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Abstract

Background: Nannochloropsis salina (= Eustigmatophyceae) is a marine microalga which has become a
biotechnological target because of its high capacity to produce polyunsaturated fatty acids and triacylglycerols. It has
been used as a source of biofuel, pigments and food supplements, like Omega 3. Only some Nannochloropsis species
have been sequenced, but none of them benefit from a genome-scale metabolic model (GSMM), able to predict its
metabolic capabilities.

Results: We present iNS934, the first GSMM for N. salina, including 2345 reactions, 934 genes and an exhaustive
description of lipid and nitrogen metabolism. iNS934 has a 90% of accuracy when making simple growth/no-growth
predictions and has a 15% error rate in predicting growth rates in different experimental conditions. Moreover, iNS934
allowed us to propose 82 different knockout strategies for strain optimization of triacylglycerols.

Conclusions: iNS934 provides a powerful tool for metabolic improvement, allowing predictions and simulations of
N. salinametabolism under different media and genetic conditions. It also provides a systemic view of N. salina
metabolism, potentially guiding research and providing context to -omics data.
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Background
In the last few years, interest in microalgæ has risen
because of their ability to produce a wide range of com-
pounds, such as carotenoids [1–3], lipids [4–6], hydrogen
[7, 8], proteins [9, 10] and starch [11]. These algal com-
pounds have numerous relevant applications, from fine
natural chemicals to biofuels and food additives. However,
it is still a challenge to optimize algal biomass and spe-
cific lipid composition to reach an economically feasible
bulk production of these compounds [12]. Understanding
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the complexity of algal metabolism is key to tackling this
problem.
Metabolic networks provide an efficient framework

to describe cellular metabolism and have become an
important tool in metabolic engineering, facilitating
strain optimization and reducing the need for expen-
sive in vivo experiments [13]. In addition, metabolic
models integrated with omics data, such as transcrip-
tional profiling, allows development of a meaningful sys-
temic representation of metabolism [14]. Genome-scale
metabolic network models (GSMMs) have been success-
fully reconstructed for several model species and a few
biotechnologically relevant organisms like Escherichia coli
[15, 16], Saccharomyces cerevisiae [17] and Arabidopsis
thaliana [18].
Several efforts have been made to model algæ meta-

bolism [19]. Green algæ have received special attention,
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with eight metabolic models for Chlamydomonas rein-
hardtii [20–27], one for Botryococcus braunii [28], five
for the genera Chlorella [29–33] and two for Ostreococcus
[34]. Additionally, seven models for the diatom Phaeo-
dactylum tricornutum [35–41], one for the multicellular
brown algæ Ectocarpus siliculosus [42] and one for the
coccolithophore Emiliania huxleyi [43]. One important
alga that is absent in this list is the marine specie Nan-
nochloropsis salina. Nannochloropsis species has emerged
as a leading microorganism for biodiesel production,
due to their high photoautotrophic biomass accumula-
tion rates [44] and high lipid content [45], either in open
ponds or enclosed systems. Additionally, successful culti-
vation of Nannochloropsis species on a large scale using
natural sunlight has been achieved by several companies
[46]. Moreover, Nannochloropsis has gained great interest
because of its potential for bio-production of eicosapen-
taenoic acid (EPA) which is a relevant additive for human
health [47–49] and nutrition [50–52]. EPA is one of the
major fatty acids produced by Nannochloropsis. Indeed,
it could represent over 30% of total fatty acid content
under heterotrophic conditions [53] and over 28% under
autotrophic conditions [54] in Nannochloropsis.
We present here iNS934, the first genome-scale func-

tional metabolic model for N. salina, built with a strategy
that integrates metabolic knowledge from several related
species, genomic and transcriptomic data. In particular,
we generated transcriptomic data for N. salina which
allowed us to confirm coding sequences (CDS) in its
genome and also discover new ones. iNS934 provides a
detailed description of biosynthesis of lipids for the Nan-
nochloropsis genus. Specifically, it describes reactions for
the biosynthesis of polyunsaturated fatty acids such as
EPA, arachidonic acid (ARA) and eicosatetraenoic acid
(ETA). iNS934 was validated both qualitative and quanti-
tatively, with an average error of 15% in the latter. More-
over, the model was used to propose knockouts that could
improve the production of triacylglycerols (TAGs).

