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Abstract

Background: Classic metabolic engineering strategies often induce significant flux imbalances to microbial
metabolism, causing undesirable outcomes such as suboptimal conversion of substrates to products. Several
mathematical frameworks have been developed to understand the physiological and metabolic state of production
strains and to identify genetic modification targets for improved bioproduct formation. In this work, a modeling
approach was applied to describe the physiological behavior and the metabolic fluxes of a shikimic acid
overproducing Escherichia coli strain lacking the major glucose transport system, grown on complex media.

Results: The obtained flux distributions indicate the presence of high fluxes through the pentose phosphate and
Entner-Doudoroff pathways, which could limit the availability of erythrose-4-phosphate for shikimic acid production
even with high flux redirection through the pentose phosphate pathway. In addition, highly active glyoxylate shunt
fluxes and a pyruvate/acetate cycle are indicators of overflow glycolytic metabolism in the tested conditions. The
analysis of the combined physiological and flux response surfaces, enabled zone allocation for different physiological
outputs within variant substrate conditions. This information was then used for an improved fed-batch process
designed to preserve the metabolic conditions that were found to enhance shikimic acid productivity. This resulted in
a 40% increase in the shikimic acid titer (60 g/L) and 70% increase in volumetric productivity (2.45 gSA/L*h), while
preserving yields, compared to the batch process.

Conclusions: The combination of dynamic metabolic modeling and experimental parameter response surfaces was
a successful approach to understand and predict the behavior of a shikimic acid producing strain under variable
substrate concentrations. Response surfaces were useful for allocating different physiological behavior zones with
different preferential product outcomes. Both model sets provided information that could be applied to enhance
shikimic acid production on an engineered shikimic acid overproducing Escherichia coli strain.

Keywords: Metabolic modeling, Central carbon metabolism, Response surface analysis, Cybernetic modeling,
Shikimic acid

Background
The aromatic amino acid pathway (AAAP) branches
from the central carbon metabolism (CCM) by the
aldolic condensation of erythrose-4-phosphate (E4P) and
phosphoenolpyruvate (PEP), being present in bacteria
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and plants. The AAAP is responsible for the produc-
tion of aromatic amino acids and aromatic vitamins.
As a consequence, it is an essential and highly reg-
ulated pathway [1, 2]. AAAP intermediates and final
compounds play important roles in the pharmaceuti-
cal and food industries, either as raw materials, addi-
tives or final products [3–9]. Among them, shikimic
acid (SA) can be used as an enantiomeric precursor to
produce valuable biological molecules such as antipyret-
ics, antioxidants, anticoagulants, antithrombotics, anti-
inflammatories, analgesic agents, antibacterial, hormonal
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or antiviral compounds [8, 9]. SA was at first pro-
duced from the seed of the Chinese star anise plant
Illicium verum, employing classic extraction processes
with yields of only 30 mg/Kg approximately [10–12].
For this reason, over the past years, many studies concern-
ing SA production have focused on recovery technologies,
chemical synthesis methods and biotechnological produc-
tion using different microorganisms [9, 13, 14]. The latter
resulted in many genetically engineered strains that pro-
duce SA at laboratory and industrial scales with relatively
high yields (between 40–50% mol/mol), but still far from
the theoretical maximum (86% mol/mol) [2, 9, 13–15].
Although classic metabolic engineering (ME) allows

flux redirection in a biochemical network into valuable
compounds by genetic manipulation, it often induces sig-
nificant flux imbalances to the CCM that may cause unde-
sirable outcomes. These imbalances can disrupt precursor
availability and energy balances, causing the accumula-
tion of pathway intermediates and unwanted byproducts,
reducing strain fitness and product yields [16]. These
imbalances derive from alterations to the complex con-
nectivity of biological information networks (genome,
transcriptome, proteome, and metabolome) [17, 18].
Therefore, there is an increasing interest into a more
global and detailed understanding of the metabolic and
regulatory network changes imposed by different genetic
modifications or process conditions in various production
systems. In recent years, mathematical models, advances
on informatics and the availability of big and more pre-
cise omics data sets have proved useful to resolve and
clarify the complex network interactions and system
characteristics [19–22].
To mathematically model metabolism, a metabolic net-

work must be assembled with sufficient detail and curated
from genomic data to be represented as a matrix of
equations, including all available stoichiometric, ther-
modynamic and kinetic data. Given the complexity of
microorganisms, the parameter sets required to describe
the networks for genome-scale models are quite large
and require informatically-intensive modeling approaches
[23]. Most of the constructed metabolic models use mass
balances and assume pseudo-steady state conditions to
solve the highly undetermined linear equation systems
and render a convex space, which contains all the pos-
sible solutions for the system. This solution space then
must be narrowed with experimental data and some other
assumptions to acquire a meaningful and useful solution
[18, 19, 21, 24]. Different approaches have been devel-
oped to find the most meaningful solution, such as
mechanism-based, interaction-based and the constraint-
based methodologies. The latter, are the most commonly
used for their capability to render useful flux distributions,
even with relatively small amounts of information [20, 23].
Nevertheless, a challenging ground for models still exists

for high-throughput data acquisition and interpretation
when non-defined cultivation media and dynamic pro-
cesses are used. The challenges and achievements within
this field can be consulted elsewhere [20, 21, 25–31].
Regarding SA production with E. coli, few modeling

studies could be found in the literature. Chen et al. (2011)
[32] used a constraint-based analysis with flux balance
analysis (FBA), assumed no growth and used SA as the
objective function, to design modifications for the over-
production of AAAP intermediates. The model identified
aroF, tktA, ppsA and glf genes as candidates for over-
expression. As well, suggested the inactivation of ldhA
and ackA genes to avoid carbon waste through lactate
(LA) and acetate (AC) fluxes. These genes and nodes
are in accordance to other reports on AAAP interme-
diate production [2, 5, 7, 14]. Nevertheless, this model
also identified the non-evident zwf gene as critical for
redirection of the carbon flux into E4P on the AAAP.
Its overexpression resulted in an increase of 47% molar
conversion of glucose (GLC) to aromatic intermediates
[32, 33]. Similarly, Ahn et al. (2008) [34] constructed a
model for maximizing SA production from GLC high-
lighting the importance of CCM genes like tktA and
zwf, although growth or maintenance requirements were
not considered. Rizk and Liao (2009) [35] used ensem-
ble modeling, a mechanism-based approach, to identify
tktA as the first-rate controlling step, founding that the
ppsA gene can only augment production of aromatic
intermediates when tktA is simultaneously overexpressed.
There still are several challenges that must be addressed
regarding model construction and implementation. For
example, models are often limited by specific assump-
tions, defined conditions and are performed primarily
under stationary constraints. Importantly, the assumption
of stationary state provides only limited information on
the dynamic properties of the system or network regula-
tion. These limitations can result in some contradictions
to real cell behavior under changing conditions, given by
the existence of complex regulatory mechanisms modify-
ing metabolic fluxes. New models and tools accounting
for more complex solutions and on dynamic conditions,
would result in a better understanding of cell behav-
ior and produce new insights for strain and bioprocess
design. On the other hand, for E. coli strains constructed
for SA production, most of the work done has been
focused on testing and improving expression platforms,
genetic backgrounds, including the use of strains lacking
themain phosphoglucotransferase transport (PTS), which
lack catabolite repression and can redirect part of the car-
bon flux in to the production of aromatic compounds
[2, 5, 7, 9, 33, 36], and culture strategies using traditional
engineering approaches. Only few studies have focused
on metabolic modeling to better understand and engineer
SA overproduction at a more global level. Even less has
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been done on modeling production strains under com-
plex media or on dynamic conditions, which are critical
considerations for further process improvement. Here, a
dynamic modeling approach of the physiological behavior
and the dynamic metabolic flux distributions for an engi-
neered E. coli strain is presented. The results were useful
for strain behavior characterization and SA productivity
enhancement on variable complex media compositions.

