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REVIEW

The prognostic outcome of ‘type 2 diabetes 
mellitus and breast cancer’ association pivots 
on hypoxia‑hyperglycemia axis
Ilhaam Ayaz Durrani, Attya Bhatti*   and Peter John 

Abstract 

Type 2 diabetes mellitus and breast cancer are complex, chronic, heterogeneous, and multi-factorial diseases; with 
common risk factors including but not limited to diet, obesity, and age. They also share mutually inclusive pheno-
typic features such as the metabolic deregulations resulting from hyperglycemia, hypoxic conditions and hormonal 
imbalances. Although, the association between diabetes and cancer has long been speculated; however, the exact 
molecular nature of this link remains to be fully elucidated. Both the diseases are leading causes of death worldwide 
and a causal relationship between the two if not addressed, may translate into a major global health concern. Previ-
ous studies have hypothesized hyperglycemia, hyperinsulinemia, hormonal imbalances and chronic inflammation, 
as some of the possible grounds for explaining how diabetes may lead to cancer initiation, yet further research still 
needs to be done to validate these proposed mechanisms. At the crux of this dilemma, hyperglycemia and hypoxia 
are two intimately related states involving an intricate level of crosstalk and hypoxia inducible factor 1, at the center of 
this, plays a key role in mediating an aggressive disease state, particularly in solid tumors such as breast cancer. Sub-
sequently, elucidating the role of HIF1 in establishing the diabetes-breast cancer link on hypoxia-hyperglycemia axis 
may not only provide an insight into the molecular mechanisms underlying the association but also, illuminate on 
the prognostic outcome of the therapeutic targeting of HIF1 signaling in diabetic patients with breast cancer or vice 
versa. Hence, this review highlights the critical role of HIF1 signaling in patients with both T2DM and breast cancer, 
potentiates its significance as a prognostic marker in comorbid patients, and further discusses the potential prognos-
tic outcome of targeting HIF1, subsequently establishing the pressing need for HIF1 molecular profiling-based patient 
selection leading to more effective therapeutic strategies emerging from personalized medicine.
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Introduction
Diabetes and cancer are two complex yet increasingly 
prevalent, chronic, metabolic morbidities [1], emerg-
ing globally as major public health concerns [2]. Diabe-
tes with a global occurrence of 422 million in 2014 [3], 
is the seventh leading cause of death worldwide [4], 
while cancer is undisputedly the second most leading 

cause of death with 17 million cases in 2018 alone and 
an expected 27.5 million new cases by 2040 [5], its preva-
lence is set on ever increasing.

Diabetes itself is a group of various metabolic disor-
ders, characterized by hyperglycemia resulting from 
insulin deficiency, its inaction or both, with a spectrum 
of other complications affecting major body organs 
associated with it. It can be classified into type 1 and 
type 2 diabetes mellitus and gestational diabetes [6]. 
Type 1 diabetes mellitus (T1DM) is insulin dependent 
and caused by the inability of the pancreatic beta cells 
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to synthesize insulin, accounted for by the autoimmune 
destruction of beta cells [7]. Type 2 diabetes mellitus 
(T2DM), on the other hand is not insulin dependent; 
rather it is characterized by insulin resistance due to 
the inability of cells to respond to insulin followed by 
compensatory hyperinsulinemia [8]. Cancer too is a 
heterogeneous disease and can be classified into many 
distinct types based on its site of origin and other 
clinic-pathological features and molecular signatures 
[9, 10].

There have been many speculations since the twen-
tieth century, linking diabetes to cancer and increas-
ing evidence has associated diabetes, particularly type 
2 diabetes mellitus (T2DM) with cancer risk, prognosis 
and treatment. These are supported by numerous epide-
miological studies that revealed a positive correlation of 
T2DM with many types of cancer, such as pancreas [11], 
liver [12], endometrium [13], colon-rectum [14], bladder 
[15], and breast cancer [16].

However, it is noteworthy that not all cancers associ-
ate positively with diabetes. Prostate, kidney and ovarian 
cancers are inversely associated with diabetes i.e. diabetic 
patients are at a decreased risk of developing these can-
cers [17], and lung cancer has reportedly shown no asso-
ciation with either type of diabetes.

Cancers of liver, endometrium and pancreas have 
shown doubled risk as compared to breast, colon, rectal 
and bladder cancers in T2DM patients. Furthermore, 
cancers that associate with one type of diabetes may 
not necessarily also associate with the other type, such 
as breast cancer which only associates with T2D and 
not with T1D [18]. Insulin and other drugs have also 
been associated with the diabetes-cancer risk; however, 
the debate is still ongoing [19–24]. Hence, with review 
emerges complexities in the link between diabetes and 
cancer and the multi-faceted relationship these two dis-
eases hold. The increase in cancer risk in diabetic patients 
may be slight to moderate, yet given the status of diabetes 
as a global epidemic, the socioeconomic impact of this 
positive association may be significantly burdening [25].

Following the discovery of the hallmarks of cancer [26, 
27], the metabolic nature of some of the deregulations 
involved in cancer has become a focus of study world-
wide and these may be in line with the metabolic abnor-
malities’ characteristic of diabetes. Yet, the root cause of 
this diabetes- cancer association is still under explored 
and hence not fully clear. There have been multiple possi-
ble molecular mechanisms proposed to explain the causal 
relationship [28]. The more extensively researched and 
hence the better understood hypotheses include hyper-
insulinemia and hyperglycemia [29]. These along with 
inflammation and oxidative stress related conditions may 
be of prime importance in explaining the link and hence 

these interconnected states would be reviewed further in 
this article.

The etiology underlying these two diseases and the 
interplay of common pathways may help to explain the 
molecular basis of the positive correlation. Diabetes 
involves metabolic alterations, hormonal imbalances par-
ticularly of insulin/insulin growth factor-1 and adiponec-
tin/ leptin, and immune response such as elevated levels 
of pro-inflammatory cytokines like tumor necrosis fac-
tor-a (TNF-α), and all these features it shares with can-
cer. These commonalities may give insight into the cross 
talk that initiates carcinogenesis in diabetic patients and 
may reflect on a cumulative effect of the converging and 
diverging pathways in combination with the differential 
pathways modulating the two-way relationship between 
diabetes mellitus and cancer; of diabetes as a cause and as 
an aftermath of cancer. Additionally, both these diseases 
share certain risk factors including diet, exercise, ageing 
and obesity [30], hence these and the reported crosstalk 
within the insulin and cancer signaling pathways not only 
spark an interest in elucidating the correlation between 
diabetes and cancer but it may also be employed to 
understand the connection.

