
Pokhilko BMC Systems Biology  (2017) 11:106 
DOI 10.1186/s12918-017-0490-5
RESEARCH ARTICLE Open Access
Monitoring of nutrient limitation in
growing E. coli: a mathematical model of a
ppGpp-based biosensor
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Abstract

Background: E. coli can be used as bacterial cell factories for production of biofuels and other useful compounds.
The efficient production of the desired products requires careful monitoring of growth conditions and the
optimization of metabolic fluxes. To avoid nutrient depletion and maximize product yields we suggest using a
natural mechanism for sensing nutrient limitation, related to biosynthesis of an intracellular messenger - guanosine
tetraphosphate (ppGpp).

Results: We propose a design for a biosensor, which monitors changes in the intracellular concentration of ppGpp
by coupling it to a fluorescent output. We used mathematical modelling to analyse the intracellular dynamics of
ppGpp, its fluorescent reporter, and cell growth in normal and fatty acid-producing E. coli lines. The model
integrates existing mechanisms of ppGpp regulation and predicts the biosensor response to changes in nutrient
state. In particular, the model predicts that excessive stimulation of fatty acid production depletes fatty acid
intermediates, downregulates growth and increases the levels of ppGpp-related fluorescence.

Conclusions: Our analysis demonstrates that the ppGpp sensor can be used for early detection of nutrient
limitation during cell growth and for testing productivity of engineered lines.

Keywords: Mathematical modelling, E. coli, ppGpp, Biosensor
Background
The efficient production of biofuels, recombinant pro-
teins and other useful compounds in E. coli cells re-
quires the optimization of metabolic fluxes and growth
conditions [1–3]. The uncontrolled consumption of es-
sential nutrients might cause early cessation of growth
and reduction of product yields [1, 2]. Interestingly, cells
possess a natural mechanism of sensing of nutrient limi-
tation related to the production of the second messenger
guanosine tetraphosphate, ppGpp (an “alarmone”). This
signalling pathway might be useful for the control of
biotechnological processes. ppGpp is an early sensor of
nutrient limitation, which directly controls bacterial
growth by binding to RNA polymerase bound to riboso-
mal RNA (rRNA) gene promoters P1 and P2 [4–10].
Binding of ppGpp decreases the life time of short lived
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and P2 promoters. By inhibiting RNA polymerase activ-
ity ppGpp adjusts rRNA biosynthesis to available nutri-
ent levels [4–6, 11, 12]. Regulation of the P1 and P2
promoters by ppGpp is fast (minutes) and covers a wide
dynamic range of P1, P2 activities [6, 11]. This suggests
the possibility of transmitting changes in ppGpp concen-
trations into a P1, P2-coupled fluorescent output, which
would allow continuous monitoring of transcriptional
activity of ppGpp inside the cells. This approach is dif-
ferent from previously developed chemosensors, which
were used for end time-point measurements of ppGpp
concentration in bacterial lysates [13–15]. The practical
application of these chemosensors was limited due to
small spectral shift in their fluorescence upon ppGpp
binding and the requirement to synthesise these compli-
cated organic compounds [13, 16, 17]. Using the natural
mechanism of ppGpp sensing via modulation of P1, P2
activity should overcome the limitations of these previ-
ously designed ppGpp chemosensors. Here we use
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mathematical modelling to analyse the intracellular kin-
etics of ppGpp and to design a ppGpp-based biosensor
that reports ppGpp concentration and thus serves to in-
dicate poor intracellular nutritional status. Next we ex-
plore the capacity of the biosensor to respond to
dynamic changes in intracellular nutrient state during
batch growth of fatty acid-producing and non-producing
E. coli cells.
Fatty acids (FAs) are potential biofuels, which can be