Results
Physiological characterization, parametrization and
modeling of strain AR36 on variant substrate conditions
Figure 1 depicts the results from the 9 experimental
design fermentations with the central point done by trip-
licate along with constructed physiological models (see
“Methods” section). Central experimental condition
(100:30 GLC:YE g/L) average parameters and deviations
are summarized in Table 1. The standard deviations show
relatively low values in accordance to experiments using
yeast extract (YE) from three different batches. The largest
standard deviations corresponded to final SA produced
([SA]f ), final consumed GLC (�[GLC]) and the expo-
nential consumption rate

(
qexps

)
. Nevertheless, the aver-

aged model depicts a fair agreement with data as can
be observed in Fig. 1. The observed behavior and statis-
tical data proved that the logistic models were suitable
to describe and parametrize the consumption of GLC
and production of SA in strain AR36, within the bound-
aries of the experimental design. Statistical validation and
accuracy of the models are presented in Additional file 1.
With the parameters obtained, three-dimensional

response surfaces were constructed (Fig. 2 and “Methods”
section). Maximum biomass (Xmax) response surface
(Fig. 2a) shows only small increases with higher GLC
concentrations at similar amounts of YE. �[GLC]
response surface (Fig. 2b) depicts that GLC consumption
increases proportionally with higher starting GLC and YE
concentrations. This is especially observed under high
GLC concentrations, where at least ≈40 g/L of YE are
required for complete exhaustion of more than ≈110 g/L
of GLC. Regarding final SA concentration ([SA]f ), surface
morphology is similar to the consumed GLC surface, but
exhibits a maximum critical point at 110:40 g/L GLC:YE
initial concentrations (Fig. 2c). For kinetic parameters,
GLC consumption rate at exponential phase

(
qexpglc

)
shows

a saddle type behavior on its response surface (Fig. 2e).
This morphology is characterized by the existence of a
maximum critical point for GLC and a simultaneous min-
imum for YE, found at 96 g/L and 37 g/L concentrations,
respectively. These results suggest that cellular responses
to GLC concentrations lower than ≈75 g/L (increasing
consumption) or higher than ≈100 g/L (decreasing
consumption), may be occurring in strain AR36. Surfaces

also showed that qexpglc highest values are found at lower
concentrations of YE and GLC and the lowest rates under
high concentrations of initial GLC. For the SA exponential
production rate

(
qexpsa

)
surface, a tendency to increase

towards lower initial [YE] was found, with an up to 50%
decrease when more than 40 g/L of YE are utilized (Fig. 2e
and f). The growth rate (μmax) displays a minimum crit-
ical point on 105:21 g/L GLC:YE initial concentrations
(Fig. 2k) with the highest values found towards lower
[GLC] in combination with higher [YE]. Finally, the AC
production rate

(
qexpac

)
shows a tendency to present higher

values as [YE] and [GLC] increase (Fig. 2i) and could be
responsible for reducing biomass and SA production rates
as the AC highest rates were found above ≈40 g/L [YE]
and ≈110 g/L GLC. In summary, all the specific rates at
exponential phase suggest an allocation of rate maximiza-
tion zones or quadrants on the experimental design as
follows: at high [GLC] and high [YE] concentrations AC
production is predominant, at low [GLC] and high [YE]
concentrations biomass production is predominant, at
high [GLC] but low [YE] concentrations SA production is
predominant and finally at lower concentrations of both
substrates a more balanced growth and production of all
final products is to be found (Fig. 2).
At the stationary phase, a reduced metabolic activity

on all consumption and production rates was observed.
qstaglc surface (Fig. 2g) tends to have larger values on higher
initial concentration of substrate sources (GLC and YE).
The SA stationary production rate

(
qstasa

)
surface (Fig. 2h)

reveals a tendency to increase towards low GLC with high
YE initial concentrations, showing an opposite behavior
than qstaac (Fig. 2j). Their surface analysis helps to allocate
predominant stationary phase output zones as follows.
A SA production zone found above an imaginary diag-
onal line cutting the experimental design area from low
initial concentrations of both substrate sources to high ini-
tial concentrations and a predominantly AC production
zone found below this imaginary diagonal. It should be
also noted that zone preferences on stationary phase are
found on opposite sides respective to the allocated ones
on the exponential phase. More so, SA specific produc-
tion rates observed at higher initial [YE] and lower initial
[GLC] conditions seem to have smaller variations between
phases and AC specific production rates seem to vary less
on low initial [YE] high initial [GLC] conditions.
The descriptive viability of the constructed response

surfaces was validated by performing fermentations
using three conditions not included in the experimental
design (75:20, 80:40 and 115:45 GLC:YE initial condi-
tions). Figure 3 shows the results for the logistic growth
model and the consumption/production integrated mod-
els rendered with the surface calculated parameters:
Xmax, μ, qexpglc , q

exp
sa , qstaglc , q

sta
sa and SAfinal parameters. As
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Fig. 1 Physiological model approximation to each point of the experimental design

it can be seen, all models follow the experimental data
with good agreement. The largest observable deviation
is on the maximum SA achievable on the 80:40 GLC:YE

experiment, probably due to the contribution from YE
to SA production. In addition, mathematical assessment
of the validation was performed by a set of descriptive
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Table 1 Average parameters and estimated standard deviations from the central point in the experimental design

Xmax �[GLC] [SA]f [AC]f μ qexpglc qexpsa qstaglc qstasa Yps Ypx qexpac qstaac

[g/L] [g/L] [g/L] [g/L] [h−1] [g/Lh] [g/Lh] [g/Lh] [g/Lh] [g/g] [g/g] [g/Lh] [g/Lh]

Mean 12.80 99.82 32.80 9.24 0.58 1.24 0.35 0.45 0.13 0.36 0.76 0.52 0.50

σ 2 0.77 4.77 8.13 0.95 0.12 0.48 0.09 0.19 0.08 0.03 0.16 0.19 0.19

a e i

b f j

c g k

d h

Fig. 2 Response surface contour plots for the model estimated parameters. aMax biomass [g/L], b �[GLC] [g/L], c Final SA [g/L], d Final AC [g/L],
e qexpglc [g/Lh], f qexpsa [g/Lh], g qstaglc [g/Lh], h qstasa [g/Lh], i qexpac [g/Lh], j qstaac [g/Lh], k μmax [h−1]
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Fig. 3 Physiological model predictions to three experimental
validation experiments

and inferential statistical comparisons between the mod-
eled data and the experimental results. Error percentage
was obtained by ratio of quadratic sums and presented
values from 0.14 to 0.91 for biomass comparisons, from
0.04 to 0.08 for GLC and from 0.04 to 0.26 for SA, sug-
gesting a relatively small deviation between experimental
and modeled data along the fermentation. R2 values were
found between 0.96 and 0.99 for all three curves with per-
centile deviations from the expected slope (SPD) values
lower than 1% and p-values below 0.05. These statisti-
cal values and the depicted models from Fig. 3 show that
the models constructed by the surface predicted param-
eters can render comprehensively good representations
for biomass, GLC and SA for initial conditions within
the range of the experimental design. Surface predicted
parameters were also validated by comparison with the
ones calculated directly from experimental data. Table 2
shows the experimental and modeled parameters for all
validation experiments and the average error calculated.
The individual experimental error between predicted and
calculated parameters can be found on Additional file 1.
[AC]0 presented the highest error, probably because in
experiments with high initial [GLC] and [YE] no AC was
produced on stationary phase and surfaces constructed
with the polynomial equation cannot properly render
these behavior values. qexpglc and Yp/s also had relatively
high errors above 10%. This may be related to the contri-
bution of YE since it does not only contains the aromatic
amino acids needed for growth, but also other amino acids
and some carbohydrates that could contribute to some of
the previously discussed effects. However, the two-tailed
t-student test for the comparison of experimental and
modeled parameters validated all parameters as similar,
with p-values over 0.05. This means that the predicted
values can be used within reason to compare and study
the behavior of AR36 under the limits of the experimen-
tal design and that the constructed surfaces can be used
to obtain further insights on cell behavior. Parameter data
and statistical values for all experiments can be found on
Additional file 1.

Dynamic Flux Metabolic Modeling of AR36 strain on
variant substrate conditions
To get further insight into these different output zoned
behaviors, dynamic flux models were constructed. It is
evident that AR36 strain regulation showed no linear bor-
ders and contributions between predominant outcomes.
Since data on internal fluxes, constraints on regulation
or other kinetic data were not available, a cybernetic
modeling approach was used (See “Methods” section).
The simplified metabolic network used for the metabolic
models is depicted on Fig. 4, names of reactions will be
referred onward as indicated in this figure. The complete
description of the reactions can be found on Additional
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Table 2 Experimental vs Response surface predictions and statistical values calculated from fermentations used for model validation

initial GLC:YE g/L 75:20 80:40 115:45 %Error

Exp. Model Exp. Model Exp. Model Average

Max biomass [g/L] 9.30 8.40 14.30 16.03 19.76 18.05 7.18

Consumed GLC [g/L] 70.03 70.70 80.11 78.19 115.76 113.84 1.18

Final SA [g/L] 24.62 22.13 33.19 26.62 31.84 32.96 7.88

Final AC [g/L] 5.25 6.45 0.00 0.85 4.90 8.73 35.70

μmax [h−1] 0.62 0.73 0.78 0.77 0.55 0.65 8.56

qexpglc [g/Lh] 0.89 1.17 0.93 0.97 0.73 0.99 17.03

qexpsa [g/Lh] 0.36 0.42 0.32 0.28 0.24 0.24 7.35

qstaglc [g/Lh] 0.33 0.32 0.38 0.39 0.41 0.42 2.07

qstasa [g/Lh] 0.15 0.13 0.18 0.18 0.15 0.15 2.88

Yps [g/g] 0.41 0.36 0.35 0.29 0.34 0.23 14.49

Ypx [g/g] 0.59 0.59 0.42 0.38 0.44 0.38 5.68

file 2. Calculations over this network resulted in dynamic
models which followed the extracellular experimental
data points with good agreement in all cases, as shown in
Fig. 5. It should be noted that in this case, even the behav-
ior of AC could be accurately described. The main char-
acteristics of the common AC profile for fermentations
start with an AC production section until approximately
the middle of the exponential growth phase, only to be
completely consumed in almost all fermentations towards
the end of growth. A second AC production section starts
at the stationary phase on all experiments except for the
ones with 75:30 and 75:45 g/L GLC:YE initial conditions.
For the models, values between 0.15 to 2.28% error were
found for biomass approximations, from 0.56 to 2.3%
error for GLC, from 0.25 to 4.19% error for SA profiles
and 0.35 to 10.53% error for AC models in comparison
to experimental data. All R2 from Pearson linear regres-
sions were found to be above 0.9 and their significance
p-values were all found to be below 0.05. Regarding SPD,
the highest values were found for GLC and AC profiles.
Specifically, a 21% deviation was found for GLC in the
100:15 condition, where the model presents higher GLC
consumption at the last part of the fermentation com-
pared to the experimental values. As it can be seen on
Fig. 5, on this particular condition model almost exhaust
GLC but experiment presents a final GLC value of 156
mM, which means that model over estimates GLC con-
sumption on this particular condition. In comparison, in
all other cases, models tend to underestimate the con-
sumption rate on the last part of the fermentations with
values ranging from 1.07 to 19% SPD, where the high-
est deviations corresponded to fermentations with greater
initial YE concentrations. On that regard, on 75:15 g/L
the previously observed underestimation of consumption
rates at late stationary phase for the other experimental
design conditions could mean that GLCmay be exhausted