Hyperinsulinemia may be a direct causal factor for car-
cinogenesis. Findings from numerous studies have con-
sistently linked hyperinsulinemia, which is characteristic 
of type 2 diabetes mellitus with increased incidence of 
cancer [31, 32]. Insulin has mitogenic properties and may 
lead to cancer initiation itself and via increasing Insulin-
like growth factor (IGF-1), which has both mitogenic and 
anti-apoptotic properties.

 Furthermore, hyperglycemia is a hallmark of diabe-
tes [33], and is also a risk factor for cancer progression 
[34]. It has shown to trigger the HIF1 pathway via up-
regulation of HIF1-α gene expression, eventually lead-
ing to an anti-apoptotic cell response and activation of 
oncolytic pathways in specific cell types [35–37]. A study 
conducted on rat pancreatic beta cells reported high glu-
cose induced increased oxygen consumption, leading 
to hypoxia and subsequent HIF1 activation, and associ-
ated it with a slower decrease in beta cell function [38]. 
In another instance, hyperglycemia mediated HIF1 acti-
vation was also correlated with glucose intolerance [39]. 
However, there are studies showing that hyperglycemia 
in diabetic patients impair the HIF pathway [35], differ-
ing with studies which show an increased expression of 
HIF1-α under hyperglycemia [40]. Hence, the critical role 
of HIF1 in establishing the diabetes-cancer link needs to 
be fully elucidated by probing into the intricate crosstalk 
between HIF1 and insulin signaling.

Other proposed potential biological mechanisms 
include hormonal imbalances disrupting the estrogen-
progesterone and adiponectin/lectin axes and also 
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obesity as an independent risk factor [41–44]. Still, the 
current knowledge pertaining to the exact nature of the 
molecular mechanisms linking diabetes with cancer and 
what is currently known only gives a very complex pic-
ture of status quo. Latent cancer may also contribute to 
the development of diabetes and hence lead to reverse 
causality [45]. Either way, co-occurrence of diabetes and 
cancer seems to worsen the prognosis and increase mor-
tality [46, 47].

This review however focuses on T2DM- breast cancer 
association by discussing disease epidemiology, patho-
genesis and underlying potential molecular mechanisms 
establishing a crosstalk between diabetes and breast can-
cer signaling pathways and highlights on the relevance 
of hypoxia-hyperglycemia axis established, in explain-
ing this molecular association. It presents an overview of 
series of events that may initiate carcinogenesis in mam-
mary tissue and contribute to its progression in diabetic 
patients, outlining the plausible molecular routes from 
diabetic state to breast carcinogenesis, with a particular 
emphasis on the role of HIF1 in mediating this transi-
tion in diseased state. It further discusses the outcome 
of this association on breast cancer subtype specificity, 
and relates this dynamic molecular crosstalk to explain 
the development of hallmarks of cancer, Additionally, 
this review establishes on the multi-faceted, bidirectional 
and dual relationship between diabetes, its treatment and 
breast cancer subtype specific incidence, prognosis and 
therapy.

Breast cancer was specifically selected as an area of 
focus, as it shares several characteristics with T2DM, 
including its characterization by regions of hypoxia, its 
composition of adipose tissue, a major site affected by 
T2DM, and the high incidence of breast cancer, in Paki-
stan, and worldwide.

Understanding the diabetes- breast cancer link on 
hyperglycemia-hypoxia axis may give way to understand-
ing the role of HIF1 in developing this link, which could 
then be employed to determine the prognostic outcome 
of targeting HIF1 in comorbid patients. This review may 
also inspire further research and identification of poten-
tial biomarkers for early detection of breast cancer in 
diabetic patients and prognosis prediction in comorbid 
patients.

Literature review article selection
For this literature review, the online database PubMed 
was searched through using the keywords “diabetes” 
(OR “T2DM” OR type 2 diabetes mellitus) AND “breast 
cancer” (OR “breast carcinoma”) AND “hypoxia induc-
ible factor 1” (OR “HIF1”) in all possible combinations. 
A total of 19 articles were extracted for the period 2008–
2021, of which only 9 matched the relevancy of all three 

keyword categories inclusion criteria. Of  these 1 article 
was in Chinese, hence could not be fully reviewed here. 
Out of the remaining, 6 discuss the role of potential 
therapeutics targeting diabetes and breast cancer, while 
also implicating HIF1-α. Additionally, 3 articles were 
extracted from other searches such as studying review 
articles to extract references for original articles relevant 
to the research topic as outlined in Fig.  1 enlisting the 
article selection process. For this review, 11 articles were 
eligible for inclusion and are discussed henceforth.

Epidemiological links of diabetes with breast 
cancer
Breast cancer is the fifth most common cause of death 
[48], and the most commonly diagnosed cancer in 
women [49]. There were over 2 million cases reported 
in 2018 alone. Pakistan has the highest breast cancer 
incidence rate in Asia, with approximately 90,000 cases 
reported every year and 40,000 deaths. It is reported that 
one in every nine Pakistani women is likely to develop 
breast cancer at some stage in her life [50].

Numerous studies have linked diabetes with a small yet 
increased breast cancer risk and even worse prognosis as 
summarized in Table 1. So far, this has been attributed to 
insulin resistance and associated corresponding hyperin-
sulinemia. For instance, studies tracking death in breast 
cancer patients reported an increasing trend for women 
with diabetes, and also supported a stronger independ-
ent link with prognosis as compared to breast cancer 
risk [51], which can be explained by higher insulin levels, 
late diagnosis, less aggressive treatment plan or diabetes 
associated complications or co-morbidity [52, 53].

Another follow up study of 116,488 female nurses 
revealed 6220 women with T2DM, and 5189 incident 
cases of invasive mammary carcinoma in the course of 
time. A modestly elevated risk for breast cancer inci-
dence in T2DM patients was reported, independent of 
the influence of other risk factors including age, obesity 
and family history, physical activity and reproductive fac-
tors [54].

T2DM as a prognostic factor in breast cancer patients 
has also been associated with decreased overall survival. 
A cohort study of one million U.S adults revealed a 16% 
increase in breast cancer mortality in patients with pre-
existing diabetes [60]. This was consistent with multiple 
other studies reporting a higher all-cause mortality in 
diabetic women [61]. Hence co-occurrence of diabetes 
with breast cancer may worsen the prognosis and over-
all survival by increasing the risk of wound infection and 
hence subjection to a delay in administration of adjuvant 
chemotherapy. This may contribute to worsening of the 
patient’s state [62]. Diabetic treatment may also interfere 
with disease outcome and patient survival. Studies have 
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linked it to distant metastases and increased recurrence 
rates in breast cancer [63].