Methods
N. salina transcriptome
Setting up culture conditions for RNA extraction N.
salina cells were obtained from Commonwealth Scien-
tific and Industrial Research Organization (CSIRO) and
identified as CS-190Nannochloropsis salina CCAP 849/2.
They were cultured in Artificial Sea Water (ASW), sup-
plemented with f/2 medium [55] at 20 °C, with an illu-
mination of white-blue leds (30 μE photons m-2s-1) on
a 24 h light/day cycle, primary in batch cultures, as
described by Chen et al. [56]. For mRNA extraction, N.
salina cells were collected at the exponential growth phase
(~5 × 106cell/mL) at the following conditions: (1) Dark,
Low CO2 (DLC): 4 h dark with 1 L/min air influx (CO2
0.03%), (2) High light, Low CO2 (HLLC): 2 h high light

(1000μE photons m-2s-1) and 1 L/min air influx (0.03%
CO2) and (3) High light, High CO2 (HLHC): 2 h high light
(1000μE photons m-2s-1) and 1 L/min air influx (1.5%
CO2). Total RNA was extracted from frozen cells, which
were ground using a mortar and pestle, using TRIzol RNA
Isolation Reagents (Invitrogen) according to the manufac-
turer. Total RNA and mRNA integrity were analyzed by
running them on agarose gel and in an Agilent Bioana-
lyzer to evaluate its quality before sending it to library
construction.

EST collection/library construction and sequencing
To obtain a good coverage of the N. salina transcriptome,
two different sequencing techniques were adopted: GS
FLX+ System (Roche), sequencing a normalized cDNA
library, and Illumina sequencing a cDNA library. Regular
and normalized library construction and sequencing was
performed by Eurofin MWGOperon, USA.
For the Roche GS FLX sequencing, we made a RNA

pool, including all 3 conditions previously described
(DLC; HLLC; HLHC). To build the normalized cDNA
library construction, from a total RNA sample, poly(A)+
RNA was isolated and used for cDNA synthesis. The
poly(A)+ was fragmented by ultrasound (1 pulse of 30 s at
4 °C). First-strand cDNA synthesis was primed with a N6
randomized primer. Then 454 adapters A and B were lig-
ated to the 5’ and 3’ ends of the cDNA. The cDNA was
finally amplified with 13 PCR cycles using a proof read-
ing enzyme. Normalization was carried out by one cycle
of denaturation and reassociation of the cDNA, resulting
in N1-cDNA. Reassociated ds-cDNA was separated from
the remaining ss-cDNA (normalized cDNA) by passing
themixture over a hydroxylapatite column. After hydroxy-
lapatite chromatography, the ss-cDNA was amplified with
14 PCR cycles. For Titanium sequencing the cDNA in the
size range of 500–700 bp was eluted from a preparative
agarose gel. Half a plate of GS FLX+ System (Roche) was
sequenced.
Library preparation of total RNA from conditions HLLC

and HLHC was carried out using the Illumina TruSeq
kit. Cluster formation and sequencing on HiSeq2000
were done according to the manufacturer’s instructions.
Two samples, one from each condition, were prepared in
250 bp paired-end sequenced in 2 different lanes, deliver-
ing around 40 million reads per lane.

De novo transcriptome assembly We divided this pro-
cess in 4 steps: (1) Illumina raw data was error corrected,
and then sequences were assembled using the Trinity
package. (2) Roche 454 GS FLX raw reads were cleaned
and trimmed with Figaro [57]. (3) Using BLASTN, 454
reads were mapped to Illumina contigs in order to avoid
redundancy between corrected Illumina contigs and 454
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data. (4) We generated 3 sets of data: The first was con-
structed using all Illumina transcripts without mapped
454 reads; the second set of data was constructed using
454 reads that had a hit against Illumina contigs and the
corresponding Illumina reads. This data was reassembled
using the Phrap1 software. The third dataset corresponds
to the transcripts assembled by wgs-assembler, using 454
reads that did not have hits against Illumina transcripts.
Transcripts from these three sets of data with less than
30 mapping reads or length under 300 bp were dis-
carded. The remaining transcripts constitute our de novo
transcriptome.