on a time prior to the model estimations. Regarding AC,
SPD deviations ranged from 1.31 to 9% in all cases, except
for 100:30 and 100:45 where values where 21 and 42%
respectively. For the 100:45 condition, this overestimation
is due to the error in the AC peak found on mid exponen-
tial phase and to the lack of AC production in stationary
phase. These large deviations can be explained by taking
into account that YE contribution was simplified to only
consider it as a biomass precursor and to provide simul-
taneously glutamate (GLU), alanine (ALA) and aromatic
amino acids (taken as one individual metabolite). Never-
theless, the mathematical values along with the observed
model behaviors depicted on Fig. 5 suggest that the mod-
els constructed are viable approximations to the observed
strain behavior under the experimental conditions. All
statistical data on the dynamic flux models are available in
Additional file 1.
Calculated fluxes were normalized against GLC con-

sumption derived fluxes for their analysis and surface
construction on three different fermentation stages: ini-
tial exponential (IEx), mid exponential (MEx) and mid
stationary (MST). IEx and MEx presented highly simi-
lar behaviors, so their description is similar and only IEx
surfaces were addressed. However all surfaces and con-
tour plots for all reactions and time sets can be found in
Additional file 3.

Central carbonmetabolism flux distribution behavior during
growth
Selected CCM genes related to IEx flux response sur-
faces are presented in Figs. 6 and 7. Glycolytic surfaces
under growth conditions show the samemorphology from
glucose-6-phosphate (G6P) to PEP reactions, a saddle
critical point with greater relative fluxes at low GLC ini-
tial conditions. Pgi (Fig. 6a), Pfk and Fba flux surfaces
describe the same morphological behavior as GalP and



Martínez et al. BMC Systems Biology          (2018) 12:102 Page 8 of 26

Fig. 4 Central carbon metabolism constructed metabolic network for dynamic metabolic flux models. Metabolites on red refer to the CCM
intermediaries used to produce biomass precursor (BIOMp)
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Fig. 5 External metabolite model results from internal model flux computations for each point of the experimental design

Glk flux surfaces, but have smaller values than expected,
accounting for only ≈6 to 25% of the flux relative to
Glk (Additional file 3). This means that the majority of
the flux is predicted to enter the oxidative reactions of
the pentose phosphate pathway (PPP) by G6Pdh coded

by zwf and the 6-phosphogluconolactonase (Pgl). G6Pdh
presents relative flux values from ≈75 to 95% (Fig. 6e)
and its morphology presents the inverse features than Pgi,
which presents greater relative flux values at higher [GLC]
and [YE] initial conditions. High relative flux values of
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Fig. 6 Response surface contour plots for the estimated internal fluxes at IEx (% Flux relative to GLC consumption). a Pgi, b GapA, c PykA, d LpdA,
e G6Pdh, f Gnd, g PGdh, h TktA 1, i TktA 2, j DAHPs, k PckA, l Ppc

75 to 88% were found for reactions from glyceraldehyde-
3-phosphate dehydrogenase-A (GapA) (Fig. 6b) and
the following Embden-Meyerhoff-Parnas pathway (EMP)
reactions towards PEP. Their surfaces have a simi-
lar morphological behavior as the upstream glycolytic
fluxes but with higher values, suggesting that even with
small Pgi flux distributions, high total conversion rates
of glucose to PEP can still be present. Also, the flux

distributions calculated on the 6-phosphogluconate dehy-
drogenase(Gnd)/phosphogluconate dehydratase (PGdh)
node, showed relative flux values from ≈75 to 94%
going through the Entner-Doudoroff pathway (EDP)
(Fig. 6f and g respectively). This suggests that most
of the carbon flux going through to the oxidative PPP
is redirected towards glycerol-3-phosphate (G3P) and
pyruvate (PYR).
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a e i

b f j

c g k

ld h

Fig. 7 Response surface contour plots for the estimated internal fluxes at IEx pt2 (% Flux relative to GLC consumption). a ActPout, b ActPin, c AckA,
d Acs, e PoxB, f Csyn, g IcdA, h Icl, i KGdh, j SdhABCD, kMdh, lMaeB

Pgl,Gnd, PGdhand2-Keto-3-deoxy-6-phosphogluconate
aldolase (KDPGa) flux surfaces show the same mor-
phology as G6Pdh, a marked tendency of maximiza-
tion towards higher initial [YE] (Fig. 6 e–g). In these
conditions, the maximum biomass production zone was
found that is in agreement to the previously observed
high oxidative PPP flux distribution. They also show the

inverse morphology than the EMP fluxes surfaces, as they
are expected to compete for carbon skeletons. Regard-
ing the non-oxidative reactions of the PPP, transketolase
I (TktA) and transaldolase (Tal) flux surfaces (Fig. 6h)
display low relative flux values (≈6 to 8%). Their sur-
face morphology shows a tendency to increase towards
lower initial [YE]. TktA surface representing the fraction
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of carbon being redirected from EMP towards the non-
oxidative branch of PPP, shows values ranging from ≈
12 to 16% (Fig. 6i). These non-oxidative branch reac-
tions are responsible for the E4P formation and present
combined flux values from ≈ 18 to 24%, which matches
the predicted flux being redirected toward SA produc-
tion by the 2-dehydro-3-deoxyphosphoheptonate aldolase
(DAHPs) during growth (Fig. 6j). An interesting con-
sequence is that up to ≈72 to 90% of flux modeled
is going through the pyruvate kinase II (PykA) related
reaction (Figure 6c), meaning that the majority of PEP
is probably being converted to PYR. Phosphoenolpyru-
vate carboxylase (Ppc) surface shows the same morphol-
ogy described by the glycolytic genes (Fig. 6l), indicating
that on low [GLC] and low [YE] conditions, glycolytic
metabolism is favored. Meanwhile, Phosphoenolpyruvate
carboxykinase (PckA) (Fig. 6k) presents a tendency to
increase flux towards low initial [YE] conditions. PckA
and Ppc fluxes presented values ranging from ≈31 to
41% and ≈0 to 30%, respectively. Their simultaneous
flux, suggests the existence of an ATP consuming futile
cycle.
The high inflow to PYR is probably caused by the

high EDP and PykA relative fluxes and increased even
further by a high malic enzyme carbon reincorpora-
tion from the Tricarboxylic Acid Cycle (TCA), account-
ing for ≈28–38% from the NADPH dependent enzyme
(MaeB) (Fig. 7l) and ≈0-30% from the NADH depen-
dent (MaeA). In the model, PYR can also be produced
from YE-derived ALA conversion by alanine D-amino
acid dehydrogenase (DadA) reaction. On the other hand,
for PYR conversion to acetyl coenzyme-A (ACCOA),
the reaction was attributed to pyruvate dehydrogenase
(LpdA). This reaction showed relatively small values, from
≈28–42% of relative flux (Fig. 6d) compared to pyruvate
oxidase (PoxB), which presented fluxes towards AC cal-
culated to be between ≈176–186% during growth phase
(Fig. 7e). It is noticeable that for AC production, no con-
straint was imposed for flux preference on either acetate
kinase (AckA), acetyl-CoA synthetase (Acs) and PoxB
reactions and the model renders consumption over the
reversible (AckA) since it is energetically favorable com-
pared to Acs (Fig. 7c–e). Surfaces for extracellular AC
export and import fluxes for AR36 (ActPout and ActPin)
show greater export rates with higher initial YE concen-
trations. This could be attributed to the introduction of
carbon to the CCM through ALA and GLU consump-
tion (Fig. 7a and b), but can also be extended to other
YE-derived amino acids catabolized through TCA not
included on the model. On the other hand, the import
of AC presents a maximization tendency towards low
initial [YE] with relative flux values between ≈ 90 to
115%. To clarify the node distribution around PoxB, an
AR36�poxB strain was constructed and cultured under

high [GLC] and high [YE], conditions that maximize AC
production according to the response surfaces. Interest-
ingly, the initial AC concentration peak observed in all
previous experiments was not detected in this case with
the mutant strain (Additional file 4). Furthermore, the
final AC concentration was significantly lower compared
to AR36 on similar fermentation conditions. This sug-
gest that PoxB could be indeed the main contributor to
AC production in the AR36 PTS− strain [2, 33, 36–38].
The AR36�poxB cultures also showed lower growth
rates (0.21 h−1) and lower exponential GLC consump-
tion rates (0.61 g/gh) (Additional file 4). This may indicate
that its inactivation could be causing PYR accumula-
tion and less ATP generation via the electron-transfer
chain [39].
Regarding TCA behavior, the glta coded citrate syn-