Hence, another layer of complexity arises as anti-dia-
betic treatments have also shown to impact breast cancer 
risk and prognosis. Insulin sensitizers such as metformin 
decreases insulin resistance by altering the PI3K/AKT/
mTOR pathway [64]. This may potentially contribute to 
the anti-cancer effects of metformin such as a decrease 
in cell proliferation and induction of apoptosis when 
tested on cancer cell lines [65]. A recent population 
based case-case study in 2019, evaluated the association 
between T2DM, its medications and breast cancer risk, 
particularly in different molecular subtypes [66]. The 
study involved 4557 breast cancer patients, and showed 
that women with T2DM had a 38% increased risk of tri-
ple negative breast cancer, as compared to women lack-
ing T2DM history, and particularly for those prescribed 
with metformin for long-term usage. On the other hand, 
in the Women’s Health Initiative study, metformin use 
was found to correspond with a lower risk of hormone 
receptor positive and HER2 negative breast cancer [67]. 
Contrary to this, epidemiological analysis based on the 
Black Women’s Health Study cohort, reported no sig-
nificant differences for breast cancer risk based on ER 
status, diabetic condition and diabetic treatment [68]. 
The inconsistency in these findings may be explained by 
a potential misclassification bias originating from self-
reported data on metformin use, and even by the over-
all prevalence of diabetic medication amongst the study 
population. Moreover, metformin’s role as an adjuvant in 

chemotherapy for breast cancer has also been reviewed 
[69].

Other diabetic treatments include externally adminis-
trated insulin, which is known for its mitogenic effects 
[70], and has been associated with a non-significant 
increased risk of breast cancer [71]. While, insulin glar-
gine is associated with 30% increased risk [72], and meta-
analyses investigating breast cancer risk associated with 
sulfonylurea use have also yielded mixed results, lack-
ing consistency [73–75], and hence further research is 
needed to substantiate the association between diabetic 
treatments and breast cancer risk.

Cancer treatment may also contribute to the devel-
opment of diabetes, however breast cancer in patients 
with pre-existing diabetes has shown increased disease 
severity [76]. The type of breast cancer treatment is also 
known to influence the incidence of T2DM in breast can-
cer patients [77]. In case of patients subjected to chem-
otherapy/surgery, 17.2% reported the development of 
T2DM [78]. Patients who underwent adjuvant chemo-
therapy, hormone therapy, aromatase/PI3K inhibitors 
and morphine users showed an increased risk of develop-
ing T2DM [79–82]. Additionally, post-menopausal breast 
cancer is also shown to associate with higher T2DM inci-
dence. Hence, the co-existence of diabetes with breast 
cancer may influence breast cancer prognosis and its 
treatment strategy as well.

Apart from insulin itself, several other nodes from 
insulin signaling have been implicated in breast can-
cer. (IGF) IGF binding proteins (-BP) regulate the 

Fig. 1  Article selection process outline. Out of 21 articles matching the keywords search results, only 11 matched the inclusion criteria and hence 
were included in this review
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bioavailability of IGF1 and IGF2, with IGFBP2 and 
IGFBP3 most abundantly circulating in blood [83]. 
Meta-analyses reveal that IGFBP2 and IGFBP3 both 
correlate positively with breast cancer and poor prog-
nosis in patients [83, 84]. Hence, the multi-layered 
relationship between T2DM and breast cancer needs 
further probing into to fully comprehend the complex-
ities of this bi-directional association.

Prevalence, risk factors and mutual features 
of diabetes and breast cancer
Etiology of diabetes
Diabetes is a complex metabolic syndrome that 
includes metabolic and hormonal disorders such as 
type 1 diabetes mellitus (T1DM), type 2 diabetes mel-
litus (T2DM) and gestational diabetes. A prolonged 
existence of hyperglycemic conditions in diabetic 
patients is associated with organ damage, failure and 
dysfunction, particularly of kidneys, heart, eyes, nerves 
and blood vessels [85].

Table 1  Epidemiological data linking diabetes with breast cancer

Data represented here has been retrieved from 7 published works including 3 meta-analyses and other population based studies

Sr. No. Study name Country Study type Population/
Sample size

Study period Age group Characteristic 
findings

Refs

1 Nurse Health 
Study

USA Follow up 116,488 Nurses 1976–1988 30–55 Women with 
T2DM had 
a modestly 
elevated breast 
cancer inci-
dence

[54]

2 Long Island
Breast Cancer 

Study Project

USA Population based 
study using data 
from case–con-
trol & Follow up 
studies

1508 1996–1997 30 +  Diabetes associ-
ated increased 
breast cancer 
incidence in 
older and non-
white women 
due to all 
reasons

[55]

3 SEER-Medicare 
based study

Observational 
Cohort

2418 2001–2007  > 80
Mean age: 77.8

Diabetes associ-
ated with 
advanced 
cancer stage 
and increased 
mortality

[56]

4 Meta-analysis of 
diabetes mellitus 
and risk of breast 
cancer

Various (From 
North 
America, 
Europe & 
Asia)

Meta-analysis of 
case–control 
&cohort studies

20 Studies (30,568 
cases)

1966–2007 20–95 20% increased 
breast cancer 
risk in women 
with diabetes

[17]

5 Retrospective 
cohort study in 
China

China Retrospective 
Cohort

36 cases 2002–2008 - Increased risk 
of developing 
breast cancer in 
T2DM patients

[57]

6 Diabetes increases 
risk of breast 
cancer

Various Meta-analysis of 
case–control & 
cohort studies

43 studies 
(422,631 cases)

Oldest Study from 
1990

Latest from 2012

Varied T2DM increases 
the risk of 
breast cancer in 
women

[58]

7 Random effects 
model based 
meta-analysis

Various (From 
North 
America, 
Europe & 
Asia)

Meta-analysis 39 independent 
observational 
studies (58,690 
cases)

Oldest Study from 
1993

Latest from 2011

All ages 27% Increased risk 
for breast cancer 
in women with 
T2DM (reduced 
to 16% after 
adjustment for 
BMI)

[18]

8 T2DM as a risk 
factor for female 
breast cancer

Pakistan Case–control 
study

400 patients 2014–15 17.69% breast 
cancer patients 
reported dia-
betes

[59]
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The vast majority of diabetes cases fall into type 1 
and 2 diabetes mellitus, where the latter being signifi-
cantly more prevalent. T1DM is caused by an absolute 
lack of insulin secretion due to the autoimmune medi-
ated destruction of beta cells in pancreas, which secrete 
insulin. This form of diabetes contributes to 5–10% of 
the total reported cases. T2DM, on the other hand is 
attributed to a combination of insulin resistance and a 
lack of / inadequacy of insulin secretory response. T2DM 
accounts for ~ 90–95% of the reported cases of diabetes 
[86]. The risk of developing T2DM is associated with fac-
tors such as age, obesity, and lack of physical activity. The 
genetics of this type of diabetes is complex and still not 
clear.

