during and before pregnancy were excluded from our
study. It should be note that, there is not any variation
in race or ethnicity of the inhabitants of Sabzevar (all in-
habitants are Persians). From more than 5000 pregnant
women who referred to the only Sabzevar Health Center
for GDM screening, 250 of them had eligible criteria
and applied to join in this study. Prior to entering the
study, the inclusion/exclusion criteria, research aims and
procedures were described to all pregnant women and
all participants signed the consent form approved by the
Ethics Committee of Sabzevar University of Medical Sci-
ences (IRMEDSAB.REC.1397.012). Socioeconomic in-
formation and lifestyle factors were obtained using a
prepared questionnaire by face-to-face interviews.

Exposure assessment

Ambient particulate matter

The developed land use regression (LUR) models for
Sabzevar were applied to estimate the preconception ex-
posure to ambient PMs (i.e., PM;, PM, 5, and PM,,) at
the residential address. The PMs data were estimated
based on annual mean concentrations before pregnancy.
The details of developed models have been described in
detail elsewhere [26]. Briefly, the PM;, PM, 5, and PM;q
concentrations were measured using 26 air pollution
monitoring stations installed in the different microenvi-
ronments. A mobile monitoring device (HAZ-DUST
EPAM 5000, USA) was used to measure the PMs pollut-
ants based on the method described by the United States
Environmental Protection Agency (USEPA). The LUR
models were generated based on the annual average of
PMs concentrations. A step-forward algorithm was used



Najafi et al. Environmental Health (2020) 19:131 Page 3 of 10
e
Turkey A Turkmenistan
2 Afghanistan
Iraq
Pakistan
Saudi Arabia
4
Legend
r )
Air pollution monitoring stations “k
Major road <v;\/‘ E
ajor roads
j %"\'\
street =
S
S i
=
JE u 1 T
E L) 17 q T
E il
N NS
\
0 0.3250.65 1.3 1.95 2.6 !
N s Kilometers
Fig. 1 Study area, air pollution monitoring stations and major roads

to develop LUR models. The main important variables
which applied in developing LUR models were including
urban morphology, population density, ten different land
use, traffic and geographic location of monitoring sta-
tions. The generated models were able to predict 68, 72
and 75% of the variation of annual PM,;, PM,5 and
PM,, concentrations in Sabzevar. The LUR models per-
formance was evaluated using the leave-one-out cross-

validation (LOOCV) method. More details of LUR
models validation are presented in Table S1 of Supple-
mental Materials.

Traffic density indicators

Previous studies introduced street length and proximity
to major roads as traffic indicators [27, 28]. Therefore
we used total streets length in 100, 300 and 500 m buffer



Najafi et al. Environmental Health (2020) 19:131

around the mother residence and proximity of women
to major roads as indicators of exposure to traffic. These
indicators were calculated using Sabzevar street map,
provided by Sabzevar municipality in ArcGIS v 10.5
software.

Glycemic status screening

During the study period, GDM screening in Iran was
based on OGTT results. Glycemic status was assessed
using 2-h, 75-g OGTT [29]. The OGTT was performed
in the morning (8:00-9:00 AM) in the outpatient clinic,
and the participants fasted for at least ten h prior to the
tests. Normal glucose tolerance was determined accord-
ing to the American Diabetes Association (ADA) (2008)
criteria [30]. Subjects with FBG > 95 mg/dL at baseline, >
180 mg/dL at 1-h, > 155 mg/dL at 2-h were considered
as normal glucose tolerance (NGT). The OGTT consid-
ered abnormal if one or two glucose concentrations
exceeded mentioned concentrations. The pregnant
women with 1-h glucose concentration higher than cut-
off and normal FBG concentration were classified as im-
paired glucose tolerance that have different outcome of
glucose homeostasis [31]. Therefore, we excluded
mothers who had one higher glucose concentration than
NGT.

Glucose concentration measurement

The glucose oxidase method (Pars Azmoon, Tehran,
Iran) and autoanalyzer (BT-3000) were applied to meas-
ure the venous serum glucose concentration of mothers
in the reference lab of Sabzevar Health Center according
to a standard clinical protocol [32]. The accuracy and
precision of the assay were controlled by positive and
negative controls as well as standard glucose concentra-
tion, daily.