thase (Csyn) reaction presents relative flux values from
≈56 to 75% (Fig. 7f). As expected aconitase (Acn) reac-
tion (Additional file 3) presents the same behavior as the
Csyn reaction and both present the inverse morphological
features compared to the AC producing surfaces. Con-
versely, the following reaction by isocitrate dehydrogenase
(IcdA) seems to not be sending carbon flux down TCA.
On the contrary, its reversible reaction is found, transport-
ing the small excess of GLU derived from YE consumption
towards isocitrate (ICIT) (Fig. 7g). The isocitrate lyase
(Icl) and malate synthase (Msn) from this pathway, hav-
ing relative fluxes values accounting from ≈60 to 82%
of relative flux (Fig. 7h), and present the same surface
morphology as the TCA carbon uptake Csyn flux sur-
face. On the other hand, 2-ketoglutarate dehydrogenase
(KGdh) and succinyl-CoA synthetase (SucCD) complexes
seem to be catalyzing very small amounts of flux towards
succinate (SUC) (Fig. 7i). Calculations for the glutamate
dehydrogenase (Gdh) show relative fluxes between ≈3.1
to 3.7%, suggesting only small input by [YE] compo-
nents into TCA and apparently processed mainly by IcdA.
This means that SUC, is mostly produced by the glyoxy-
late shunt pathway (GSP) and subsequently catalyzed to
malate (MAL) by the succinate dehydrogenase complex
(SdhABCD) (Fig. 7j) and the fumarase (Fum). Their sur-
faces share the morphological characteristics of the Csyn
and the GSP surfaces. In consequence, the malate dehy-
drogenase (Mdh) reaction exhibits higher relative flux
values, from ≈85 to 1125% (Fig. 7k) as it also assim-
ilates ACCOA carbon derived from the Msn reaction
on GSP.
Surface morphologies suggest the allocation of different

predominant extracellular production zones at the expo-
nential growth phase. A SA production predominance
flux zone is found at low initial [YE] and as the initial
[GLC] diminishes a more balanced production towards
biomass and SA is found. This follows up to the pre-
dominant region for biomass found at low initial [GLC]
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conditions. Finally, a clear AC predominant production
zone is found at high initial [GLC] and [YE].

Central carbonmetabolism flux distribution behavior after
the growth phase
As in IEx andMEx phases, a high flux distribution towards
the PPP was found for the MST phase, presenting about
97–108% relative flux through G6Pdh and Pgl (Fig. 8e).

Both oxidative PPP reactions presented a marked mini-
mization morphology towards low initial [GLC] and high
[YE] initial concentrations and depicting decreasing ring
like border lines. In contrast to the exponential phase,
Gnd reaction shows values of relative flux from ≈40 to
100% (Fig. 8f), whereas its competing PGdh accounts for
≈0–70% of relative flux towards EDP. Both morphologies
present inverse behavioral surface features, as observed

a e i
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Fig. 8 Response surface contour plots for the estimated internal fluxes at MSt (% Flux relative to GLC consumption). a Pgi, b GapA, c PykA, d LpdA,
e G6Pdh, f Gnd, g PGdh, h TktA 1, i TktA 2, j DAHPs, k PckA, l Ppc
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on Fig. 8e and f. Interestingly, PGdh surface has the same
max region on its morphology as G6Pdh surface, suggest-
ing that excess flux could be still being processed by the
EDP. Gnd surface morphology depicts a ringed type ten-
dency with greater values towards initially low [GLC] and
high [YE] experimental conditions (up-left corner of the
experimental design). As expected, TktA reaction towards
the non-oxidative PPP (Fig. 8h) and Tal reactions, exhibit
the same behavior as the flux through Gnd surface and
become greater contributors to the production of E4P
and F6P. The latter enters the glycolytic EMP and it is
mostly redirected down the glycolytic pathway through
Pfk and Fba reactions with a relative fluxes of ≈10–55%.
They also show a ringed surface morphology that tends
to maximize towards low [GLC], high [YE] initial con-
ditions. In fact, this morphology was observed through
all following glycolytic reactions towards PEP formation
and present values from ≈90 to 99% (Fig. 8b). Interest-
ingly, the model renders a small (≈0–9%) unexpected flux
distribution of carbon through Pgi (Fig. 8a), redirecting
F6P to G6P, just to be consumed again through G6Pdf
on almost all the experimental design area. Consequently,
Pgi presents only a small flux in the standard G6P to F6P
direction at low [GLC] and high [YE] initial conditions
corner, representing only ≈0–2%.
On the PEP node reactions, the phosphoenolpyruvate

synthase (PpsA) reaction is non-existent, suggesting no
gluconeogenic flux from PYR towards PEP is obtained
in any condition. To the same extent, PckA reaction cat-
alyzing carbon flux from oxaloacetate (OA) towards PEP
is quite low with relative fluxes between ≈0–5% and
only being present under high [YE] initial conditions
(Fig. 8k). On the other hand, its counterpart reaction
Ppc shows ≈0–50% relative flux values, depicting inverse
surface morphology features compared to the PckA sur-
face, maximizing towards low initial [YE] conditions and
towards higher [GLC] and also with a ringed behavior
(Fig. 8l). Subsequently, PEP consumption by PykA and
DAHPs presented the same ringed maximization ten-
dency towards low initial [GLC] and high [YE] conditions
as observed on the glycolytic surfaces. In contrast to the
observationsmade under growth conditions, both of these
fluxes have an equilibrated flux distribution along their
surfaces with values between ranging between ≈15–55%
(Fig. 8c and j), probably because of the higher E4P pro-
duction on the PPP. These reactions compete with the
AC production reactions, in specific with PoxB, which
exhibits higher relative flux values as higher initial [GLC]
and lower initial [YE] conditions are set on fermenta-
tion (Fig. 9e). Therefore, presenting the inverse surface
morphological behavior compared to PykA and DAHPs
surfaces. This may be explained as on higher initial con-
centrations of [YE] more biomass is produced and there-
fore more [GLC] is consumed by the start of stationary

phase, which means that less [GLC] is expected at this
time and therefore, metabolic overflow is expected to
be lower. The export modeled transport reaction follows
PoxB flux surface behavior (Fig. 9a) as it is observed to be
again themain AC producing reaction. On the other hand,
import reaction presents almost ≈0 flux values on low
initial [YE], with consumption of extracellular AC only
towards the low [GLC] with high [YE] initial conditions
corner (Fig. 9b). These results suggest that the futile car-
bon cycling on the AC pathways is found on this stage only
under high [YE] conditions [2, 33, 36–38, 40].
Regarding TCA and GSP, their surfaces exhibit ringed

type maximization or minimization morphologies
towards the upper left corner of the experimental design.
Specifically, Csyn and Acn reactions present ≈54 to 70%
relative fluxes with the minimization morphology behav-
ior towards low [GLC] and high [YE] initial experimental
conditions corner (Fig. 9f). The GSP fluxes follow the
same morphological behavior along the experimental
design (Fig. 9h).
In contrast to the growth phase, IcdA, KGdh and SucCD

reactions present flux directions towards GLC oxidation
on all the experimental area, with relative fluxes between
≈10 to 55% (Fig. 9g, i, j), and with its surface morphology
maximizing towards low [GLC], high [YE] initial condi-
tions. SdhABCD and Fum follow the same behavior of
the Csyn surface. In addition, as higher fluxes are pulled
through the TCA, higher is the MaeB reaction flux which
competes with Mdh (Fig. 9l and k respectively). Their sur-
face morphology suggest carbon skeleton recycling from
PYR, flowing through AC pathways and into TCA to PYR
again. This behavior is found under high [GLC] substrate
conditions with higher metabolic flux saturation zones.
The dynamic cybernetic model on this phase showed

two predominant production zones. The observations
made by the dynamic flux models allocate a SA produc-
tion zone above an imaginary diagonal line, cutting the
experimental design area from low to high initial substrate
concentration, and a predominantly AC production zone
was found below the same imaginary diagonal, in accor-
dance to the physiological models surface allocations.