Type 2 diabetes originates in various sites including 
adipose tissue which becomes insulin resistant caused by 
alterations in the insulin signaling pathway [87], and so 
it is important to understand the pathway that directly 
impacts diabetes.

Etiology of breast cancer
Breast cancer originates in breast tissue which is com-
posed mainly adipose and fibroglandular tissue, sup-
porting lobules containing milk producing glands and 
ducts linking glands to the nipple [88, 89]. It is a complex, 
heterogeneous disease and presents a diverse risk pro-
file. Even though all the causes of breast cancer are not 
fully understood, some of the risk factors include genetic 
mutations deregulating crucial signaling pathways and 
activation of oncogenes, increased body weight and 

obesity, prolonged exposure to carcinogens and altera-
tions in the immune conditions which may promote can-
cer growth [90]. Breast cancer can be further classified 
into different groups based on their hormone receptor 
profiles and other categories as summarized in Fig. 2.

Adipose tissue: common ground for T2DM and breast 
cancer
Adipose tissue is one the major sites affected by the 
development of T2DM. Deregulation in the insulin-AKT 
pathway leads to the development of the insulin resist-
ance in adipocytes. Interestingly, it also forms a major 
and crucial component of breast tumor microenviron-
ment, and is  involved in major energy storage and glu-
cose expenditure of the body [89, 100]. It also serves as 
an endocrine organ, secreting adipokines such as leptin 
and adiponectin, cytokines like interleukins and TNF-
α, chemokine CXCL-8 amongst others, growth factors 
including but not limited to vascular endothelial growth 
factor (VEGF) and IGF, and other factors such as aro-
matase, all of which are associated with breast cancer 
[98–100].

Metabolic reprogramming
Molecular alterations pertaining to diabetic pheno-
type such as defects in insulin signaling leading to lack 
of response to insulin and subsequent hyperinsuline-
mia, may ultimately promote tumorigenesis via HIF1 
regulation, increased glucose uptake and its utiliza-
tion, making energy more readily available to afford the 

Fig. 2  Breast cancer classification. The figure illustrates categories based on which breast cancer is sub-typed including histological, functional, 
grading and molecular biomarker expression [91–99]
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uncontrolled growth of tumor [101]. Once HIF1 is acti-
vated, it increases the transcriptional expression of meta-
bolic enzymes such as lactate dehydrogenase (LDH), and 
pyruvate dehydrogenase kinase (PDK1) which blocks the 
conversion of pyruvate to acetyl-coA, hence preventing 
pyruvate molecules from entering the TCA cycle.

Signaling cascades and their crosstalk in diabetes 
and breast cancer
Insulin signaling
Insulin is a peptide hormone released in response to 
high blood glucose level by pancreatic beta cells and it 
stimulates increased uptake of glucose by cell, glycogen 
synthesis in liver, gluconeogenesis, protein catabolism 
and fatty acid esterification on binding its receptor and 
initiating downstream signaling. It also inhibits lipoly-
sis, autophagocytosis, proteosomal activity and apopto-
sis. Elevated insulin levels are associated with mitogenic 
effects in synergy with increased bioavailable IGF-1 
levels.

Insulin/IGF1 signaling pathway controls metabolism 
and growth. Both insulin and IGF1, two key players 
required to trigger this pathway act on two closely related 
tyrosine kinases which when phosphorylated initiates 
a series of further phosphorylation events that regulate 
metabolic and cell  growth  pathways. Alterations in this 
network can lead to insulin resistance and diabetes [102].

Insulin and IGF-1 bind to and lead to a conformational 
change in insulin and IGF-1 receptors, respectively, fol-
lowing auto-phosphorylation. This leads to the recruit-
ment and phosphorylation of receptor substrates such 
as insulin receptor substrate (IRS) and Shc proteins. IRS 
then recruits PI3K, and hence activates the AKT-PI3K 
pathway, which controls cell survival and growth. AKT 
also regulates insulin-mediated response including glu-
cose transport, gluconeogenesis, glycogen synthesis and 
lipid synthesis. Shc activates the MAPK pathway, which 
then mediates cellular proliferation and transcription.

Hence, insulin and its signaling pathway play a crucial 
role in energy homeostasis by regulating glucose and 
lipid metabolism and by acting directly on liver, skeletal 
muscle and adipose tissue predominantly. Lack of insu-
lin or its inadequacy in cases of diabetes leads to altera-
tions in the pathway, which greatly influence the disease 
prognosis.

HIF1 signaling
Tumor hypoxia is a driving force for metabolic alterations 
in cancer. Hypoxic conditions especially in solid tumors 
such as breast cancer trigger HIF1 signaling, which plays 
a central role in mediating cell’s adaptive response to 
hypoxia.

HIF1 is a transcription factor belonging to the HIF 
family, regulated by both hypoxic and non-hypoxic 
conditions. It is a hetero-dimer with the two subunits 
constitutively produced [103]. However, under nor-
moxic conditions, HIF1-α is proteosomally degraded 
after being hydroxylated by oxygen sensing PHD and 
FIH-1 enzymes. If the oxygen levels fall, the HIF1-α 
subunit is not hydroxylated, hence leading to its stabi-
lization and binding to HIF1-β subunit to activate the 
downstream HIF1 signaling pathway [104].

Hypoxia independent activation of HIF1 pathway 
under normoxia has been shown to be triggered by 
signaling molecules such as nitric oxide, interleukin 1 
(IL-1), tumor necrosis factor alpha (TNF-α), angio-
tensin II and growth factors such as epidermal growth 
factors, insulin and insulin like growth factor and also 
mediated by PI3K-AKT pathway [105, 106].

P53 regulates HIF1-α stability whereas the ERK/
MAPK pathway regulates both HIF1- α stability and 
its activation; ERK is involved in the transcriptional 
activation and synthesis of HIF1-α [107]. PI3K-AKT 
pathway also regulates HIF1 protein translation via the 
action of mTOR on other genes controlling HIF1-α pro-
tein translation. Additionally, IL-1β also leads to HIF1 
signaling in case of an inflammation. HIF1 in return, 
increases the entry of glucose into the cells, the glyc-
olytic flux and the conversion of pyruvate into lactate 
[108].

Additionally, the hypoxia-independent regulation 
of HIF1 is mediated by signaling such as the insulin-
PI3K-AKT, MAPK/ERK, IL-1 and NF-κB pathways. 
Once HIF1 α-β complex forms, it transcriptionally 
activates various target genes including glucose trans-
porter GLUT1 and glycogen synthase kinase (GSK) 
which regulate metabolism, and e- cadherin and matrix 
metalloproteinase (MMP) proteins leading to epithe-
lial to mesenchymal transition and metastasis. It also 
regulates autophagy and cell death via BCL2/adeno-
virus E1B 19  kDa  protein-interacting  protein (BNIP3) 
and p53, and angiogenesis by upregulating VEGF and 
MMPs as represented by Fig. 3.