Mapping transcriptome to reference genome We
mapped this de novo transcriptome assembly to the N.
salinaCCMP537 genome assembly [58] (NCBI BioProject
ID: PRJNA62503) using GMAP. Transcripts aligned to ref-
erence gene models with a coverage of at least 70% and
and identity of 95% or higher were assigned to those genes.
We identified coding regions on the remaining transcripts
using TransDecoder2.
Functional annotation of coding regions from the ref-

erence genome and the supplementary transcripts from
the de novo transcriptome was performed using BLAST
searches (with an e-value threshold of 1e-10 and keeping
the best ten hits) against Swissprot, KEGG, PRIAM and
NR protein databases. Moreover, InterProScan (default
parameters) was used to identify protein domains and
GO numbers. In order to build a consensus annotation
for each gene, the Gene name (Swissprot, KEGG), EC
number (KEGG, PRIAM), KO number (KEGG), GO num-
ber (Interpro), InterPro number (Interpro) and protein
product (Swissprot, KEGG, NR) attributes were obtained
fromBLAST and Interpro results; using an in-house PERL
script; In parenthesis we show the databases from which
attributes were obtained. Afterwards, a single value for
each attribute was defined by picking the most frequent
from the set of 10 best hits times the number of databases
the attribute was parsed (i.e EC numbers can be obtained
from KEGG and PRIAM results; then, we can count the
most frequent from a list of 20 possible values). One
exception to the previous rule was the protein product
attribute; we chose it prioritizing the databases result in
the following decreasing priority order: Swissprot, KEGG
and NR.
The complete set of annotated CDS is included as

Additional file 1.

Reconstruction of N. salinametabolic model
The reconstruction of N. salina metabolic network was
generated following the five stages described in the proto-
col for generating high-quality GSMMs [59]. We used as
a reference Chlamydomonas reinhardtii and its iRC1080
metabolic model [22] in addition to N. salina genome

annotation and literature. First, we searched for orthologs
between our N. salina CDS and the C. reinhardtii protein
sequences, using Inparanoid [60] and OrthoMCL [61].
Then we built a draft model for N. salina using Panto-
graph [62], taking as a template the iRC1080 model for
C. reinhardtii. Then, we looked at the list of genes not
present in the draft model, but which annotation included
an Enzyme Commission (EC) number and we mapped
those ECs to BiGG reaction identifiers. We imported
those BiGG reactions into our model, using the BiGG
web API3. Afterwards, we manually determined a list of
reactions using different resources of information such as
BIGG, MetaCyc and KEGG. These reactions were added
to our reconstruction with their corresponding identi-
fiers and N. salina gene associations. For reactions and
metabolites without BiGG identifiers, BiGG-like identi-
fiers were assigned. After adding reactions, we manually
curated compartments, changed reversibility for some
reactions, moved species among compartments, renamed
and pruned unused elements, among other changes. In
order to generate a functional model, we used meneco
[63, 64] to look for BiGG reactions that could fill gaps
in the model. meneco provided us with candidate reac-
tions that were handed to the manual curators, who
approved their inclusion into the model.We tookmetabo-
lites available in the media as sources for gap-filling and
the requirements for biomass as targets.
Formulas and charges for metabolites in our model were

revised and all reactions in our model were subjected to
mass and charge balances. Except light and exchange reac-
tions, all reactions in our model are mass balanced and
only 6% could not be charge balanced. The complete list of
metabolites in themodel with their formula, charge, BiGG
ID and ID from the external database MetaNetX [65] is
included in Additional file 2.
We produced a version of our model in Systems Biology

Markup Language (SBML) format in order to analyze it
with compatible existing tools, and share it with the com-
munity. The model can be obtained as Additional file 3
and a diagram summarizing the reconstruction process is
depicted in Fig. 1.