Bioprocess design for SA productivity enhancement on
strain AR36
To assess the utility of the previously described mod-
els and considerations towards SA production enhance-
ment, a fed-batch fermentation process was performed
with initial conditions of 80 g/L and 40 g/L initial [GLC]
and [YE] . Surfaces revealed higher growth rates have
been found under high [YE] and low [GLC] conditions
(Fig. 2k). Under these conditions there are also zones with
lower final AC production and mid range SA production,
and high biomass production (Fig. 2c, d and a) for the
final metabolic outputs. Although maximum SA titer was
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found near 110:40 GLC:YE condition in batch mode, this
also results in higher AC production and lower consump-
tion rates and yields on the stationary phase which result
on incomplete substrate exhaustion (Fig. 2c, d, h and g).
In contrast, higher SA production, higher GLC consump-
tion and lower AC production rates on stationary phase
are found (Fig. 2h, g and j) near 80:40 GLC:YE conditions.
Therefore, with these initial conditions, biomass n with

high rates are expected on the exponential phase without
compromising stationary phase SA production and GLC
consumption capabilities. This is supported also by the
flux surface analysis, on the 80:40 GLC:YE initial condi-
tions on stationary phase where relative fluxes are found
to enhance SA acid production and GLC consumption,
marked by the maximizing tendency for the reactions Pgi,
GapA, PykA, Gnd,TktA, DAHPs and PckA (Fig. 8a, b, c, f,
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Fig. 9 Response surface contour plots for the estimated internal fluxes at MSt pt2 (% Flux relative to GLC consumption). a ActPout, b ActPin, c AckA,
d Acs, e PoxB, f Csyn, g IcdA, h Icl, i KGdh, j SdhABCD, kMdh, lMaeB
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h, i, j and k). Also, in these selected conditions, lower val-
ues for relative fluxes were found for the reactions G6Pdh,
PGdh and Ppc (Fig. 8e, g and l). This suggests that under
the selected conditions less flux is sent towards the EDP
and more is redirected to E4P through Gnd and TktA on
the stationary phase. In fact the data indicate an ≈ 50%
carbon flux redirection towards SA and the rest through
lower glycolytic reactions by PykA and LpdA. Further-
more, consumption of AC fluxes will be maximized under
this phase as seen on the relative flux surfaces for Act-
Pin and AckA and lower AC production by PoxB (Fig. 9b,
c and e). Therefore, higher fluxes are expected for GLC
consumption and SA production, along with low AC pro-
duction for the stationary phase. These conditions where
then chosen even with the trade off with the exponen-
tial phase which presents higher GLC consumption flux
rates for GalP (Fig. 10a) with high biomass production
fluxes (Fig. 10b) and where SA production is not maxi-
mized. SA production on stationary phase presents higher
values for DAHPs relative fluxes at lower initial [GLC]

concentrations (Fig. 6j). Nevertheless, flux rates for SA
production reactions (DAHPs) presented medium range
values within the experimental region (Fig. 10c).
As mentioned, fed-batch operation was designed to

favor the biomass preferential production during growth
phase and then use the SA production preferential
zone during no-growth conditions. The hypothesis was
that this would help to stabilize the flux distributions
described on the modeled surfaces and therefore main-
tain yields with higher process productivity as more cells
would be present. Upon ending the feed, a stationary or
non-growth phase would in theory be expected to show
similar physiological and flux distribution behavior as
described by the stationary modeled response surfaces
and in this way enhance SA production with control-
ling AC production at high yields and process substrate
conversion. This was achieved by designing a pseudo-
exponential feeding profile with concentrated solutions
of GLC and YE that considered substrate addition from
the beginning of the fermentation to maintain the initial

a b

dc

Fig. 10 a GalP flux surface [mM/h], b Biomass flux surface [mM/h], c DAHPs flux surface [mM/h], d Fed-batch reactor fermentation maintaining
initial operation concentration parameters. 80 g/L GLC and 40 g/L YE
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concentration conditions as long as possible. It is impor-
tant to notice that all models consider YE as a unique
metabolite so balancing flux for this complex substrate
was just an approximation.
Figure 10d shows the fermentation profiles for the

fed-batch optimized SA production process. Feed was
performed from hour 3 (since calculated feed was previ-
ously too small for peristaltic operation) to hour 18 and
controlled every 15 min manually, to match calculated
growth and consumption parameters. GLC concentra-
tion was maintained near ≈75–80 g/L during the first
8–10 h of fermentation where an increase of GLC was
observed up to 100 g/L concentration at hour 12. Dur-
ing this process, we also found a lower growth rate that
could be responsible for the GLC accumulation, which
was attributed to the manual control of the feed rate (that
would lead to a significant overestimation of the feed
over the time) and to the simultaneous feeding of simi-
lar amounts of YE and GLC (since individual component
consumption cannot be calculated as it is taken as a sim-
plified metabolite on models). Therefore, imbalances on
feed may cause the exhaustion of crucial metabolic inter-
mediates. Then the overestimated feed fluxes during the
observed stall may cause an extracellular re-accumulation
of these limiting components resulting in the second
growth phase seen after 16 h and up to the 20th h of
culture with a lower growth rate. Even though, it is still
not clear the reason for this particular stall and further
improvements on fed-batch operations could further give
us insight on the strain behavior and enhance SA produc-
tion. The first growth rate registered 0.90 h−1, which is
in range of the ones predicted by models (0.8–0.85 h−1),
while the second growth rate is only about 0.18 h−1, sug-
gesting limitation by an unknown substrate. Regarding
the SA production rate, it also responded to this 8–16 h
stall. Despite this, high GLC consumption rates on sta-
tionary phase were maintained and GLC was completely
exhausted after only 24 h. A total of 180.5 g of GLC were
consumed and 59.1 g/L of SA were produced. Although
this titer is the highest obtained with this strain, it is 30%
below the maximum titer reported on E. coli by Chandran
et al. [5].Moreover, the AC concentration was never found
to be above 5 g/L, proving that process design was suc-
cessful to limit the AC production even on this atypically
high substrate conditions and compared to the batch cul-
ture where >15 g/L AC were accumulated. Furthermore,
the process presented a global volumetric production rate
of 2.45 g SA/L*h representing a 70% increase from the
1.43 gSA/L*h reported by Rodriguez et al. (2013)[2] and
which is 20% higher than the previously reported indus-
trial E. coli strains (2.04 gSA/L*h Chandran et al.[5]). Cru-
cially, yields calculated by linear regression approximation
were 0.40 for Yp/s and 0.744 for Yp/x, which means that
both yields were maintained along fermentation relative

to batch conditions and suggest that carbon distribu-
tion along metabolic nodes relevant for SA production
were maintained within reason. These yields are also in
accordance with previous works with strains lacking the
PTS and are still among the highest reported on E. coli
[2, 14, 33, 36, 38, 41, 42].

Discussion
Response surfaces showed the capacity to characterize
correctly the physiological behavior of the AR36 strain.
The observed increase on Xmax mainly by [YE] and low
increment by [GLC] is related to the fact that it is the
only source of aromatic amino acids (Fig. 2a). This indi-
cates that in all the experimental design area, YE can be
taken as the limiting substrate for biomass production.
This can also be observed on the fermentation profiles
shown in Fig. 1, where the stationary phase of fermenta-
tions initiates always before limiting GLC concentrations.
SA production is expected to follow the GLC consump-
tion as it is the main source of carbon redirection to PEP
and E4P, and this trend could be observed on Fig. 2b and
c. However the maximum for SA production is found
before maximizing consumption. This small difference
can be explained by the Final AC ([AC]f ), which tends
to increase at higher initial concentrations of GLC along
with a maximization tendency at concomitant smaller ini-
tial concentrations of YE (Fig. 2d). High [AC] can hinder
the H+ balance across themembrane and considering that
AR36 uses the galP coded galactose-proton symporter
for GLC transport, consumption could be compromised
[2]. Also, higher [AC] makes ATP production costlier,
and in consequence, also the ATP-dependent phospho-
rylation of GLC by glucokinase towards the glycolytic
metabolism [2]. Also, AC production is commonly related
to metabolic overflow and considering that AR36 strain
lacks the pykF gene, higher [GLC] and increasing intra-
cellular [PEP] and [PYR] could be causing the observed
higher AC production and lower GLC consumption
[36, 38, 40, 42–44]. Therefore, the lower values for GLC
consumption and SA production can be explained by the
high AC concentrations produced by the strain within this
experimental design region (high initial GLC, low initial
YE). It is therefore possible to allocate a virtual SA vs AC
critical line near 100 g/L GLC concentration, where below
this line SA production may be favored and above this line
AC production becomes relevant. It is important to notice
that the very high GLC concentrations used in all experi-
ments would typically result in higher AC production and
slow growth in E. coli [45, 46]. Nevertheless, it is known
that the AR36 strain can grow and maintain SA produc-
tion at high GLC concentrations, with relatively low AC
production, as a result of the high constitutive expression
of SA biosynthetic genes and the lack of carbon repression
present in strains lacking PTS [44].
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Regarding specific rates a diminution of the GLC con-
sumption rate under increasing [YE] was also found.
This could be related to YE components competing
for transport energy or amino acid allocation for their
transporters. This may be possible since as mentioned,
AR36 does not present catabolic repression (as a con-
sequence of crrHI operon deletion) and is capable to
transport simultaneously various carbon sources in the
presence of GLC after synthesis induction of alter-
native transporters by cell carbon scavenging signals
[36, 40, 42, 44]. More over, at higher [YE], PYR con-
sumption reactions could be kinetically saturated since
greater alanine (ALA) YE derived concentrations could
enter the CCM to PYR saturating this metabolite pool and
reducing GLC consumption. In contrast, at the station-
ary phase qstaglc presented higher values on higher initial
concentration of both substrate sources. This behavior
is expected for GLC, as higher concentrations of this
substrate remain on the stationary phase and could be
triggering higher consumption rates. However, it remains
unclear why higher concentrations of initial YE could
cause greater GLC stationary consumption rates. One
possibility is that, higher initial [YE] could result in
more oxaloacetate present on this phase increasing TCA
activity and GLC consumption. This observation corre-
lates with the behavior found for �[GLC] where only
at high [YE], high [GLC] initial concentrations can be
exhausted.
Regarding SA and AC production profiles it seems