PI3K/AKT and ERK/MAPK pathways
AKT-PI3K pathway crucial for cell survival [117], and 
the ERK/MAPK pathway with its role in cell prolifera-
tion, converge at HIF1 signaling [118, 119], after diverg-
ing from insulin pathway [120, 121]. Both these pathways 
are central to cancer signaling and have been thoroughly 
reviewed elsewhere [122, 123], however it is important 
to relate to all these signaling cascades together to com-
pletely envision the complex picture within a developing 
cancerous cell.
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Pathways that crosstalk
Cancer being a complex phenomenon involves an 
intricate merger of various signaling cascades includ-
ing but not limited to the pathways already discussed, 
yet this paper aims to elucidate on the central role of 
HIF1 signaling in mediating the crosstalk and disease 
state. Tracing its role in diabetes may give insight into 
the molecular basis for diabetes-associated breast 
carcinogenesis.

Hence, key players of the diabetes- breast cancer 
crosstalk include insulin and its binding to insulin 
receptor which triggers the insulin pathway, and which 
subsequently leads to the activation of PI3K-AKT and 
MAPK pathways, and HIF1 signaling via mTOR path-
way [124]. Hypoxia is also shown to activate the AKT 
pathway [106]. HIF1 signaling up regulates GLUT1 and 
GLUT3 which in turn regulates metabolism, VEGF, 
which controls angiogenesis and hence contributes to 
cell survival, and also lead to the activation of c-Myc 
and IGF2, along with other genes which promote cell 
proliferation as shown in Fig. 4.

An intricate crosstalk between HIF1 signaling and 
other key players including breast cancer specific mark-
ers estrogen and HER2, and other cell survival and 
proliferation markers may mediate the hallmarks of 
transition from diabetic to comorbid state.

Hallmarks of diabetes and breast cancer
Hyperglycemia and its complications
Hyperglycemia is a term used for high blood glucose 
level, caused either by a lack of insulin secretion or its 
inaction [129]. It is a characteristic of diabetes, but has 
also been reported in non-diabetic acute illness. It is 
also considered a physiological response to inflamma-
tion, and leads to an increased production of cytokines 
such as NF-κB and c-reactive protein (CRP) [130].

Hyperglycemia is a risk factor for cancer progres-
sion as it has shown to lead to tumor growth. How-
ever, the underlying molecular mechanism is not fully 
understood, yet there are several ways through which 
hyperglycemia contributes to tumor progression. This 
includes the up-regulation of glucose transporters such 
as GLUT1 and GLUT3, and growth factors, which con-
tribute to cancer cell proliferation. Glucose metabo-
lism leads to advanced glycation products (AGEs) and 
their interaction with receptors (RAGEs), ultimately 
leading to increased oxidative stress, contributing to 
DNA damage and genomic instability. Hence the role of 
hyperglycemia is well established in linking the meta-
bolic nature of both diabetes and breast cancer.

Fig. 3  HIF1 signaling. HIF1 is a dimeric transcription factor composed of an oxygen concentration sensitive HIF1-α subunit and a constitutively 
present HIF1-β subunit. Under hypoxic conditions, HIF1-α stabilizes and forms a dimer with HIF1-β subunit to transcriptionally activate the 
expression of HIF1 target genes. HIF1 has also been shown to be activated under normoxic conditions by various factors as depicted [108–116]
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Hypoxia induction and its aftermath
Hypoxia is the state of inadequacy of oxygen in a tissue 
due to any reason [131]. Increasing evidence highlights 
its role in multiple diseases and metabolic disorders 
such as diabetes [132], and cancer [133, 134]. Hypoxia, 
along with other conditions such as inflammation, ER-
stress and mitochondrial dysfunction, are all associated 
with insulin resistance, which is a characteristic of type 
2 diabetes.

Notably, it is one of the major contributing factors to 
tumor malignancy. The extent and time of exposure to 
hypoxia, partially determines the cancer cell’s response 
to it; whether it leads to cell death or cell survival via 
triggering autophagic pathways. Prolonged hypoxia 
leads to increased ROS production, which promotes 
tumor cell survival and progression.

The hypoxia‑hyperglycemia axis
Hyperglycemia reportedly induces hypoxic conditions 
and generation of mitochondrial ROS. Low oxygen lev-
els stabilize HIF1-α subunit, which then binds with the 
beta subunit to mediate cell’s coordinated response to 
hypoxia.

It is already known that hyperglycemia and hypoxia 
interact via common mechanisms to cause complications 
in diabetic patients. Both the conditions have shown 
to promote glycolysis, however via independent path-
ways and these effects are shown to be additive in caus-
ing diabetic retinopathy [135]. Hypoxia also reportedly 
decreases insulin signaling in adipocytes [136].

Additionally, high glucose level in breast cancer 
patients has been associated with elevated IGFBP2 lev-
els and subsequently with chemo-resistance, highlight-
ing the role of IGFBP2 in modulating a cancer cell’s 

Fig. 4  Transitions in cell signaling associated with diabetes induced breast tumorigenesis. HIF1 signaling not only cross-talks with Insulin but also 
other crucial pathways implicated in diabetes mellitus and breast cancer. Key players (identified by purple circles) along with the states contributing 
to their regulation (blue border-white box) and in turn feed into major signaling pathways (blue box) involved in the diabetes to breast cancer 
transition [44, 125–128]
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response to chemotherapy. Since T2DM is character-
ized by hyperglycemia, the potential role of IGFBP2 in 
T2DM induced breast cancer, and particularly as a ther-
apeutic target to increase chemo-sensitivity of breast 
cancer cells seems plausible. Under the hypoxia-hyper-
glycemia equation, hypoxic conditions have shown to 
correspond with reduced IGFBP2 levels, consequently 
negating the chemo-resistant effects of hyperglycemia 
[137]. However, further research is necessary to fully 
understand the molecular nature of IGFBP2’s role in 
chemo-resistance, particular within the hypoxia-hyper-
glycemia crosstalk.

Furthermore, hyperglycemia may also activate HIF1 via 
mTOR signaling [138]. Hence, it is crucial to understand 
the crosstalk fully, specifically the impact of hyperglyce-
mia on HIF1 pathway in breast cancer cells, in order to 
determine the molecular basis of diabetes-breast can-
cer link. This may be possible by applying a mechanis-
tic approach to identifying potential biomarkers such as 
HIF1 that could crucially determine and regulate mutual 
aberrations in both diabetes and breast cancer and how 
pre-morbiditic diabetic state may progress into a mam-
mary cancerous state.