synthesised by engineered E. coli lines overexpressing a
thioesterase (Tes) enzyme. Tes hydrolyses the thioester
bond in Acyl-ACP molecule [2, 18, 19]. Acyl-ACP
(long-chain FA linked to activated acyl carrier protein,
Fig. 1 The scheme for ppGpp signalling, FA production and ppGpp sensor in
between ppGpp and growth. ppGpp accumulates at the end of exp. growth
depletion of exp. phase-limiting nutrient lim (e.g., main carbohydrate). Increas
which slows down the growth [12]. The termination of growth in stationary (
supporting nutrient nutr (e.g., secondary carbohydrate) (double asterisk). The d
the model through downregulation of ribosome-mediated synthesis of ppGp
and fatty acids. In normal cells Acyl-ACP product of the fatty acid synthesis (F
cells Acyl-ACP is diverted for the synthesis of FA by thioesterase (Tes) enzyme
which stimulates accumulation of ppGpp [10]. In addition to inhibiting growt
[26]), causing transient accumulation of Acyl-ACP, which downregulates FAS f
26]. FAS and PLS fluxes are also inhibited in stat phase due to decrease in pro
decrease [27]. The ppGpp-mediated regulations are shown in blue. The botto
the expression of transcriptional inhibitor I from the P1/P2 promoter and repr
hereafter simply called ACP) is the primary product of
fatty acid synthesis (FAS) [10, 20, 21], which is naturally
used by cells for phospholipid (PL) production (Fig. 1).
Additionally to FA synthesis, Acyl-ACP can be diverted
for the production of other types of biofuels, such as
long chain alkyl esters and alkanes in engineered lines
[22]. Alkanes represent the most desirable biofuel, with
the highest energy density; however, attempts to engin-
eer alkane-producing organisms have been hampered by
low yields and high contamination with fatty alcohols
[23, 24]. It was proposed that it might be more practical
to use chemical production of alkanes from FA, because
of the much higher yields of FA in cells, and economy of
cluded in the model. The left colour box illustrates the relationships
phase [6, 8], marked by asterisk. This is described in the model through a
e of ppGpp inhibits the rRNA biosynthesis from P1/P2 promoter [6, 25],
stat) phase was described in the model by the depletion of growth-
ecrease of ppGpp concentrations in stat phase [6, 8] was described in
p [5]. The right colour box illustrates the relationship between ppGpp
AS) is consumed for membrane PL synthesis (PLS). But in FA-producing
(orange) [22]. Excessive production of FA leads to Acyl-ACP depletion,
h, ppGpp inhibits PLS flux (through inhibition of the key enzyme PlsB,
lux through a feedback inhibition of key FAS enzymes by Acyl-ACP [20,
tein synthesis at low rib [22]. The growth is additionally inhibited by PLS
m colour box shows the proposed ppGpp-based biosensor. It includes
ession of GFP expression by I
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cellular resources which would otherwise be required for
expression of alkane-synthesising pathways [2]. There-
fore the production of FAs in Tes-overexpressing (Tes-
ox) lines of E. coli represents an important technological
step in the biosynthesis of alkanes [23]. However, lines
with high Tes levels have decreased FA yields and
growth, which might be related to depletion of the Acyl-
ACP pool required for membrane biosynthesis [2]. It
was suggested that the consumption of Acyl-ACP for
the production of Acyl-ACP-derived products should be
carefully monitored in order to achieve high yields [19,
22]. A natural mechanism of sensing Acyl-ACP deple-
tion is mediated by the accumulation of ppGpp due to
decreased activity of the ppGpp hydrolase SpoT [5, 10].
This suggests that a ppGpp biosensor might be used for
diagnostics of the productivity of FA-producing lines.
Nutrient depletion increases ppGpp levels through

various mechanisms [5]. Thus, amino acid starvation
upregulates ppGpp synthase RelA, while carbohydrate
and fatty acid starvation downregulates ppGpp hydrolase
SpoT [5]. Therefore, nutrient (in particular, carbohy-
drate) limitation at the end of fast exponential growth
phase (hereafter called exp) leads to an increase of
ppGpp concentration [6, 8]. This in turn slows down the
growth. For example, SpoT mutants with high ppGpp
levels have reduced P1, P2 activities and slower growth
[12]. Additionally to growth phase-specific accumulation
of ppGpp, it is expected to be elevated in high FA-
producing lines due to Acyl-ACP depletion [5, 10]. Here
we model the changes in the levels of ppGpp and
ppGpp-based fluorescence (a biosensor) in normal and
FA-producing E. coli cells. We explore the potential ef-
fects of biosensor parameters on its performance and
demonstrate that the sensor might be used for early de-
tection of nutrient limitation during E. coli growth.