Growth experiments for model validation In order to
validate our metabolic network, we prepared a battery of
simulation tests based on 32 previously published growth
experiments (see Table 1). These experiments comprise 23
cases in mixotrophic condition, 2 cases in heterotrophic
condition and 1 in autotrophic condition. Additionally, 6
knockout experiments from Killian et al. (2011) were also
included in this battery. We complemented this evidence
by conducting experiments that could help us to improve
and validate our model. We analyzed growth of N. salina
in the presence of different nitrogen sources, phosphate
and glucose. For experimental cultures we considered that
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Fig. 1 Reconstruction workflow for N. salina iNS934. We started with a collection of ESTs, that were mapped to an existing genome, finding new
CDSs in the process. This set of new and old CDS was annotated and compared with C. reinhardtii, through Inparanoid and OrthoMCL. Then, using
Pantograph, we projected the iRC1080 model to N. salina. This model was curated through a sequence of steps that added reactions from different
sources. When the model was not functional,meneco provided hints about possible missing reactions. The resulting model was validated against a
battery of 32 experimental observations. We used the COBRA Toolbox to manipulate and simulate models. The generated accuracy report guided
our manual curators to edit the model, restarting the reconstruction process

growth was achieved if growth rate was greater than 1/3
of maximum growth among all experiments studied [66].
For growth experiments conducted in our laboratory

we used N. salina obtained from CSIRO (Commonwealth
Scientific and Industrial Research Organisation). We used
the complete f/2 medium as described by Guillard [55],
which contained 75mg/L of nitrate and 4.41mg/L of
phosphate. Experiments containing urea, nitrate and
ammonium in the medium as the only nitrogen source
were designed to have the same molar concentrations
of nitrogen. Thus, we used a molar concentration of
8.8 × 10−4 for ammonium and nitrate and a molar con-
centration of 4.4× 10−4 for urea. Before inoculation, cells
were washed with ASW. We inoculated 1 L flasks with

2×106 cells/mL, which weremaintained at 25 °C, aireation
of 0.5 VVM and to 60 μmol m−2s−1 of light intensity. For
batch cultures growing with different carbon dioxide lev-
els, it was supplied through the gas inlet in concentrations
of 2 and 5%, respectively.
In order to diminish the internal reservoir of phos-

phate in cells for phosphate evaluation, inocula cells came
from a culture with diminished phosphate concentra-
tion (0.4mg/L phosphate). All cultures were followed
by cell counting (Newbauer chamber and OD750 nm),
biomass estimation (dry weight) and in some cultures
nitrate consumption, evaluated using a microplate tech-
nique as described [67]. All experiments were performed
in duplicate.
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Table 1 Qualitative validation of iNS934

Media condition in vivo in silico Gene KO TFPN Reference Nannochloropsis species

Luminosity 4 μE (flourecent cool) - + TN [54] sp

40 μE (flourecent cool) - + FP [54] sp

480 μE (flourecent cool) + + TP [54] sp

5 μE (flourecent warm) + + TP [91] gaditana

15 μE (flourecent warm) + + TP [91] gaditana

50 μE (flourecent warm) + + TP [91] gaditana

100 μE (flourecent warm) + + TP [91] gaditana

200 μE (flourecent warm) + + TP [91] gaditana

450 μE (white led) + + TP [91] gaditana

1200 μE (white led) + + TP [91] gaditana

2100 μE (white led) + + TP [91] gaditana

3000 μE (white led) - + FP [86] sp

Red led 673 nm, mixotrophic + + TP [92] sp

Red led 673 nm, autotrophic + + TP [92] sp

Carbon Glucose (mixotrophic) + + TP [93] sp

Glucose (heterotrophic) + + TP [93] sp

Ethanol (heterotrophic) + + TP [93] sp

Ethanol (mixotrophic) + + TP [93] sp

Inorganic carbon sources + + FN [94] gaditana

Other Sodium + + TP [95] oculata

Nitrite + + TP [96] sp

Phosphate - - TP This work salina

Nitrate + + TP [97] This work

Ammonium + + TP [98] This work

Sulfate + + TP [87] gaditana

Urea levels + + TP [99] This work

Knockout Ammonium + + Nitrate reductase TP [96] sp

Nitrite + + Nitrate reductase TP [96] sp

Nitrate - - Nitrate reductase TN [96] sp

Ammonium + + Nitrite reductase TP [96] sp

Nitrite - - Nitrite reductase TN [96] sp

Nitrate - - Nitrite reductase TN [96] sp

We compared 32 experiments of growth of N. salina under different media conditions, with predictions using our iNS934 model. Four of these conditions were also
conducted in our lab. From the 32 experiments, for growth/non-growth comparisons we obtained: TN: 4, FN: 0, TP: 25, FP: 3, with a sensitivity of 1, specificity of 0.57 and an
accuracy (geometric mean) of 0.90