Hyperinsulinemia
Increased phosphorylation of IRS proteins prevents 
tyrosine phosphorylation leading to insulin resistance 
[139], which leads to compensatory hyperinsulinemia. 
Moreover, high insulin level is independently associ-
ated with breast carcinogenesis and progression, and 
this is supported by reports of insulin overexpression in 
breast cancer cells [140]. Once it binds to its receptor, it 
activates cell-signaling leading to cell survival, increased 
glucose uptake, mitogenesis, cell proliferation, invasion, 
and metastasis [30]. Besides, its direct mitogenic effects, 
it induces the expression of other factors including IGF-1 
and HIF-1 [141], and increases bioavailability of estrogen 
[142].

Chronic inflammation
Increased production of cytokines and adipokines par-
ticularly by the adipose tissue in diabetic state may pro-
vide a favorable microenvironment for breast tumor 
growth. Specifically, interleukin-6 (IL-6), may lead to 
the activation of the JAK-STAT pathway, which not only 
enhances cell survival and proliferation, but also inhibits 
host anti-tumorigenic immune response [143]. Interest-
ingly, HIF1 yet again plays a central role in mediating a 
connection between inflammatory response and carcino-
genesis. It promotes the recruitment of immune cells 
and positively regulate the function of pro-tumorigenic 

inflammatory response cells [144], forming yet another 
molecular bridge between T2DM and breast cancer.

Hormonal imbalances
Besides the implication of the insulin/IGF-1 axis, diabe-
tes involve the dysregulation of other hormones, which 
implicate HIF1 signaling and may promote breast car-
cinogenesis such as the adiponectin-leptin duo. In 
patients with obesity associated diabetes, elevated leptin 
levels lead to increased aromatase and estrogen produc-
tion, release of pro-inflammatory cytokines, cell pro-
liferation, migration and invasion [145]. This coupled 
with low levels of anti-tumorigenic adiponectin facilitate 
tumor progression [146].

HIF1’s regulation of the multilayered, relationship 
between T2DM and breast cancer
Multilayers within the T2DM‑BC association
The complex nature of the association between diabe-
tes and breast cancer becomes evident, as T2DM not 
only affects breast cancer risk but also its prognosis, 
besides an independent link between diabetic treatment 
and breast cancer risk and prognosis. Conversely, breast 
cancer has also been associated with the development 
of T2DM, and there are reports of cancer medication 
inducing T2DM characteristics in patients, as detailed in 
this section.

T2DM and breast cancer risk
T2DM is associated with a 20% increased breast can-
cer risk. However, the discrepancy in the status of HIF1 
expression in diabetic patients needs to dealt with further 
research to elaborate on its potential diagnostic and pre-
dictive role as a biomarker for breast cancer patients with 
diabetes.

There are reports of associating diabetes with breast 
cancer, positively correlating it with ER expression nega-
tive status, however the results are conflicting, and fur-
ther studies are required to clarify on this [66].

T2DM and BC prognosis
Breast cancer patients with pre-existing diabetes have 
an overall worse prognosis and decreased survival. Lit-
erature has shown that the therapeutically enhanced 
expression of HIF1 in diabetic patients may help alleviate 
diabetic complications. However, there are also reports 
of HIF1 targeting as a potentially effective strategy for 
targeting HIF1 mediated insulin resistance and treating 
diabetes [147]. This disparity in the comprehension of 
the role of HIF1 in diabetic pathogenesis raises the ques-
tion of whether HIF1 targeting may be a potentially effec-
tive strategy in treating breast cancer complicated with 
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diabetes. Although the significance of HIF1 targeting in 
breast cancer is well established, and is associated with 
overall improved survival, however, depleting HIF1 in 
breast cancer patients with diabetes may affect diabetic 
complications associated mortality in these patients, and 
may prove as an added health concern.

T2DM treatment and BC
As previously discussed, diabetic treatments report an 
independent association with breast cancer incidence 
and prognosis. The therapeutic use of insulin and its ana-
logues in diabetic patients was shown to correlate with 
a higher incidence of breast cancer [71, 148], however 
these conflict with another study reporting the inhibi-
tory effect of insulin on tumor growth [149]. Metformin 
targets PI3K-AKT pathway and AMPK reduces glucose 
level in diabetic patients, and is shown to exhibit anti-
tumorigenic properties [150, 151]. For other glucose 
lowering drugs such as sulfonylureas and glinides, there 
is yet again inconsistency in published literature, hence 
requiring further investigation.

BC treatment and T2DM
Conversely, there are certain breast cancer treatments 
including temsirolimus and everolimus, which target 
tyrosine kinases, and lead to the development of hyper-
glycemic condition characteristic of diabetes [152]. 
Additionally, anti-neoplastic glucocorticoids are also pre-
scribed as adjuvant therapy, which induce diabetes [150].

Herbal extracts such as the common sage (Salvia Offi-
cialis) extract have also reported anti-hyperglycemic, 
anti-inflammatory and anti-proliferative activities and 
hence may potentially be effective against treating breast 
cancer complicated with T2DM or diabetes induced 
breast cancer [153]. However, future studies are required 
to further elucidate on its therapeutic efficacy in co-mor-
bid state.

HIF1 expression in type 2 diabetes mellitus
There are numerous reports of hyperglycemic conditions 
destabilizing HIF1-α level, associating it to diabetic com-
plications such as impaired wound healing [154–156]. 
This is consistent with the report of HIF1-α expres-
sion up-regulation in diabetic mice ameliorating wound 
healing and angiogenesis, elucidating on the prognostic 
advantage of restoration of HIF1-α expression in diabetic 
state. Additionally, down-regulated HIF1 expression in 
diabetic foot ulcer, exposed to hypoxic but not hypergly-
cemic condition, was also reported [157]. The status of 
HIF1 expression, directly regulating VEGF level, is also 
associated with vasculature response, and its impairment 
may translate into vasculature-associated complications 
in diabetic patients [158]. The effect of hyperglycemia on 

HIF1-α level was further investigated and it was found 
that glucose affected HIF1 expression only under hypoxic 
conditions in human dermal fibroblasts (HDF).

Furthermore, the knockdown of HIF1 in adipo-
cytes resulted in increased insulin secretion leading to 
increased glucose tolerance and amelioration of insu-
lin resistance, establishing its potential as a promising 
T2DM therapeutic target [159, 160]. This is supported by 
the role HIF1 plays in inflammation response leading to 
insulin resistance in adipose tissue [147].