Methods

1) Model construction
Here we model changes in the concentrations of

ppGpp and its fluorescent reporter GFP (the biosensor)
in E. coli cells. We consider 2 types of nutrient limita-
tion, which might increase intracellular ppGpp levels:
growth phase-specific or non-specific (Fig. 1). The first
type is related to a depletion of growth-limiting nutrient
(e.g., carbohydrates) in the growth medium at the end of
exp. growth phase. The second type is related to a deple-
tion of essential molecules inside a cell due to their ex-
cessive diversion into the production of biotechnological
products (e.g., depletion of Acyl-ACP during fatty acid
(FA) production; [2], Fig. 1). We use the model to de-
scribe and explain the existing data on ppGpp and
growth in normal and FA-producing cells ([2, 6]; Re-
sults) and to explore the applicability of a ppGpp biosen-
sor for the control of growth conditions and
optimization of FA production. The parameters of the
model were estimated based on available data as de-
scribed in Additional file 1. The analysis of parameter
sensitivity demonstrated that the model is robust to par-
ameter variation (Additional file 1: Fig. S1). The model
consists of 9 ordinary differential equations presented
below.
The processes included in the model are summarised

on Fig. 1 and described below. Briefly, we model the mu-
tual relationship between ppGpp and growth phases.
The increase of ppGpp concentration [6, 8] at the end of
exp. growth was described by the depletion of exp.
phase-limiting nutrient lim (e.g., main carbohydrate, see
Results). The decrease in the growth rate during exp. to
stat phase transition is described through ppGpp-
mediated decrease of ribosomal synthesis [6, 25]. The
termination of growth in stat phase is described by the
depletion of a second, growth-supporting nutrient nutr
(e.g., secondary carbohydrate, which is released into the
medium during exp. phase; Results).
The model also describes ppGpp accumulation due to

a depletion of Acyl-ACP product of FAS during FA pro-
duction (Fig. 1). The accumulation of ppGpp inhibits
membrane phospholipids synthesis (PLS), FAS, and
growth through several parallel mechanisms in our
model (Fig. 1). This includes inhibition of the key PLS
enzyme PlsB by ppGpp [26], causing transient accumula-
tion of Acyl-ACP and inhibition of FAS flux by Acyl-
ACP [20, 26]; downregulation of FAS and PLS fluxes
and growth by low ribosomal activity rib (relative num-
ber of active ribosomes; Fig. 1); and inhibition of growth
by decreased PLS flux in high FA-production lines [27].
In addition to ppGpp, FA and growth, the model ana-

lyses the kinetics of GFP reporter of ppGpp in FA-
producing and non-producing lines. The ppGpp reporter
is designed using the natural property of ppGpp to in-
hibit transcription from P1 and P2 promoters, respon-
sible for rRNA biosynthesis (Fig. 1; [6, 11, 25]). P1 and
P2 promoters are regulated in a similar way in E. coli
cells [6, 11], so we considered a tandem of the ribosomal
P1 and P2 promoters as a single entity (hereafter called
the P1/P2 promoter) in our model. To transmit the in-
crease of ppGpp levels to increase of a fluorescent signal,
an artificial inhibitor I (e.g., tet-repressor TetR or lac re-
pressor LacI) is expressed from the P1/P2 promoter. Ex-
pression of GFP protein is from an I-repressible
promoter (e.g., TetR- or LacI-inhibited promoter; Fig. 1).
The use of rapidly degraded variants of I and GFP pro-
teins ensures that the biosensor reports dynamic
changes in the metabolic state of the cells [28, 29], as we
discuss in Results. The levels of intracellular compounds
are determined in our model by their synthesis and deg-
radation. Their dilution due to cell division was ignored
due to its slow rate (less than 0.01 min−1, [8]).
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The model equations are presented below.