Model analysis and validation
To analyze our iNS934 model, we used Flux Balance Anal-
ysis (FBA), Flux Variability Analysis (FVA) and dynamic
Flux Balance Analysis (dFBA) from the Cobra Toolbox in
MATLAB [68]. Flux Coupling Analysis (FCA) was per-
formed using the F2C2 tool [69].
For model validation, we performed FBA with growth

rate as the objective function to predict growth in differ-
ent growth conditions mentioned in the previous section.
For each test, wemodified the flux boundaries of exchange

reactions to simulate the composition of each growth
media. We performed both a qualitative and a quantita-
tive validation. Qualitative validation was used in cases
where growth and/or uptake rates could not be obtained
from the experimental data gathered from the litera-
ture and we only had growth/non-growth data. In these
cases, we used an in silico scenario that simulates a
rich medium by allowing free uptake of nutrients. The
growth rate obtained in this condition was considered
the reference maximal growth rate. For each experiment,
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we established that growth was achieved if the obtained
growth rate was greater than 1/3 of the reference value
[66, 70]. Then, we generated a confusion matrix and
used the geometric mean as a measure of accuracy (See
Table 1) to assess the predictive power of iNS934. To
have a more accurate evaluation of our model predictions
we performed quantitative validations by contrasting pre-
dicted growth rates with those obtained in in-house
experiments. Prediction of growth rates was conducted
using data from two sets of experiments. First, we used
data from three batch cultures of N. salina: autotrophic
growth with nitrate, ammonium and urea. Second, we
used data from three batch cultures grown with nitrate
at 0.03%, 2% and 5% of CO2 in the inflow gas. An in sil-
ico growth rate was obtained for each FBA simulation
using fixed experimental uptake rates of nutrients and set-
ting all other uptake reactions to zero. The error between
experimental and predicted growth rates was then
calculated.
We estimated uptake of CO2 by using the formula

described previously [71]:

CO2biofixation = C ∗ P ∗ (
MWCO2/MWC

)
. (1)

Values of biofixation were further transformed to spe-
cific uptake rates by dividing them by cell concentrations
and the molecular weight of CO2. The specific uptake
rate of CO2 used to perform simulations was calcu-
lated as the average specific uptake rate in exponential
phase.

In silico strain optimization
In order to find mutants of N. salina which may be use-
ful for lipid overproduction, we developed a method for
in silico strain optimization based on reaction knock-
outs. Our method guarantees the production of a target
metabolism, while conserving the functional property,
that is, the production of biomass. We iterated 200 times
and sorted the resulting knockout sets. The metric to sort
the results was defined as m = μ×rt

|k| , where μ is the spe-
cific growth rate, rt is the specific production rate of the
target t and k is the knockout set.
This method consists of four steps: (1)We randomly tra-

verse the reactions in the iNS934 model, removing reac-
tions that are not needed for the production of the target
metabolite. (2) Starting again from iNS934, we randomly
traverse the model removing all reactions that are not
needed for biomass production, while keeping those con-
served in step 1. (3) Using FBA we check if the resulting
model is able to produce the target metabolite when opti-
mizing growth rate. If so, we continue to step 4. Otherwise
we restart from step 1. (4) We try to recover the reactions
removed during step 1 one at a time, checking that their
inclusion maintains the integrity of the model to produce

biomass and the target metabolite simultaneously. When
a reaction breaks this restriction, it is included in the list
of reactions to knockout.