clear that as they are the main metabolic outputs for
this strain they present the inverse maximization zones
on experimental design area on both fermentation stages
(Fig. 2f, h, i and j). This can be explained by the poten-
tial competition for carbon flux. These characteristics
along with the biomass and the GLC related surfaces
allowed to describe different output behavioral zones as
described on the results section. However it is interesting
that on the surfaces, it is possible to find similar con-
sumption rates on opposing sides of the experimental
design area with greatly different physiological outputs.
Furthermore, the response surfaces morphologies have
far from linear contours along the different physiolog-
ical characteristics found on them. This could suggest
the existence of metabolic state multiplicity similar to
pseudo-stationary ones described by Namjoshi et al. on
continuous bioreactors [47].The difference on response
surface behaviors should derive from the dynamic prop-
erties, which produce different outcomes depending on
the extracellular and intracellular metabolite concentra-
tions and to the non-linearity associated with metabolic
regulation [36, 42, 43, 47].
For the reasons described above and as the underly-

ing characteristics of the systems were difficult to address
only with external behavioral response surfaces, dynamic

flux models were constructed. Cybernetic modeling was
used mainly because interaction between cellular auto-
regulated and inter-regulated subsystems (DNA, RNA,
ENZYME) cannot be mechanistically described but some
systematical characteristics can be approximately mod-
eled [31, 48, 49]. Also, it is important to note that our
media contains a non fully described compound substrate
as YE, which was simplified as describe to only few
metabolites resulting from its consumption by AR36. This
simplification could not only impacts the growth phase,
but also means that consumption of other YE compo-
nents are not fully considered and may modify yields
and rates. However, it is also noticeable that this sim-
plification resulted enough to reasonably describe some
behavioral characteristics on the fluxes found for AR36,
which in consequence described the physiological outputs
with reasonable accuracy. The latter observed responses
are the results of a matrix made out from the network
of the central carbon metabolism to which mathematical
reduction and yield analysis from the previously deter-
mined parameters resulted on 6 elementary modes (EMs)
modes for the exponential phase and 3 EMs for the sta-
tionary phase, and their combination across time renders
the output described. This means that model is in essence
the same for all 9 experiments and the approximation
was performed on to the parameters that regulate their
combination across time. Results suggest that with this
EMs an estimated description of metabolic behavior can
be made for the various initial conditions explored. The
usage of the experimental design and surface rendering
for the relative fluxes helps depict the metabolic behavior
of the strain even with the errors described previously on
individual points. Flux surfaces where then correlated to
the physiological characterization as well as for behaviors
known for this strain on the literature as discussed below.
An unusual flux distribution redirecting most of the

GLC derived carbon through PPP was found. This may
be possible on strain AR36 as it has the zwf gene over-
expressed by a strong promoter on a high copy number
plasmid [2]. Furthermore, FBA models by Chen et al.
(2011)[32] have established that G6Pdh is rate limiting
for PPP flux. Therefore, the high expression of zwf on
AR36 strain could in fact be causing this low Pgi flux
distribution. Despite this, a high total glycolytic flux is
still found as described by Rodriguez et al. 2017 [44] as
it was found that the operon-containing plasmid aug-
mented the GLC consumption rate. The latter is in
agreement to the high relative flux values of 75 to 88%
towards PEP and PYR. On the modeled results this was
possible since the high PPP flux was mainly redirected
trough EDP to G3P and PYR. In this regard, it has been
reported that on pykF mutants (such as AR36), fluxes
through PPP are increased up to 79% by pgi, pfkA and
tpiA down-regulation and zwf, gnd and edd concomitant
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up-regulations [50, 51]. For AR36, a low intracellular level
of fructose-1,6-bisphosphate (FDP) was previously found
by comparative metabolomics and explained as a con-
sequence of TktA activity [42, 44]. But with the results
here obtained it can be suggested that it could also be
influenced by a high flux deviation into the PPP by
G6Pdh . Although pgi mutants have been reported to
have lower growth rates caused by NADPH accumulation
redox imbalance, it also has been found that overexpres-
sion of NADPH-consuming pathways can recover the
growth rate [51]. Therefore, in AR36 the high produc-
tion of SA, requiring NADPH by aroE coded shikimate
dehydrogenase, could be alleviating the NADPH imbal-
ance and promoting higher growth rates in the presence of
high PPP flux distributions. In this sense, the production
of SA in this strain could act as an important driver of its
own synthesis when the zwf gene is overexpressed along-
side the SA biosynthetic genes during growth phase. In
contrast, on the stationary phase although a high PPP flux
distribution was also found, low EDP flux was also found
while high glycolytic PEP producing reactions were main-
tained. However this could also be possible since higher
fluxes through Tal were found and that could cause higher
FDP concentrations compared to the growth phase, sig-
naling the up-regulation of the downstream glycolytic
genes [43].
These results imply that E4P is the limiting substrate

for SA production even with zwf overexpression and a
high flux redirection towards the PPP, as previously sug-
gested [42–44]. The modeled flux ratio analysis suggest
that sole overexpression of zwf is not sufficient for alle-
viating E4P limitation. Therefore, edd and/or eda genes
could be attractive deletion targets to avoid undesired
partitioning of PPP fluxes, along with exerting better con-
trol under zwf and gnd overexpression to obtain higher
but controlled flux distributions towards E4P and SA.
Following on, PpsA presented a near-zero flux within
all experiments. Considering the PEP overabundance to
E4P, it can be deduced that even when ppsA has been
previously used as a target to enhance SA production
[14, 36, 38, 52, 53], the overexpression of this gene in
AR36 may not further increase SA production. Further-
more, it is possible that overexpression of ppsA on this
genetic background could hinder growth and GLC con-
sumption by reducing carbon flux towards TCA and other
PEP derived pathways.
Also, an unusually high PoxB flux was found in this

strain as consequence of the increased influx towards
PYR. This is supported by the previous findings in other
related PTS-deficient strains lacking carbon catabolism
repression, where PoxB has been proposed to be the
main AC producing enzyme [33, 36, 38]. Furthermore, an
arcA/arcB mutation has been found for this strain lin-
eage that could be making PoxB available for expression

on earlier fermentation phases [33, 34, 36, 38, 40]. Other
studies have also proposed PoxB as the main AC synthe-
sizing enzyme under higher growth rates on accelerostats
on other E. coli strains [54].
Regarding the AckA vs Acs AC consumption flux dis-

tribution, a high up-regulation of acs and poxB genes has
been observed to occur as a response to PTS inactivation
on this strain, suggesting that carbon cycling on AC
occurs through Acs [36, 38, 40]. Therefore, it is probable
that the model depicted the incorrect or inverse distri-
bution around these reactions during growth. Moreover,
the AR36 lineage strains does not show the expected
PTS mutant low cAMP concentrations, probably due
to AC cycling through Acs restoring cAMP along with
adelynate cylase, which in turn has been also found to
be up-regulated on these PTS− strains during growth
[36–38, 40]. It is interesting to find that the EMs used for
stationary phase rendered Acs as the principal reaction
responsible for redirecting AC to ACCOA (Fig. 9c and d),
probably due to less ATP demand on this phase. Further-
more, the combination of the export and import AC sur-
faces strongly correlates with the qexpb approximated AC
production rate on the physiological analysis presented
before (Fig. 2i), where high extracellular AC production
is found towards high initial [GLC] and towards high ini-
tial [YE]. Since both fluxes are present, it can be proposed
that an AC production/consumption futile cycle could
potentially be relieving part of the metabolic overflow on
the CCM [33, 36, 37], as has previously been reported to
help adjusting imbalances between glycolysis and the TCA
activities [43].
TCA activity on its part, showed the unexpected IcdA

reverse reaction. This could be attributed to the YE
derived GLU entering the TCA through α-ketoglutarate
(AKG) by Gdh, but since this compound is used also for
biomass precursor formation, only if it is consumed on
excess it will enter the CCM. This effect could also be
increased by other YE derived amino acids entering CCM.
On that regard, reports on complex media have shown
a tendency to favor extracellular amino acid consump-
tion and catabolism through AKG with the concomitant
up-regulation of biomass producing pathways [55]. Also,
the high GSP and malic enzyme activities suggest that
this strain counteracts metabolic saturation by trying to
relieve the PYR saturation by assimilating more ACCOA
through lower CCM pathways. This may be the result of
a selective pressure to the high osmotic pressure on this
media to recover high substrate consumption rates and
consume the highly concentrated substrates faster. In fact,
high osmotic stress conditions have been found to incre-
ment the GSP activity and to reduce the icdA/aceA coded
enzymes ratio, favoring the production of biomass build-
ing blocks [56]. Therefore, the high anaplerotic reactions
(APR) fluxes along with GSP found also may contribute
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to maintain high biomass and SA production since this
could help to minimize toxic AC production by ACCOA
fast consumption ,along with a response to osmotic pres-
sure [43, 56]. This behavior may be expected as with the
higher [GLC] more stress upregulating GSP could be used
to relieve carbon flux from the PYR and ACCOA nodes
[33, 36–38, 40, 43]. Furthermore, the excess carbon arriv-
ing to MAL then seems to be redirected to PYR and
PEP by the previously detailed MaeB, MaeA and PckA
reactions. MaeB presents greater fluxes possibly due to
consuming the excess NADPH produced by the high PPP
flux conditions [51].
Overall, the dynamic cybernetic model approach seems

to unveil behaviors that are in accordance to the physi-
ological observations and to the knowledge available for
this laboratory evolved strain lacking the mayor GLC
transport and therefore catabolite repression. The behav-
ior of the calculated fluxes surfaces during the growth
phase is in agreement with the results obtained with the
physiological surface analysis. Particularly, on many of
the IE and ME surfaces, critical surface saddle points
between 110–115 g/L of initial [GLC] and between 35–
40 g/L of initial [YE] have been found. It is interesting to
notice that 9 EMs were enough to describe all the patterns
conformed by the surfaces by only modifying the param-
eters which alter their combination across time. These
changes, although cannot be used to describe regulatory
mechanisms, unveil relevant systems characteristics and
interestingly also suggest the existence of metabolic state
multiplicity derived from changing extracellular condi-
tions [47].