1) Acyl-ACP and FA production
The intracellular kinetics of the key intermediate of fatty

acid metabolism Acyl-ACP is described in our model as:

dAcyl‐ACP
dt

¼ VFAS−VPLS−kfa⋅VFA ð1Þ

Where VFAS and VPLS are the intracellular rates of FAS
and PLS (in μM/min); VFA is the rate of FA production
in a cell culture, normalized to cell number N (in mg/l/
min/OD); and kfa is a volume coefficient for re-
calculation of the VFA rate into intracellular units of
μM/min (Additional file 1).
The rate of FAS is described by the simplified lump

equation, which includes the Michaelis-Menten depend-
ence of FAS rate on concentration of substrates -
AcCoA and ACP protein and feedback inhibition of FAS
rate by Acyl-ACP product [26]:

VFAS ¼ Vm�FAS⋅rib⋅
ACP

ACP þ Km�ACP
⋅

AcCoA
AcCoA þ Km�AcCoA

⋅
1

1þ Acyl‐ACP=Ki�Acyl−ACP

ð10Þ
Where AcCoA and ACP are concentrations of acetyl-

CoA and free active ACP protein; Acyl-ACP is the total
concentration of long-chain acyl product of FAS.
We assumed that FAS and PLS fluxes and growth rate

are proportional to the ribosomal activity rib due to the
dependence of the protein synthesis on rib.
PLS rate is assumed to be determined by the rate of

the first committed enzyme, PlsB, with Michaelis-
Menten dependence on Acyl-ACP substrate and inhib-
ition by ppGpp [19, 26]:

VPLS ¼ Vm�PLS⋅rib⋅
Acyl‐ACP

Acyl‐ACP þ Km�Acyl−ACP

⋅
1

1þ ppGpp=Ki�ppGpp

� �n
ð100Þ

The use of the Hill function for the inhibition of PLS
by ppGpp is motivated by existing data on multiple
levels of negative regulation of PlsB and related enzymes
by ppGpp [22].
The rate of FA production is described by Michaelis-

Menten kinetics of thioesterase Tes, which hydrolyses
thioester bond in the molecule of Acyl-ACP and releases
free FA:
1''')

VFA ¼ V tes⋅

Acyl‐ACP
Acyl‐ACPþKm�tes

(

The activity of Tes (VTes) depends on Tes concentra-
tion. In simulated Tes-ox and normal lines VTes values
were estimated from the measured FA yields ([2]; see
Results).
The rate of the total FA production by a cell culture is

described as:
dFA
dt

¼ N ⋅VFA ð2Þ

where N is a cell number.

2) Cell growth
Our model describes the kinetics of cell growth (cell

number, N) [2, 6], which affects nutrient levels and FA
yields. The accumulation of ppGpp at the end of exp.
phase (Fig. 1) was described by the depletion of a limit-
ing nutrient (variable lim, eqs. 5, 6, see below). Increase
of ppGpp in turn leads to decrease of the ribosomal ac-
tivity (eqs. 7, 7′) and inhibition of growth (eq. 3, Fig. 1)
during exp. to stationary (stat) phase transition. The de-
pletion of a second, growth-supporting nutrient (variable
nutr; eq. 4) determines the cessation of growth and en-
trance to stat phase. Additionally, we assumed that a
certain minimal rate of phospholipid synthesis (V0) is re-
quired to sustain growth [27]. In addition to limited pro-
duction of total membrane PL, the membrane
composition might be unbalanced in high Tes-ox lines
due to higher proportion of unsaturated FA, which was
suggested to be a key factor of FA toxicity and growth
limitation in high Tes-ox lines [30]. In our model, the
growth limitations in high Tes-ox lines [2] were collect-
ively accounted by restricting growth rate at low rates of
PLS (VPLS) (eq. 3‘below). The cell growth is described as:

dN
dt

¼ vg⋅N ð3Þ

vg ¼ Kgr⋅nutr⋅rib⋅VPLS= VPLS þ V 0ð Þ ð30Þ

Where vg is the growth rate (in min−1) and N is a cell
number, expressed in units of OD measured at a wave-
length of 600 nm.
The kinetics of nutr and lim depletion was assumed to

be proportional to cell number N:

dnutr
dt

¼ −knutr⋅N⋅
nutr

nutr þ 0:001
ð4Þ

d lim
dt

¼ −klim⋅N⋅
lim

limþ 0:001
ð5Þ

where nutr and lim are relative amounts of the growth-
supporting and exp. phase-limiting nutrients respect-
ively, initially both set to 1. To avoid negative values of
nutr and lim, their depletion is restricted when their
concentrations reach levels of 0.001.