Statistical analysis

Main analysis

The distribution of data was tested using the Shapiro-
Wilk test. We developed linear regression models (MLR)
to estimate the change in the FBG, 1-h and 2-h glucose
concentrations associated with an interquartile range
(IQR) increase in traffic indicators and PMs exposure
(one at a time). The MLR models were further adjusted
for a prior potential covariates including maternal age
(year, continuous), tobacco smoke exposure at home
(yes/ no) [33] and two indicators of neighborhood socio-
economic status including percentages of unemployment
and illiterate adults per census tract (based on the 2016
census). All statistical analysis was performed using Stata
version 15 (Stata Corp LP, College Station, Texas).
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Results

About 5% (250 participants) of women that attended the
Sabzevar Health Center for GDM screening participated
in our study. The statistical summary of the participants,
their PMs exposure as well as traffic indicators and FBG,
1-h and 2-h glucose concentrations are presented in
Table 1. The median (IQR) age of pregnant women was
28 (8) years. The median (IQR) of pre-pregnancy BMI
was 21.2 (5.9) kg/m?. The median (IQR) of FBG, 1-h and
2-h glucose concentrations were 69 (8), 112 (35), and
100 (26), mg/dL, respectively. The median (IQR) of
proximity to major roads and total street length in 100,
300 and 500 m buffers were 321 (388), 905 (257), 7756
(2035) and 20,704 (6292) meters, respectively. Moreover,
median (IQR) of estimated PM;, PM,5s and PM;, at

Table 1 Descriptive statistics of pregnant women, PMs and
traffic indicators

Variables In study year

Pregnant Women characteristics

Age (year); median (IQR) 28 (8)
Pre-pregnancy BMI (kg/mz); median (IQR) 21.2 (5.9)
Gestational age (week); median (IQR) 26 (4)
Self-reported tobacco exposure at home
Yes; N (%) 75 (30)
No; N (%) 175 (70)
Abortion history
Yes; N (%) 90 (25)
No; N (%) 160 (75)
Family history of diabetes
Yes; N (%) 24 (11)
No; N (%) 189 (89)
Parity (N); median (IQR) 2 ()
lliterate adults per census tract (%); median (IQR) 222 (15.3)
Unemployed adults per census tract(%); median (IQR) 7.0 (4.5)
Glucose concentrations (mg/dL); median (IQR)
FBG 69 (8)
1-h post-load glucose 112 (35)
2-h post-load glucose 100 (26)
Particulate matter pollutants (llg/ms); median (IQR)
PM, 408 (14.7)
PM, s 474 (215)
PMio 529 (237)
Traffic indicators (m); median (IQR)
Total street length in a 100 m buffer 905 (257)
Total street length in a 300 m buffer 7756 (2035)
Total street length in a 500 m buffer 20,704 (6292)
Proximity to major roads 321 (388)

IQR interquartile range, BMI body mass index, FGB fasting blood glucose
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residential address were 40.8 (14.7), 47.4 (21.5) and 52.9
(23.7) pg/mS, respectively (Table 1).

Spearman correlation of PM;, PM,5 PM;o, proximity
to major roads and total street length in different buffers
at the residential address of pregnant women are shown
in Fig. 2. Moreover, correlation coefficients of traffic in-
dicators and PMs with FBG, 1-h and 2-h post-load glu-
cose are shown in Fig. S1 of Supplemental Materials.
There was a negative correlation between proximity to
major roads and PM;, PM, 5 and PMy, (r = - 0.27, - 0.25
and - 0.24, respectively). Furthermore, we observed a
strong correlation between estimated PMs at the resi-
dential address. A moderate positive correlation was ob-
served between estimated PMs and total street length in
100 m buffer (r ranged from 0.18 to 0.32).

The results of the associations of exposure to traffic in-
dicators and PMs with FBG, 1-h and 2-h post-load glucose
concentrations in healthy pregnant women are presented
in Table 2. Overall, higher exposure to ambient PM,,
PM, 5 and PM,, were associated with higher FBG. More-
over, higher TSL-100 m was associated with higher FBG
and 1-h. post-load glucose concentrations. Higher
proximity to major roads was negatively associated with
FBG and 1-h. post-load glucose concentrations (Table 2).
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In fully adjusted models, a one-IQR increase in con-
centration of PM;, PM, s and PM;, was associated with
increase of 0.69 mg/dL (95% confidence interval (CI):
0.38, 1.00, P-value <0.01), 0.61 mg/dL (95% CI: 0.29,
0.93, P-value <0.01) and 0.19 mg/dL (95% CI: 0.01, 0.37,
P-value = 0.04) in FGB concentration. Furthermore, one-
IQR increase in total street length was associated with
an increase of 2.57 mg/dL (95% CI: 1.99, 3.19, P-value
<0.01) in FBG concentration. There was also a signifi-
cant negative association between proximity to major
roads and FBG concentration (p = - 3.29, 95% CI: - 4.35,
—2.23, P-value <0.01). We did not find any significant
association for total street length in 300 and 500 m
buffers and FBG.