Contrary to this, HIF1 is stabilized by both insulin and 
IL-1, which are overexpressed in diabetes under nor-
moxic condition [138, 161, 162]. PI3K-AKT pathway acti-
vated by hypoxia and crucial to insulin signaling is also 
implicated in the stabilization and accumulation of HIF1, 
which in turn has a positive impact on insulin sensitivity 
and glucose metabolism in skeletal tissue [163]. Hence, 
there may be tissue specific signaling determining the 
influence of HIF1 in diabetic state and further research 
may shed light into the cell type specific expression status 
of HIF1 in T2DM.

HIF1 expression in breast cancer subtypes
Further broadly categorizing breast cancer subtypes 
as outlined in Fig. 2, based on hormone expression sta-
tus, three main categories emerge, hormone express-
ing, HER2 expressing and triple negative breast cancer 
(TNBC), with the TNBC subtype being most aggressive. 
A study conducted in 2019, reported a higher TNBC and 
HER2 expressing breast cancer specific increased risk in 
diabetic patients, particularly for TNBC, which expresses 
higher IGF level [66], along with long-term metformin 
usage particularly associated with increased odds of 
developing TNBC.

Relating to the reported HIF1 expression across these 
breast cancer subtypes, may provide insight into the 
subtype specific potential of HIF1 as a therapeutic tar-
get. Tumor hypoxia and HIF1 expression is associated 
with tamoxifen resistance and overall poorer prognosis 
in estrogen receptor positive breast cancer [164]. HER2 
overexpressing breast cancer cells reportedly stabilized 
HIF1 levels under normoxic conditions, highlighting at 
its role in HER2 breast cancer specific signaling [165]. 
Similarly, increased HIF1 expression in TNBC is associ-
ated with more aggressive phenotype, hence necessitat-
ing the therapeutic targeting of HIF1 to enhance disease 
prognosis [166].

Breast cancer subtype specific signaling
The molecular signaling underlying different breast can-
cer subtypes may implicate common and differential 
signaling pathways. The up-regulation of insulin and IGF 
is particularly higher in TNBC relative to those in the 
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estrogen responsive cells, and which may then lead to 
HIF1 activation [167]. Similarly, cytokines such as IL-6 
and IL-8 are implicated in tumor growth and evading 
apoptosis in TNBC but not in ER-positive breast cancer 
cells [168].

Hormone expressing subtypes express ER and/or PR, 
HER2 enriched breast cancer overexpress HER2 whereas 
TNBC do not express ER, PR and HER2. Estrogen, HER2 
and EGFR signaling pathways once turned on in different 
breast cancer subtypes, activate common downstream 
signaling pathways such as PI3K-AKT and MAPK/ERK 
pathways which then mediate the hallmarks of cancer.

HIF1‑α’s mediation of T2DM‑BC Association
Increased HIF1 expression is associated with overall 
poorer survival in breast cancer patients [169], and sev-
eral studies directly or indirectly implicate HIF1-α in the 
diabetes-breast cancer crosstalk. A study conducted in 
2015, reported HIF1 mediated advancement of breast 
metastasis in comorbid patients [170], however the arti-
cle cannot be fully reviewed, as it was excluded based on 
language discrepancy. Hence, to date, to the best of our 
knowledge, there has been very limited prior experimen-
tal study designed to potentiate the role of HIF1-α in dia-
betes-breast cancer crosstalk. Published in 2017, a study 

reported the induction of HIF1 expression by hyperin-
sulinemia mediated inhibition of HIF1-α ubiquitination, 
in estrogen receptor positive breast cancer cells derived 
from breast tumor in T2DM mice [171]. HIF1, once acti-
vated, may promote tumorigenic activities leading to the 
initiation and progression of breast cancer in subjects 
with diabetes, hence potentiating the role of HIF1-insu-
lin axis in T2DM-BC crosstalk, since, both T2DM and 
breast cancer are characterized by hypoxia state.

Furthermore, insulin also leads to the activation of lep-
tin, an obesity related hormone, already known to asso-
ciate with breast cancer progression via transcription 
factors including HIF1 and its crosstalk with PI3K-AKT 
and ERK1/2 pathways [172, 173].

Additionally, tumor microenvironment consists of cells 
including adipocytes [174], which synthesize bioactive 
molecules including growth factors, estrogen, and lep-
tin, exposing mammary tissue to pro-tumorigenic factors 
[175]. Leptin activates the JAK-STAT breast cancer path-
way leading to c-MYC and BCL2 expression mediated 
cell growth and proliferation [176, 177], whereas estro-
gen may regulate the development of estrogen dependent 
breast cancers [178]. Leptin also leads to HIF1 mediated 
increased expression of aromatase, which is required for 
estrogen signaling.

Fig. 5  HIF-1 relaying crosstalk between T2DM and breast cancer hallmarks. It is regulated by hyperinsulinemia, hyperglycemia and other hallmarks 
of diabetes and once activated, it mediates insulin resistance and other features of T2DM and hallmarks of breast cancer
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Obesity may also serve as a factor for breast cancer 
development, as the addition in adipose tissue compos-
ing the breast may promote the development of hypoxic 
conditions, inflammatory response and insulin resistance 
[179].

Hence, HIF1-α is intricately involved in mediating phe-
notypic characteristics of T2DM and breast cancer, and 
the T2DM-BC crosstalk, as annotated in Fig. 5.

The molecular alterations within the diabetic state may 
stabilize or destabilize HIF1 level. Once HIF1 is activated, 
it feedbacks into mediating diabetic hallmarks such as 
insulin resistance, oxidative stress and chronic inflam-
mation. It relays the molecular crosstalk to mediate the 
development of hallmarks of cancer, directly via its tar-
get genes such as IGF2, CD18, VEGF, FN1, GLUT1 and 
BCL2 and indirectly by inducing other factors such as 
insulin, leptin and negatively regulating PTEN.

Additionally, several studies discuss the role of various 
therapeutic agents targeting diabetes and breast cancer, 
while also implicating HIF1-α. Recently, there has been 
an emerging focus on studying the role of metformin, an 
anti-diabetic drug, as an anti-cancer therapeutic avenue 
[180]. It is being pursued for its potential to be repur-
posed as an anti-cancer drug [179], and associated with 
an overall reduced cancer risk in diabetic patients. It was 
shown to induce p-AMPK mediated prolyl hydroxylases 
(PHDs) expression in cancer-associated fibroblasts, a 
major constituent of the tumor microenvironment, lead-
ing to HIF1 inhibition and subsequently decreased breast 
cancer invasion. Hence, metformin’s role in  targeting 
pro-tumorigenic reprogramming in tumor microenvi-
ronment especially by modulating tumor-stromal cross-
talk may be studied further. However, this may lead to 
the question of whether metformin would be an effec-
tive therapeutic strategy for co-morbid patients already 
expressing low HIF1 levels, in lieu that it may further 
aggravate diabetic complications. Hence, further research 
is necessary to understand this.