3) ppGpp kinetics
The kinetics of ppGpp is determined by the balance

between its synthesis and hydrolysis [5]:
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dppGpp
dt

¼ kþppGpp⋅rib−ppGpp⋅ k−ppGpp⋅ limþ k0−ppGpp
� �

⋅
Acyl‐ACP

Acyl‐ACP þ Km�Ac
pp

ð6Þ
Here ppGpp, rib and lim are the levels of ppGpp, ribo-

some activity and limiting nutrient lim, respectively. Sev-
eral molecular mechanisms are integrated during ppGpp
synthesis and degradation. ppGpp is synthesises on ribo-
somes [5, 6], therefore in our model we assumed that the
synthesis rate of ppGpp is proportional to the number of
active ribosomes rib [5, 6], with the rate constants k+ppGpp.
We next assumed that depletion of lim nutrient at the end
of the exp. phase slows down ppGpp hydrolysis (rate con-
stant k-ppGpp), presumably via the inhibition of ppGpp
hydrolase SpoT [31, 32]. This results in the increase of
ppGpp concentration at the end of exp. phase in our
model ([6, 8], Fig. 1). The background hydrolysis of ppGpp
in the absence of lim is accounted for by the rate constant
k0-ppGpp. Finally, ppGpp levels are upregulated in our
model by the depletion of Acyl-ACP, due to the inactiva-
tion of SpoT hydrolase activity [5, 10, 21, 33].

4) Ribosomal and P1/P2 promoter activities
The equation for the ribosomal activity (relative num-

ber of active ribosomes) rib is:

drib
dt

¼ kþrib⋅P1P2−k−rib⋅rib ð7Þ

where P1P2 and rib are the relative activities of the P1/
P2 promoter and the ribosomes. The rib synthesis is de-
termined by the rate of rRNA transcription from the P1/
P2 promoter [6, 11, 34]; therefore, we assume a linear
dependence of rib synthesis rate on P1/P2 activity.
Based on the existing data we assumed that during cell

growth transcription from P1/P2 promoter is regulated by
ppGpp inhibition [6, 11, 25]. P1 and P2 show similar re-
sponses to changes in nutrient levels, but the tandem of
P1 and P2 promoters (P1/P2) shows a stronger response
compared to single P1 and P2 promoters [11]. This was
accounted for in the model by using a Hill coefficient m =
2 in the equation for P1/P2. The data [6, 11] suggest that
P1/P2 activity quickly (in minutes) responds to changes in
ppGpp concentration. Therefore transcriptional activity of
P1/P2 was expressed via ppGpp by the algebraic equation:

P1P2 ¼ 1

1þ ppGpp=ki�P1P2�ppGpp

� �m ð70Þ

5) ppGpp sensor
ppGpp sensing was implemented through the inhib-

ition of GFP expression by the inhibitor I, which is
expressed from the P1/P2 promoter (Fig. 1). Since the
abundance of most proteins changes much more slowly
than the abundance of their mRNAs [28], we assumed
that the amount of I mRNA is simply proportional to
the transcriptional activity of P1/P2 promoter, so that
the kinetics of protein I is described by the following
equation:

dI
dt

¼ kI ⋅ P1P2−Ið Þ ð8Þ

where I is the relative amount of the inhibitor I (changing
from 0 to 1) and kI is a rate constant of protein I degrad-
ation. The rate constant of protein I synthesis was assumed
to be equal to kI to achieve the maximal level of I = 1.
The amount of GFP mRNA is determined by the

amount of the inhibitor I. The equation for the relative
amount of fluorescent GFP protein is:

dGFP
dt

¼ kGFP⋅
1

1þ I=KiIð Þl
−GFP

 !
ð9Þ

where GFP is the relative amount of GFP fluorescence
(changing from 0 to 1) and kGFP is the rate constant of
GFP protein degradation. The rate constant of GFP syn-
thesis was assumed to be equal to kGFP to achieve the
maximal level of GFP = 1. A Hill coefficient l = 4 ac-
counts for the formation of tetrameric inhibitor complex
(e.g., lacR) on a double-stranded DNA [35].
The constant KiI for inhibition of GFP expression by