Higher total street length in 100 m buffer was associ-
ated with higher 1-h post-load glucose concentration. In
fully adjusted model, a one-IQR increase in total street
length in 100 m buffer was associated with an increase
of 3.44 mg/dL (95% CI: 1.49, 5.39, P-value <0.01) in 1-h
post-load glucose concentration. Moreover, a one-IQR
increase in proximity to major roads was associated with
a decrease of -3.65mg/dL (95% CI. -7.01, -0.28,
P-value =0.03) in 1-h post-load glucose concentrations.
The associations of total street length in 300 and 500 m
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Table 2 The regression coefficient of exposure to air pollution with FBG, 1-h and 2-h post-load glucose concentrations in healthy
pregnant women

Exposure Outcome B-coefficient (95% Cl) P_value

PM pollutants

PM; FBG Crude 0.80 (048, 1.11) < 001
Adjusted? 069 (0.38, 1.00) < 001

1-h post-load glucose Crude 0.54 (044, 1.53) 0.27

Adjusted 041 (-0.56, 1.37) 041

2-h post-load glucose Crude 0.55 (- 0.29, 1.39) 0.19

Adjusted 2.86 (—2.14, 7.86) 0.26
PM, 5 FBG Crude 0.71 (0.38, 1.00) < 001
Adjusted 061 (0.29, 0.93) < 001

1-h post-load glucose Crude 042 (-0.58, 1.4) 040

Adjusted 0.34 (=065, 1.33) 0.50

2-h post-load glucose Crude 041 (=045, 1.28) 034

Adjusted 3.13(-1.98, 8.23) 0.23
PMig FBG Crude 0.22 (0.04, 0.40) < 001

Adjusted 0.19 (0.01, 037) 0.04

1-h post-load glucose Crude 0.11 (-043, 0.66) 0.68

Adjusted 0.14 (-0.39, 0.67) 0.60

2-h post-load glucose Crude 0.14 (-0.32, 0.60) 0.55

Adjusted 245 (-027,5.17) 0.08

Traffic indicators

Street length in a 100 m buffer FBG Crude 270 (2.13,3.27) < 001
Adjusted 257 (1.99, 3.19) < 001
1-h post-load glucose Crude 346 (1.51,541) < 001
Adjusted 344 (149, 539) < 001
2-h post-load glucose Crude 2.18 (049, 3.87) 001
Adjusted —2.95 (-13.36, 7.46) 058
Street length in a 300 m buffer FBG Crude 022 (-1.17,1.63) 0.75
Adjusted -0.16 (-1.53,1.22) 0.82
1-h post-load glucose Crude 0.00 (-4.15, 4.16) 0.99
Adjusted —1.00 (=5.05, 3.06) 063
2-h post-load glucose Crude —0.36 (-3.92, 3.20) 0.84
Adjusted —246 (-2348,1857) 0.82
Street length in a 500 m buffer FBG Crude 0.07 (-1.37,1.52) 092
Adjusted -0.29 (-1.71,1.13) 0.69
1-h post-load glucose Crude 0.20 (—4.08, 4.50) 092
Adjusted —0.84 (-5.04,3.77) 0.70
2-h post-load glucose Crude —0.55 (-4.22,3.12) 0.76
Adjusted —5.89 (-27.66, 15.87) 0.59
Proximity to major roads FBG Crude —349 (-4.56, —2.43) < 001
Adjusted —3.29 (-4.35, -2.23) < 001
1-h post-load glucose Crude —4.17 (=758, =0.75) < 001
Adjusted —3.65 (=701, -0.28) 0.03
2-h post-load glucose Crude —3.74 (—6.66, —0.82) 0.01
Adjusted —-4.39 (-22.00, 13.23) 062

?Adjusted for the maternal age, exposure to environmental tobacco smoke, percentage of illiterate as well as unemployed adults per census tract
Cl confidence interval, FBS fasting blood glucose. The regression coefficients were reported based on 1 IQR increase in PM;, PM,s, PM,,, total street length in
different buffers and proximity to major roads
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buffers, as well as PM;, PM, s and PM;,, were not statis-
tically significant.

In this study, we did not observe any significant associ-
ation between traffic indicators as well as PMs exposures
and 2-h post-load glucose concentration (Table 2).