Conclusion
In this report we describe a modeling approach for a
PTS− laboratory evolved E. coli engineered strain for SA
overproduction [2, 33, 36, 38, 40] to study and character-
ize its physiological and metabolic responses to variant
complex substrate concentration. The constructed mod-
els were able to describe in good agreement the individual
experimental fermentations performed with this strain.
Three-dimensional response surfaces were constructed
with polynomial equations allowing to morphologically
describe the cell output behavior under the experimen-
tal conditions. It was found that the production strain
responds differently to initial substrate concentrations,
allocating resources in different ways. This was inferred
since regulation along variations from complex media
substrate conditions did not affect linearly the perfor-
mance of the strain, but showed refined nonlinear bor-
ders between predominant outcomes. For these reasons
a dynamic cybernetic model was constructed and their
flux distributions studied and compared to the physiolog-
ical models. The constructed dynamic metabolic model
was able to follow the extracellular experimental behaviors

and three-dimensional response surfaces for relative flux
distributions were used to unveil insights into the strain
metabolism.
Flux distributions helped to explain the previously

observed low intracellular level of fructose-1, 6-
bisphosphate (FDP) reports by unveiling a high PPP flux
during all fermentation processes. MaeB high relative
flux, potentially helps alleviate the NADPH redox imbal-
ance caused by NADPH-dependent SA production and
contributes to growth rate recovery [2]. Flux distributions
allocated AC production, GSP and APR with high fluxes
to contend with the metabolic stress produced by the
concentrated substrates on media helping to relieve PYR
and ACCOA overflow. PoxB was found to be the predom-
inant AC production enzymatic reaction on this strain
under high substrate conditions. An AR36�poxB strain
was constructed and cultured showing the loss of growth
phase AC peak and along with lower growth, GLC con-
sumption rates probably by greater PYR accumulation on
this derivative [33, 36–38, 44]. Model analysis also found
that edd and/or eda could be targeted for deletion, along
with a better control under zwf overexpression and gnd
expression, to obtain better flux distributions towards
E4P and SA production. Also, ppsA overexpression and
other modifications involving higher PEP accumulation
may not improve SA production until E4P limitation
is resolved on this strain. Dynamic models were found
to be in accordance to the physiological observations
and the knowledge available for AR36 a PTS− strain
lacking catabolite repression, and were useful to allocate
preferential metabolism output zones within the exper-
imental design area that correlated in good agreement
with the zones observed during the physiological model
characterization.
Finally, to assess the utility for SA production enhance-

ment with all the previously described models, a fed-
batch fermentation regime was designed. An unusual
operation was employed to maintain initial media con-
ditions which would in theory help maintain metabolic
an physiological conditions. The fed-batch fermentation
resulted in a 40% titer and 70% volumetric produc-
tivity increases while preserving product and biomass
yields. Process presented yield values among the high-
est yields reported and presented the highest productivity
reported on E. coli AR36. Although reports concerning
other strains have shown higher titers [57], this report
was centered on the mathematical approach to further
extend E. coli production capabilities. On that matter, the
model implemented in this report is the first approxima-
tion to render flux distributions for this E. coli PTS− strain
under high-substrate production conditions and one of
the first approaches towards modeling E. coli metabolism
in complex media containing high concentrations of
GLC and YE.
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Methods
Strain, cultivation and analytical procedures
E. coli AR36 strain constructed by Rodríguez et al. (2013)
[2] was used for all experiments and calculations. AR36 is
an E. coli PB12 laboratory evolved derivative lacking the
phosphoenolpryruvate:carbohydrate phosphotransferase
system (PTS) [33, 36, 38, 40]. AR36 carries additional
inactivations in aroK, aroL, pykF and lacI genes, and
contains a high copy number plasmid with the strong trc
promoter controlling transcription of a six-gene operon
composed of genes: aroB, tktA, aroG, aroE, aroD and zwf
[2]. This strain is an aromatic amino acid auxotroph and
therefore it must be cultured on supplemented media.
Yeast extract (YE) (BD Bacto) and GLC (Fermentas) were
used as nitrogen and carbon sources [2]. All cultures
were performed on 0.5 L working volume bioreactors
with AD 1010 controllers (Applikon). Bioreactors were
operated as batch processes at 37◦C and 1 vvm aera-
tion. Dissolved oxygen tension (DOT) was maintained
above 20% by an agitation cascade control between 500
and 1200 rpm. pH was maintained at 7 by means of
NH4OH and H3PO4 addition. Other media compounds,
salts, buffer and antibiotics were used as previously
described [2].
Physiological behavior characterization was performed

with a central composite design experimental matrix with
3 levels for each substrate source. Experimental con-
dition levels were: 75, 100 and 125 g/L for GLC and
15, 30 and 45 g/L for YE. Nine experiments were con-
ducted with the central point 100 g/L GLC and 30 g/L
YE, tested by triplicate to approximate the experimental
design standard deviation. Fermentations were sampled
every 2 h during the first 12 h, and every 4 to 6 h after
this point. Each sample was used to determine biomass,
GLC, SA and AC. Biomass was determined by optical
density measurements at 600 nm with a DU700 Beck-
man spectrophotometer. GLC, SA and AC were deter-
mined by HPLC with a Waters equipment(600E qua-
ternary pump, 717 automatic injector, 2410 refraction
index an 966 photodiode array detectors) and an aminex
HPX-87H column (300 x 7.8 mm; 9 μm), using 5 mM
H2SO4 as mobile phase at 50◦C; either UV or refractive
index detectors were used for qualitative and quantitative
determination. All measured parameters were volumetri-
cally corrected for the acid or base added by pH control
pumps.

Calculation of fermentation parameters
For fermentation data parametrization and analysis, a
set of modeling approaches was constructed. The max-
imum growth rate μmax and maximum biomass Xmax
were obtained by adjusting a logistic growth model to
experimental data. Since the fermentation processes use
complex media, calculation of yields and production/

consumption rates by classical calculations were diffi-
cult to address. Therefore, to provide a more accurate
parametrization, GLC consumption and SA produc-
tion integrated models were constructed. The integrated
model equations used were:

X(t) = X0eμmaxt

1 −
(

X0
Xmax

(
1 − eμmaxt

)) (1)
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)(

1 − X(t)
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)]

−
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)(
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(2)
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)
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(3)

where S refers to substrate, in this case GLC, and P refers
to product, SA on this experimental design. X(t) is the
biomass calculated at time t by the logistic growth model
and Xmax is the maximum biomass parameter. qexpglc , and
qexpsa are the specific exponential rates for GLC consump-
tion and SA production, respectively. qstaglc , and qstasa are
the specific stationary rates for GLC consumption and
SA production, respectively. The participation of each
exponential or stationary rates across time is regulated
by the terminus describing the biomass and maximum
biomass ratio correlated to the biomass logistic model.
The production and consumption rate parameters were
approximated by the sum of the square error (SSE) min-
imization against experimental data using MATLAB pro-
gramming. Product/substrate and product/biomass yields
were estimated from the obtained specific rates.
Models constructed were tested for their experimental

data approximation by an error estimation calculated by
the relation between the sum of the square error (SSE) and
the sum of the square of the experimental points (SSEP).
Model approximation was then mathematically described
by the linear regression between experimental points and
model points. A percentile deviation from the expected
slope (1 for experimental and model equality) descrip-
tive indicator constructed from regression (SDP) as well
as Pearson regression coefficient (describing dispersion)
and the regression significance proved by p-value statis-
tics were used to qualify the acceptance of models as
descriptors for the experimentally observed behavior.
AC presented a dynamic behavior (simultaneous pro-

duction and consumption) in all fermentations that could
not be described by any of the previously described
equations. Nevertheless, initial exponential

(
qexpb

)
and ini-

tial stationary
(
qstab

)
approximated production rates were

calculated with the following equations:
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qexpb = μmax × Yexp
ac/x (4)

qstab = Qsta
b /Xmax (5)

where yield was calculated by linear regression for AC
vs biomass and volumetric rate was calculated by linear
regression for AC vs time on the first experimental data
points for each phase.
Parameters describing the physiological behavior were

then used to construct individual three-dimensional sur-
faces. A second-order bivariate polynomial equation was
used for surface construction and its approximation
was addressed and qualified by regression coefficients,
p-values and square sums of error and percentile error.
Surfaces were validated by prediction of parameters for
three fermentations not contained on the set of the exper-
imental design (75:20, 80:40 and 115:45 GLC:YE initial
conditions). Surface calculated parameters were intro-
duced to the logistic biomass, consumption and produc-
tion models and compared to the experimental data sets.
Surface calculated parameters were also compared to the
ones calculated directly from experimental data by error
percentage, estimated by the ratio between standard devi-
ation between each calculation and experimental param-
eter. A two-tailed t-student test using the experimental
design standard deviation, calculated from central point,
was used to determine if the experimental parameters and
surface predicted parameters were significantly different.