the relative amount of the inhibitor I integrates two un-
known parameters of the system: the absolute expression
level of I and its inhibition strength. KiI was varied as
discussed in Results, with the optimal value of KiI = 0.1.
The system of ODEs was solved using MATLAB, inte-
grated with the stiff solver ode15s (The MathWorks UK,
Cambridge). The MATLAB code of the model is pro-
vided in Additional file 1.

Results and discussion
E. coli cells are commonly used as cell factories for the
production of useful products, such as FA [1, 2, 18]. But
the redirection of nutrients from essential metabolic
pathways often slows down cell growth and limits prod-
uct yields [1–3]. To control the growth conditions dur-
ing biotechnological applications of E. coli cells, we
propose to use a biosensor, which couples changes in
ppGpp concentrations with a fluorescent GFP-based
output (Fig. 1). The increase GFP levels would allow de-
tection of nutrient limitation, which could be used for
controlling and optimizing growth conditions. To simu-
late intracellular dynamics of ppGpp during batch culti-
vation of E. coli cells, we built a mathematical model,
which integrates literature data on ppGpp regulation.
The model describes the interrelationship between
ppGpp, growth and FA production, and simulates the
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kinetics of GFP reporter of ppGpp, as summarised in the
legend of Fig. 1 and discussed below. We used the model
to describe and explain the existing data on ppGpp and
growth in normal and FA-producing lines [2, 6] and ana-
lysed applicability of the sensor for monitoring of ppGpp
concentration under various conditions.

ppGpp kinetics in normal (non-FA-producing) E. coli cells
Cell growth in batch cultures is widely used in biotech-
nology, and growth can be described by three main
phases [36, 37]. The first phase, exp. growth, is charac-
terized by an exponential increase of the cell number
(Fig. 2a). During the second phase, growth is gradually
slowing down, while cells move from exp. to stat phase
(Fig. 2a). The third, stat phase is characterized by the ab-
sence of growth (Fig. 2a). The existing data suggest that
the end of exp. phase coincides with increase of ppGpp
concentration ([6, 8], Fig. 2a). Therefore, the slowing
down of growth in phase 2 appears to be a consequence
of ppGpp increase, presumably related to nutrient deple-
tion during exp. phase. However, the cell number keeps
increasing during the second phase (Fig. 2a), and both
the first and second phases are characterized by high ac-
cumulation of biotechnological products, such as FA in
engineered lines [2, 3, 18]. This suggests that despite a
depletion of an exp. phase-limiting nutrient (called lim
in our model), the medium has sufficient amount of
other nutrients to sustain growth. To describe the ob-
served kinetics of growth and ppGpp, we implemented a
two-factor depletion scheme in our model (Fig. 1). We
assumed that sequential depletion of two nutrient
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factors lim and nutr determines the growth phases. The
observed increase of ppGpp concentration at the end of
phase 1 was explained in our model by the inhibition of
ppGpp hydrolysis upon depletion of lim [31, 32] (Fig. 2a).
The lim factor might be represented by a carbohydrate
nutrient (e.g. glycerol for [2, 6] conditions) or some
other components of the medium, whose depletion
limits exp. growth. The decline of growth rate during
phase 2 is explained in our model through ppGpp-
mediated inhibition of rRNA transcription from P1/P2
promoter (Fig. 1), in agreement with the P1/P2 data
(Fig. 2a; [6]). The termination of phase 2 is described in
our model through the depletion of a second nutrient
nutr, causing the cessation of growth and entrance to
stat phase (Fig. 2a). nutr might represent a secondary
carbohydrate source, such as acetate, which is released
into the medium during phase 1. Alternatively, depletion
of other nutrients might limit cellular growth during the
two phases. The nature of the limiting factor might vary
between different experiments [1, 36, 37]. However our
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data [2] (see below). Notably, after reaching its max-
imum, ppGpp concentration decreases during phase 2
(Fig. 2a; [6, 8]). The model explains this by a decrease in
ribosome-mediated synthesis of ppGpp during phase 2
(Figs. 1 and 2a; [6, 38–40].
The model also predicts the kinetics of Acyl-ACP ac-