Results and discussion
N. salina transcriptomemapping and annotation
We sequenced and assembled transcripts forN. salina and
then combined them with the reported draft CCMP527
genome [58] to produce a comprehensive gene set for N.
salina. From this set, 10913 putative genes identified in
the transcripts of our de novo assembly were not con-
tained in the reference genome (Additional file 5). These,
together with the original genes in the genome, makes a
total of 17519 putative genes. However, after the anno-
tation, 7205 of these putative genes were not assigned
a functional annotation and were therefore not consid-
ered in the metabolic reconstruction process. Out of
the remaining genes, 3577 were assigned an EC number.
In our metabolic model, 490 reactions were associated
with putative genes from the transcriptome, which com-
plemented the 1452 reactions predicted using only the
CCMP527 genome. The contribution by subsystem of the
iNS934 model is depicted in Fig. 2.

iNS934: A genome-scale metabolic model for
Nannochloropsis
We generated a functional GSMM, able to produce
biomass, for the alga N. salina, called iNS934. The
construction of our model started with an initial draft
using reference iRC1080, a genome-scale model of
C. reinhardtii. Even though models for other algæ have
been built, as shown in Table 2, the level of detail varies
among them. Only some of them are GSMMs including
a genome-scale metabolic network reconstruction with
more than a thousand reactions and a mathematical rep-
resentation suitable for constraint based analysis. iRC1080
stands among them because it is a high quality model
whose features include a carefully detailed light-driven
algal metabolism, a multi-compartmentalized network
and an extensive metabolism of lipids. Moreover, iRC1080
is part of the BIGG database and consequently, offers a
controlled vocabulary of reactions and metabolites mak-
ing it suitable for building GSMMs of standard language.
Indeed, these features have been exploited before to con-
struct other models of alga. For example, it was used as
the template to build the models ofChlorella vulgaris [29],
Chrorella variabilis [30] and Phaeodactylum tricornutum
[35], and it was used in the gap-filling process for the
model of Emiliania huxleyi [43].
An orthology analysis revealed C. reinhardtii and N.

salina shared 2612 orthologs, an amount that allowed us
to obtain a reasonable initial draft to begin our recon-
struction. This initial draft was improved and tailored
to Nannochloropsis specific features using the annotation
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Fig. 2 Contributions by Subsystem. Left: Number of reactions per subsystem in the model, with reactions projected using CCMP537 and from new
CDSs. The new CDSs generated from our sequencing, complemented those obtained from the CCMP537 genome of N. salina. Several reactions
were added based on these new CDS, adding new reactions to the model. In the graph, blue indicate the number of reactions with gene
associations based on the CCMP537 genome, green when it depends on both, genome and our transcriptome, and yellow when only the
transcriptome was used to support the existence of that reaction. Here we only show the thirteen subsystems with more reactions. Right: Exclusive
reactions by subsystem. When comparing the models of C. reinhardtii iRC1080 and our N. salina iNS934, we can find reactions that are exclusive to
iRC1080 (in blue), shared between both models (green) and exclusive to iNS934 (yellow). Here we show only selected subsystems N. salina, plus
Glycerolipid metabolism, which was almost completely rewritten

of the Nannochloropsis genome and transcriptome, and
manual curation as described in materials and methods.
An example of the contributions of manual curation to
several subsystems can be seen in Fig. 2.
iNS934 describes 2345 reactions encoded by 934 genes,

the 1985 metabolites consumed and produced by those
reactions and a biomass function which describes the
metabolic requirements for growth in autotrophic and
mixotrophic conditions (see Table 3). From the total of
reactions, 398 are transport reactions, 95 are exchanges
with the media, 1613 are enzymatic reactions with a gene
association and 239 without.
The model includes 10 different compartments: extra-

cellular media, cytoplasm, mitochondria, chloroplast, thy-
lakoid lumen, endoplasmic reticulum, peroxisome, Golgi
apparatus, lysosome, and nucleus.
For the biomass function of our model, we started with

the biomass functions of iRC1080. We adjusted these
equations in order to represent the proportions of macro-
nutrients found in Nannochloropsis species. In particular,
we changed the coefficients related to DNA and RNA
production according to previously described method-
ology [72]. The contribution of glycerolipids to biomass
(Additional file 4) was obtained from a study carried out
in Nannochloropsis oceanica by Li et al. [73].
It is well documented in several microalgæ that an

increased lipid accumulation occurs under conditions
where there is nitrogen starvation. In Nannochloropsis
sp. growing in this condition, lipid production increases
about one fold [74]. To simulate this behavior, we created
a second biomass equation containing new stoichiomet-
ric coefficients based on proportions of glycerolipids of

N. oceanica growing in a nitrogen-depleted condition
(Additional file 4) [73].
In the following sections, we describe the main

metabolic features and particularities of iNS934 with
emphasis on lipid and nitrogen metabolism, key pro-
cesses involved in production of targets with relevance in
biodiesel and nutraceutical industries.