Discussion

To the best of our knowledge, this study is one of the
first to evaluate the association of preconception expos-
ure to traffic indicators and air pollution with the
glucose concentration obtained in OGTT of healthy
pregnant women in a middle-income country. The main
advantage of our study is the use OGTT results as a sen-
sitive test for glucose homeostasis evaluations. We found
that exposure to PM;, PM, 5 and PM;, was positively as-
sociated with FBG concentration, demonstrating that the
levels of these pollutants might increase the risk of glu-
cose intolerance. Moreover, the total street length in
100 m buffer was positively associated with FBG and 1-h
post-load glucose concentrations. Furthermore, proxim-
ity to major roads was negatively associated with FBG
and 1-h post-load glucose concentrations.

In our study, the mean of estimated PM;, PM, 5 and
PM,, at the residential address were 56.5, 65.0 and
76.6 pug/m°>, respectively. There is not any guideline/
standard for ambient PM; concentration; however, the
estimated concentrations of PM,s and PM;, were 6.5
and 3.8 times higher than WHO guidelines (based on
annual mean, 10 |,lg/m3 for PM,5 and 20 pg/m3 for
PM;,) [34]. The PMs concentrations reported in our
study were comparable with previous studies in Sabzevar
[35, 36] and other cities of Iran, e.g., among residents
Hamadan with annual exposure of 41 pug/m?® for PM, 5
and 68 pg/m3 for PM;, [37] and Mashhad with annual
exposure of 40.7 pg/m> for PM,s and 82.9 pg/m® for
PM,, [38].

I this study, increase in concentration of PM;, PM, 5
and PM;, was associated with increase of 0.69, 0.61 and
0.19 mg/dL in FGB concentration. Given that this is the
first studies looking at the association between exposure
to PM;, PM;, and traffic indicators with FBG, 1-h and
2-h post-load glucose concentrations obtained in OGTT
as indicators of glucose homeostasis in healthy pregnant
women; we could not compare our finding regarding
these pollutants with results of previous studies. How-
ever, a study by Lu et al. 2017 on the 3859 subjects aged
over 30years found that higher FBG, 1-h, 2-h and 3-h
glucose concentrations in pregnant women who lived in
areas with higher PM, 5 level [17]. A part of this study
(i.e., significant positive association between PM, 5 expo-
sures and FBG concentration) is in line with our find-
ings; while, the associations of 1-h and 2-h glucose were
inconsistent with our findings. Genetic difference [39],
different lifestyle (e.g., physical activity) [40] and diet
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[41] in our participants compared to papulation who
studied by Lu et al, could explain this inconsistently.
Another study by Fleisch et al. 2014 on 2093 women
found that second-trimester PM, 5 exposure was associ-
ated with IGT occurrence but not GDM [16]. Choe
et al. 2019 reported that PM, 5 exposure in 2nd trimester
was associated with GDM development [42]. A
population-based retrospective cohort study by Shen
et al. 2017, found higher PM, 5 exposure during 12 week
preconception period as well as first two trimesters of
pregnancy was significantly associated with increase in
the risk of GDM in pregnant women [19]. Moreover, the
relationship between air pollution exposures and glucose
homeostasis in non-pregnant healthy adults has been re-
ported in previous studies. Peng et al. 2016 found that
PM, 5 exposure was significantly associated with increase
in FBG concentration in non-diabetic subjects [43]. A
study by Riant et al. 2018 on 2895 participants aged 40—
65 years in France reported that PM;, exposure was as-
sociated with higher FBG and HbAlc [44]. A study by
Chen et al. 2016, reported that short-term exposure to
PM;, (4 days) was associated with higher FBG concen-
tration as well as IFG occurrence [45]. A systematic re-
view and meta-analysis by Elshahidi et al. 2019 found
that higher PM, 5 and PM;o exposures were associated
with GDM development [46]. These reports are in line
with our findings. In the other hand, many previous sys-
tematic review and meta-analysis as well as cohort stud-
ies reported that higher FBG levels could increase the
risk of GDM and type 2 diabetes in later life [47-51].
Therefore, higher preconception exposure to PMs might
increase the risk of type 2 diabetes in these participants
in later life.