cumulation during cell growth. Acyl-ACP is produced
by FAS and consumed for PL and FA synthesis (Fig. 1).
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model, FAS and PLS fluxes are downregulated by ppGpp
at the beginning of phase 2. Thus, PLS is inhibited by
ppGpp directly, which leads to transient accumulation of
Acyl-ACP and resulting inhibition of FAS by Acyl-ACP
(Figs. 1 and 2b; [19, 20, 26, 41]). In addition, FAS and
PLS fluxes are downregulated by low ribosome activity
rib, which affects protein synthesis and thus metabolic
fluxes in our model (Fig. 1). Therefore, the model pre-
dicts a transient accumulation of Acyl-ACP due to the
inhibition of PLS by ppGpp at the beginning of phase 2,
followed by a decrease of Acyl-ACP levels due to a drop
of the FAS rate (Fig. 2b).
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Sensing of ppGpp levels in normal E. coli cells. Response
time of GFP fluorescent output
The synthesis of ppGpp, followed by the fast (~minutes)
ppGpp-mediated inhibition of the transcription from
P1/P2 promoter provides an early sensing of nutrient
limitation in bacterial cells (Fig. 1; [6, 11]). Based on this
natural mechanism, in our biosensor we express the in-
hibitor I (e.g., TetR or LacI) of GFP expression under
the control of the P1/P2 promoter (Fig. 1). An increase
of ppGpp downregulates the transcription from P1/P2,
leading to a decrease of I levels and expression of GFP
protein. The response of the sensor to dynamic changes
in ppGpp concentrations can be accelerated by using
rapidly degraded versions of I and GFP proteins [28, 29],
as discussed below.
The model demonstrates that the double negative

regulation of GFP expression by ppGpp (Fig. 1) results
in a strong correlation between steady state levels of
ppGpp and GFP (Fig. 3a). This suggests that GFP can be
used as a reporter of ppGpp concentration over a wide
range of observable ppGpp concentrations (0.05–1 mM;
[6, 8]). Since ppGpp inhibits growth, GFP fluorescence
indicates the degree of growth inhibition. The ppGpp
sensor might be used for monitoring of intracellular
metabolic state in various biotechnological applications.
In the next section we applied it for diagnostics of FA-
producing lines. The sensor can also be used for explor-
ing the nature of the growth-limiting nutrient lim. Thus,
the model predicts that if a nutrient limits growth, its
restoration at the end of phase 1 would result in a quick
decrease of ppGpp-related GFP fluorescence (Fig. 3b).
The response time of GFP fluorescence, T0.5,GFP (half-life
of GFP after nutrient upshift) depends on the model pa-
rameters. The model predicts that accelerated degrad-
ation of GFP protein can substantially shorten the GFP
response time (Fig. 3c). Therefore, the use of rapidly de-
graded fluorescent reporters is desirable. Similarly, an in-
crease of the inhibition strength of GFP expression by
inhibitor I can also shorten the T0.5,GFP (Fig. 3c). There-
fore manipulation of the expression level of I seems to
be the most practical approach for optimizing biosensor
performance, as further discussed below.

ppGpp kinetics in FA-producing lines of E. coli
We next used the model to analyse the efficiency of FA
production in Tes-ox lines of E. coli with different ex-
pression levels of Tes [2]. Tes-ox lines were simulated
by fitting Tes activities (VTes) to the measured FA yields
of growing cell cultures (Fig. 4a; [2]). Figure 4a,b shows
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simulated kinetics of FA accumulation and cell growth
in the control line 0 (only endogenous Tes is present)
and Tes-ox lines 1, 2, 3 with low, medium and high
levels of over-expressed Tes. The model predicts that in-
creased expression of Tes should initially increase FA
yields, but only until a certain critical level of Tes, above
which a decrease of FA yields is observed (Fig. 4a,c). For
example, high-Tes line 3 has 3-fold lower FA yield com-
pared to line 1 (Fig. 4a), which corresponds to experimen-
tal observations on lower FA yields in high Tes lines [2].
The model explains the reduction of FA yields in high Tes
lines by depletion of Acyl-ACP levels, which is predicted
to increase the accumulation of ppGpp (Figs. 1 and 4d).
High ppGpp in turn should reduce growth rates, in agree-
ment with the data (Fig. 4b). Additionally, a strong pull of
Acyl-ACP towards FA production reduces synthesis of
membrane lipids, which further downregulates growth in
high Tes lines in our model (Fig. 1).