Additionally, a microRNA, miR-18a has been  impli-
cated in diabetes- breast cancer crosstalk and it report-
edly target HIF1-α [181, 182], and YC-1 is a specific 
HIF1-α signaling inhibitor by blocking HIF1-α synthesis 
[183].

Another study, conducted in 2012, showed the 
increased expression of HIF1 in co-morbid patients, and 
which significantly decreased in response to metformin 
treatment [184]. Where hyperglycemia is shown to desta-
bilize HIF1 levels, there are also reports of targeting HIF1 
leading to amelioration of obesity and insulin resistance, 
further elaborating on its potential as therapeutic agent 
[160].

Metformin, derived from biguaide, is a first line 
T2DM oral treatment, as prescribed by America 

Diabetes Association (ADA) [185]. Recent evidence is 
emerging on its potential role as an anti-cancer thera-
peutic; however the underlying mechanism for this 
property is not fully understood. It is also shown to 
inhibit HER2 mediated cell proliferation and angio-
genesis via targeting of HIF1 and its downstream tran-
scriptional activation of VEGF, a master regulator of 
angiogenesis [186].

Furthermore, metformin is also reported to pro-
mote AMPK signaling mediated apoptosis in breast 
cancer cells and white adipose tissue endothelial cells 
[187], which have been shown to play a cooperative role 
in breast cancer angiogenesis and metastasis, hence 
modulating both the tumor and its microenvironment, 
specifically in TNBC and HER2 positive breast cancer 
cells.

Another anti-diabetic drug shown to possess anti-
tumorigenic property is rhaponticin (RA), derived from 
medicinal herbs [188]. It was shown to suppress angio-
genesis, metastasis and resistance to apoptosis in breast 
cancer cell line MDA-MB-231, derived from TNBC, via 
targeting the HIF1 signaling pathway.

Additionally, dacosahexaenoic acid is a type of 
omega-3 polyunsaturated fatty acid, which is reported 
to not only be effective for diabetes, but also for cancer 
with its anti-proliferative, anti-angiogenesis, anti-inva-
sion, anti-metastatic and pro-apoptotic properties, via 
negatively regulating HIF1-α levels, leading to down-
regulation of glycolytic enzymes in breast cancer cells 
[189].

Targeting HIF1 in T2DM‑breast cancer patients dilemma
Disparity in findings reporting HIF1 expression in dia-
betic patients creates a need for further research on its 
cell type specific expression, to enable HIF1 expression 
based patient selection in breast cancer patients with 
T2DM before opting for HIF1 targeting as a therapeu-
tic strategy. To this end, we propose a scheme as shown 
in Fig.  6, suggesting considerations for devising thera-
peutic strategy for diabetic, breast cancer and comorbid 
patients. While targeting of HIF1 may tackle with breast 
cancer and diabetes associated worse prognosis, the 
application of combination therapy such as the addition 
of VEGF expression enhancers may prevent the implica-
tions of diabetic complications that may accompany the 
therapeutic down-regulation of HIF1 in patients with 
both T2DM and breast cancer.

HIF1 targeting in co-morbid patients may complicate 
diabetic prognosis further, hence combination therapy 
to treat diabetic complications alongside HIF1 target-
ing may be necessary. Similarly, for high HIF1-α expres-
sion in T2DM patients at risk of developing BC, HIF1 
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targeting may prove a promising therapeutic strategy, 
whereas for BC patients at risk of developing T2DM, 
HIF1 targeting may potentially alleviate disease prog-
nostic outcome. However, in patients deficient in HIF1-α 
expression, other therapeutic strategies may need to be 
opted for.

Initiation and progression of breast cancer
The transformation of a normal cell into a malignant 
cancer cell involves a series of complex changes includ-
ing initiation, promotion and progression [190]. There 
are numerous factors that could trigger and facilitate 
this transformation which include but are not limited 
to diet, prolonged exposure to carcinogens and obesity 
[191]. Increasing evidence has been associating diabe-
tes, particularly T2DM with cancer risk, development, 
prognosis and even treatment [192] and T2DM is being 
established as a risk factor for cancer development. 
Hyperglycemia related complications are increasingly 
prevalent in cancer patients indicating at the role it may 
play in progressing cancer.

At molecular level, hyperglycemia and insulin medi-
ated HIF1 signaling activation favors the development 
of hallmarks of cancer with the transforming cell. 
HIF1 target genes such VEGF promotes angiogenesis, 
GLUT1 and PDK-1 mediates metabolic shift to anaero-
bic metabolism [193], BCL2 regulates anti-apoptotic 

behavior and MMPs orchestrate epithelial to mes-
enchymal transition. Within this tumor promoting 
micro-environment, the build-up of ROS triggers DNA 
damage [194], and coupled with this, HIF1 also medi-
ates inflammation promoting activities [195, 196]. In 
synergy with all these molecular changes, insulin-IGF 
duo pushes the cell toward proliferation.

Conclusion
Hypoxia inducible factor 1 is a master regulator of 
hypoxia mediated cell response including alterations in 
the metabolic pathways particularly involving glucose 
uptake and its metabolism, and can be activated under 
non-hypoxic conditions. Its mediation of hallmarks of 
diabetes and breast cancer highlights its centrality to 
the molecular interplay between these two complex dis-
eases and in governing the associated molecular players 
establishing the molecular connections between diabe-
tes and breast cancer. This potentiates its relevance as a 
biomarker with prognostic and therapeutic significance, 
however there is very limited research done on this and 
further experimentation is required to fully comprehend 
the role of HIF1 in comorbid state.

Furthermore, it is also paramount to consider the 
implication of targeting HIF1 expression, which, although 
it may alleviate prognosis of breast cancer, and diabetes 
associated insulin resistance, yet may still translate into 

Fig. 6  Proposed scheme for devising a therapeutic strategy for T2DM-breast cancer patients
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diabetic complications particularly those vasculature in 
nature, and worsen the overall survival outcome. Hence, 
there is a need to consider expression levels of potential 
prognostic markers such as HIF1 in comorbid patients, 
to ensure a more effective therapeutic strategy against 
breast cancer complicated with diabetes. Combination 
therapy such as VEGF expression enhancers may be pre-
scribed to patients selected for HIF1 targeting therapy, 
to prevent diabetic complications associated mortality in 
breast cancer patients. While, targeting HIF1 and other 
associated potential biomarkers may in fact reduce mor-
tality associated with breast cancer in diabetic patients, 
eventually alleviating the socioeconomic burden of dia-
betes- breast cancer association on global health.
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