Dynamic metabolic flux model construction
Metabolic flux distribution was constructed with the use
of a dynamic cybernetic model approach developed by
Ramkrishna et al. [31, 48, 49], which has proved to be
useful to address dynamic changes on fluxes when infor-
mation on mechanistic details of regulatory processes
is scarce or suboptimal [58]. The cybernetic modeling
introduces regulation by the use of two vectors u ≡
[u1,u2,u3, ...,um] and v ≡[ v1, v2, v3, ..., vm] referring to
them as cybernetic variables, associated with fractional
allocations of resources for enzyme synthesis and activ-
ity, respectively [31, 48, 49]. These variables are calculated
along the fermentation and modify the participation of
each elementary mode obtained from the stoichiomet-
ric matrix analysis. These elementary modes (EMs) are
sets of non-decomposable pathways consisting of minimal
sets of reactions that describe all the cellular metabolic
routes. A subset of EMs must then be extracted to
describe metabolic behavior on a parametrically achiev-
able scale. Therefore, elementary mode analysis (EMA)
must be performed to find the minimal set of EMs that
can describe the behavior expected from the specific
constraints imposed by either the strain or experimen-
tal conditions. Cybernetic models then calculate flux rates
for each EMs described as sets of Michaelis-Menten type
equations where a relative enzyme concentration and

biomass conform the maximum rate, modified at each
time by the cybernetic variable v. The relative enzyme
concentration is calculated by another Michaelis-Menten
type equation that considers a maximum enzymatic pro-
duction rate and a disappearance rate, regulated by the
cybernetic variable u. The cybernetic variables are regu-
lated by an objective function, evaluating the outputs at
any given time t between all EMs, increasing priority on
the next time step t + �t to the better performing EM by
a matching law strategy. In this way, the cybernetic mod-
els can take into account dynamic regulation with respect
to a specific cell metabolic objective, such as growth rate
maximization or carbon uptake maximization, even with
little information on the mechanistic particularities to its
function, allowing for dynamic flux distribution modeling
[31, 48, 49].
In this work, a CCM network was constructed from 60

reactions, 44 internal metabolites and 6 external metabo-
lites, accounting for the Embden-Meyerhoff-Parnas path-
way (EMP), the Pentose Phosphate pathway (PPP),
Tricarboxylic Acid Cycle (TCA), Pyruvate Metabolism,
Anaplerotic Reactions, respiration and energetic reac-
tions, YE components uptake reactions, SA biosynthe-
sis reactions and biomass generation reactions. External
metabolites defined were AC, GLC, SA, YE, biomass,
and maintenance. YE consumption was introduced to the
network reaction as a metabolite and its consumption
derived into biomass precursor (BIOMp), aromatic amino
acids (taken as a unique metabolite), alanine (ALA), and
glutamic acid (GLU). The stoichiometric values for YE
conversion to these metabolites were estimated from
the average composition described by the manufacturer,
where BIOMp was taken as the rest of amino acids
that account to produce proteins contained on biomass.
EMs computation was made with efmtool protocol [59]
embedded on MATLAB [60]. For EMA two EMs families
were constructed, the first family contained the expo-
nentially preferred EMs by only selecting the ones that
contained simultaneous GLC and YE consumption and
constrained to produce SA. The second family of EMs
was selected from the ones containing GLC consump-
tion and simultaneous production of SA and constrained
to not consume YE, which will be preferred on the sta-
tionary phase of fermentations. Yield analysis reduction
by convex hull volume was performed as described as
by Song et. al. [60] to find the minimal subset of EMs.
Experimental design central point yields were used for
this analysis. Yield analysis around the Phosphoglucose
isomerase (Pgi)/ Glucose 6-phosphate-1-dehydrogenase
(G6Pdh) node was studied with values stated as: non-
constrained, 0.25, 0.5, 0.75 and 0.90 Pgi/GalP yield or flux
normalized to GLC uptake. This generated 5 flux distri-
butions sets. All model sets were evaluated by Pearson lin-
ear regression coefficients between experimental points
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and model points, slope deviation and their significance
was proved by p-value statistics and error. The set with
better behavior to experimental data was used for fur-
ther analysis. Reduced EMs reaction rates were described
by sets of Michaelis-Menten equations modified to cou-
ple families to each fermentation phase (exponential or
stationary) by a terminus similar to the physiological con-
sumption/production models described before, and with
an added terminus to represent AC inhibition. Model rate
equations were constructed as follow:

rMi =
(
kMmax,i[GLC](t)
KM
m,i+[GLC](t)

) (
1 + [AC](t)

Kac
I

)−1 (
1 − X(t)

Xmax

)

(6)

rGi =
(
kGmax,i[GLC](t)
KG
m,i+[GLC](t)

) (
1 + [AC](t)

Kac
I

)−1 (
X(t)
Xmax

)

(7)

where indexes M and G refer to the exponential (mixed
consumption) family and stationary (glucose only con-
sumption) family, respectively. Index i refers to each ith
EM of each family, Kmax and Km are the Michaelis-
Menten parameters, Kac

I is the inhibition coefficient and
Xmax refers to the maximum biomass calculated from
the previously calculated logistic growth model for each
experimental point. [GLC](t), [AC](t), X(t) refer to the
GLC, AC and biomass concentrations at each time t in
mmol/L for the first two and g/L for the biomass. Ini-
tial relative enzyme concentration ratio was set to 0.95 for
the first EM, 0.5 for the EMs remaining of the exponen-
tial family, and 0.1 for the EMs of the stationary family.
These values were set in this way as the first EM was the
one that comprised AC production and was inferred to
be the initially preferred one, due to the observed rapid
increase in extracellular AC acid at the initial phases for
all fermentations. In addition, EMs of the second fam-
ily were chosen to be smaller as they are expected to be
more relevant at later stages of fermentation. All other
cybernetic model parameters for enzyme production and
decay rates were set as described by Ramkrishna et al.
[31, 48, 58, 60]. Flux rate equation parameters Kmax and
Km were approximated with a genetic algorithm (Addi-
tional file 2). Briefly, the Matlab algorithm started with
assigning Kmax and Km initial values of 1 and 10, respec-
tively for every EM. Then, by perturbation of one param-
eter at a time by a random numeric factor, 18 parame-
ter sets were obtained. Subsequently, the sets were used
for 200 step SSE driven nonlinear numeric minimization
algorithms to generate new daughterKmax andKm param-
eter model sets. From these daughter models, the set with
the lowest SSE was extracted and crossed with the sec-
ond lowest SSE set by acquiring the value of its perturbed
parameter (Kmax or Km). This inter-crossed set passed

onto the next generation where another round of individ-
ual parameter perturbations wasmade. The algorithmwas
cycled until SSE was found constant (less than 20 cycles
in all cases). Finally, these parameters were subjected to
a final SSE nonlinear numeric minimization to model the
flux rates of each EM and the final metabolic dynamic flux
model for each fermentation.
Flux distributions were used to construct three-

dimensional behavioral surfaces with the second order
two variable polynomial equation at three fermentation
times: initial exponential (IEx), mid exponential (MEx)
and mid stationary (MSt). Calculation of MEx time was
made by obtaining the maximum point of the second
derivative vs. time for each biomass model, IEx was set as
the mid time between t = 0 and MEx time, and MSt as
the middle point between the end of the fermentation and
the initial time of stationary phase. Constructed surfaces
were statistically qualified and used to analyze and study
the behavior of strain metabolism and SA production.

Bioprocess design for SA productivity enhancement on
strain AR36
To assess the utility of the metabolic models developed,
a fermentation process was designed with the informa-
tion acquired by physiological models and flux distribu-
tion surfaces to optimize SA productivity. Process was
designed to maintain constant the initial GLC:YE con-
ditions. This would in theory, maintain constant the
cybernetic variables (which are a representation of the
regulation parameters) and therefore the internal flux dis-
tributions accordingly. Initial conditions around 80:40 g/L
GLC:YE were used. A pseudo-exponential flux was oper-
ated and regulated by a peristaltic pump manually set
every 15 min to calculated exponential feeding needs,
with measured GLC and calculated growth and consump-
tion rates. Feed consisted on two simultaneously added
solutions, one containing mineral media with GLC 400
g/L and the second containing phosphate buffer solution
with YE at 400 g/L. After 12 h, the feed was stopped
and the fermentation was allowed to enter stationary
phase to consume the remaining GLC. Oxygen was added
when needed tomaintain dissolved oxygen tension (DOT)
over 20% along with an agitation cascade. Other media
compounds, salts, buffer and antibiotics were used as
described by Rodriguez et. al. [2] and added through the
feeding solutions to avoid dilution.
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