Using the ppGpp-based biosensor for diagnostics of the
efficiency of FA-producing lines
The model predicts that depletion of Acyl-ACP in high-
Tes lines should lead to increased ppGpp levels (Figs. 1
and 4d), which downregulates growth and FA yields. In
addition, GFP levels are predicted to increase in parallel to
ppGpp in control and Tes-ox lines (Fig. 5a). This suggests
that elevated GFP levels might serve as an indicator of low
efficiency of FA production. Indeed, the peak levels of
GFP inversely correlate with FA yields at high Tes levels
(Fig. 5b). Therefore laborious methods of FA quantifica-
tion in testing the efficiency of Tes-ox lines might be re-
placed by measurements of GFP fluorescence. The model
analysis further suggests that the parameters of the ppGpp
sensor affect the steepness of the dependence of GFP
fluorescence on Tes levels. In particular, strengthening of
the inhibition of GFP expression by I (e.g., by increasing
of I expression) increases the steepness (Fig. 5b). There-
fore, the increased expression of I improves the sensitivity
of the sensor to the variations in Tes levels, in parallel to
the improvement of GFP response time (Figs. 3c and 5b).
However, increased inhibition of GFP expression by I also
leads to a reduction of the total level of GFP fluorescence
(Fig. 5c). Therefore there is a trade-off between the rate
and the amplitude of the GFP response. This should be
kept in mind during the optimisation of the sensor re-
sponsiveness, so that the total GFP signal might be rather
low but within the detection limit. The level of GFP fluor-
escence might be further increased by using specially de-
signed bright mutants of GFP with 20–35-fold higher
intensity compared to standard GFP [42].
In addition to testing FA productivity, the biosensor

might be used for optimization of FA production. To
achieve this, a specific version of the sensor might be de-
veloped, which includes a feedback downregulating Tes
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expression at high ppGpp levels, potentially by using
ppGpp-sensitive transcription factors.
Existing methods of genetic manipulations should be

sufficient to perform the proposed engineering of the
biosensor. In particular, recombination with serine
integrases might be especially useful, because it allows
insertion and removal of DNA fragments, if required
[43]. This property of serine integrase is related to their
ability to reverse the directionality in presence of
recombination directionality factors (RDFs). Therefore,
combinations of specific genes, promoters and
ribosome-binding sites might be tested to optimize bio-
sensor performance.

Conclusions
Based on existing data we built a mathematical model of
intracellular kinetics of ppGpp during batch growth of E.
coli cells. To monitor nutrient limitation, we designed a
ppGpp biosensor, which couples changes in ppGpp con-
centrations and P1/P2-mediated transcription to a fluor-
escent output. The model demonstrates that the
biosensor can sense a wide range of intracellular ppGpp
concentrations and dynamically respond to perturba-
tions of bacterial metabolism, such as nutrient upshifts
and log to stat phase transition. The model predicts that
both types of nutrient limitations, either related to nutri-
ent depletion due to the increase of cell number (growth
phase-specific) or to high consumption of Acyl-ACP for
synthesis of FA in engineered lines (non-growth phase-
specific) can be easily sensed by the ppGpp sensor. The
use of quickly-degraded variants of GFP protein would
increase the responsiveness of ppGpp sensing, which
can be additionally adjusted by changing the expression
level of the inhibitor of GFP expression. We further
demonstrate that the level of ppGpp-dependent fluores-
cence inversely correlates with FA yields, suggesting that
the sensor might be a useful instrument in testing FA
productivity of engineered lines of E. coli.
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Additional file 1: Figure S1. Model equations with estimation of the
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