We found, FBG and 1-h post-load glucose concentra-
tions were positively associated with total street length
in 100 m buffer and negatively associated with proximity
to major roads. There is limited evidence that investi-
gated the relationship between traffic-related air and
noise pollution with glucose tolerance during pregnancy
[31, 52, 53]. Hooven et al. 2009 investigated the associ-
ation between residential proximity to traffic and out-
come of glucose homeostasis during pregnancy and
reported there was no significant association between
traffic indicators and GDM occurrence [52]. Pedersen
et al. 2017 examine the association of exposure to air
and noise pollution in pregnant women and reported
that there was no significant association of exposure to
both pollutants and GDM development [31]. In contrast,
Malmagpvist et al. 2013 in a study based on birth registry
data of 81,000 pregnant women in Sweden, found that
exposure to traffic indicators was significantly associated
with GDM development [53]. In our study, we found a
positive correlation between total street length in 100 m
buffer with PMs as well as a negative correlation
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between proximity to major roads and PMs concentra-
tions. Previous studies have shown that higher street
length was significantly correlated with higher levels of
PMs, especially in the smaller buffer sizes (e.g., 100 m)
[25, 27, 35, 36]. These results could be explained our
findings on the significant association of traffic indica-
tors and glucose intolerance.

Although the precise mechanisms of the effect of traf-
fic indicators and air pollution exposure on glucose tol-
erance are not fully understood, a number of potential
mechanisms have been proposed. It has been shown that
inhaled PMs into respiratory tract can pass through the
alveolar cell and affect metabolism in extrapulmonary
organs, e.g., liver [36, 54]. Similarly, non-water-soluble
PMs with an aerodynamic diameter of <0.1 um could
alter glucose metabolism by entering the target cells [25,
55]. Another potential mechanism could be inhaled PMs
that activate immunity cells, resulting in cytokines re-
lease [56, 57]. Some of these cytokines change glucose
metabolism and hence glucose concentration in circula-
tion [58]. Besides, inhaled PMs could induce an auto-
nomic nervous system imbalance, which directly affected
insulin sensitivity [59, 60]. Moreover, previous studies
suggested that exposure to air pollution induces oxida-
tive stress and adipose tissue inflammation, which dis-
rupts insulin signaling and results in insulin resistance
[61, 62]. Insulin resistance could in turn increase FBG,
1-h, and 2-h glucose concentrations. Moreover, exposure
to air pollution may also affect the methylation of genes
related to glucose metabolism. The change in methyla-
tion patterns affects glucose concentration by altering
peripheral insulin sensitivity during pregnancy [63, 64].
Exposure to PMs could change the pancreas function
and related glucose consequences. A rat model study by
Yi et al. 2017 showed that exposure to PM,; has re-
duced pancreas glucose transporter2 (GLUT2) expres-
sion as one of the important factor of glucose
intolerance as well as pancreatic methane dicarboxylic
aldehyde (MDA) and suggested that inflammation and
oxidative stress response related exposure to PM,;s
could increase risk of pancreatic impairment and gly-
cemic consequence [65]. Other animal studies also re-
ported that exposure to air pollution had been
associated with increase in insulin immunodensity of
pancreatic islets [66, 67]. Finally, changes in glucose
homeostasis in healthy pregnant women might be due to
the metabolic induction change in the hypothalamus
[68, 69]. Our results of the associations between traffic
indicators as well as PMs exposures and glucose intoler-
ance could be explained by one or all of the above
mechanisms.

The advantage of our study included the use novel
markers, access to full residential address histories and
detailed information on exposures. Moreover, we studied
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the preconception exposure to air pollution as well as
traffic indicators and glucose homeostasis during preg-
nancy, which was not considered in previous studies.
Furthermore, this study is the first report of low and
middle-income countries (LMICs) about air pollution
exposure and glucose intolerance in pregnant women.

Our study has limitations, as well. The sample size of
our study was relatively small. We measured PMs expos-
ure using the LUR models, and we did not measure indi-
vidual exposure to PMs before pregnancy. Diet can also
affect blood glucose concentrations during pregnancy,
which was not assessed in our study. Furthermore, we
did not evaluate the level of maternal stress that may
affect blood glucose levels. These limitations should be
considered in future studies.

Conclusion

We found higher PMs exposures were significantly asso-
ciated with higher risk of glucose intolerance in healthy
pregnant women. Moreover, we found a significant posi-
tive association between total street length in 100 m buf-
fer and FBG and 1-h post-load glucose concentrations.
Furthermore, a significant negative association was ob-
served between proximity to major roads and FBG and
1-h post-load glucose concentrations. Our finding pro-
vided evidence linking traffic indicators and PMs expos-
ure with glucose homeostasis in pregnant women. If our
results replicated by future studies could be a primary
target in interventions to prevent glucose metabolism
abnormalities. Moreover, our findings could offer evi-
dence base for policymakers to implement interventions
targeted at reducing adverse health effects of exposure
to air pollution in pregnant women in our rapidly urban-
izing world. However, further longitudinal studies with
larger sample size are needed to confirm these results.
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