Lipids The lipid metabolism in microalgæ is biotechno-
logically relevant, given that it is key for the production
of biodiesel and food additives. Therefore the inclusion of
an accurate and species-specific description of lipid path-
ways into a GSMM is needed if we want to use it as a
platform to guide the production of these biotechnolog-
ical targets. In order to describe the lipid metabolism of
Nannochloropsis, we first added to iNS934 the biosyn-
thesis pathways of polyunsaturated fatty acids (PUFAs)
such as ETA(20:4), ARA(20:4) and EPA(20:5), which were
absent in the C. reinhardtii model iRC1080 [73, 75].
This was a key step because PUFAs are relevant build-
ing blocks for glycerolipids in Nannochloropsis. Therefore
their inclusion represents a major advance towards in
silico simulation of lipid production in this algæ. Addi-
tionally, we also added unsaturated fatty acids, such as
tetradecenoic acid (14:1) and hexadecadienoic acid (16:2),
among others.
Once we added the pathways for all the required

fatty acids, we replaced the glycerolipid pathways from
the initial draft with 503 new Nannochloropsis-specific
reactions that define the bioynthesis of TAG, diacyl-
glycerol (DAG), phosphatidylcholine (PC), monogalac-
tosyldiacylglycerol (MGDG), digalactosyldiacylglycerol
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Table 2 Metabolic reconstructions of algæ. List of metabolic reconstructions for algæ species

ID Species Genome- Detailed glycero- Multi- Availability in BiGG Reference
scale lipid metabolism compartment database

- C. protothecoides No No Yes SBML No [31]

iCS843 C. vulgaris Yes Yes Yes SBML No [29]

iAJ526 C. variabilis Yes No Yes SBML No [30]

- C. pyrenoidosa No No No No mathematical model No [33]

- C. sp FC2 IITG No No No not available No [32]

EctoGEM E. siliculosus Yes No Yes SBML No [42]

iEH410 E. huxleyi Yes No Yes SBML, MAT No [43]

- C. reinhardtii Yes No No not available No [26]

iRC1080 C. reinhardtii Yes Yes Yes SBML, MAT Yes [22]

ChlamyCyc C. reinhardtii Yes No No online No [27]

- C. reinhardtii No No Yes XLS No [25]

- C. reinhardtii No No Yes not available No [24]

iBD1106 C. reinhardtii Yes Yes Yes SBML No [21]

iCre1355 C. reinhardtii Yes Yes Yes SBML No [20]

AlgaGEM C. reinhardtii Yes No Yes SBML No [23]

iLB1027 P. tricornutum Yes Yes Yes SBML No [35]

- P. tricornutum No No Yes No mathematical model No [39]

DiatomCyc P. tricornutum Yes No No Online No [40]

- P. tricornutum No No Yes SBML No [41]

- P. tricornutum Yes No Yes SBML No [38]

- P. tricornutum No No No not available No [36]

- P. tricornutum No Yes No No mathematical model No [37]

- O. lucimarinus Yes No No SBML No [34]

- O. tauri Yes No No SBML No [34]

- B. braunii No No No No mathematical model No [28]

(DGDG), sulfoquinovosyl diacylglycerol (SQDG), phos-
phatidylglycerol (PG), phosphatidylethanolamine (PE),
phosphatidylinositol (PI) diacylglyceryl-O-4’-(N, N, N,-
trimethyl) homoserine (DGTS) and free fatty acids. In
particular, these 503 reactions account for specific propor-
tions of glycerolipids into the biomass of Nannochlorop-
sis and specific types of glycerolipids of Nannochloropsis

Table 3 Properties of genome-scale metabolic models

C. reinhardtii N. salina N. salina
(iRC1080) (draft) (curated)

Genes 1,1146 802 934

Reactions 2,191 1,897 2345

Metabolites 1,706 1,706 1985

Compartments 10 10 10

This table shows the properties of the template model (C. reinhardtii), the automatic
initial draft produced by Pantograph and the results of the manual curation for N.
salina iNS934

with respect to other algæ. These glycerolipids could
represent an important percentage of theNannochloropsis
biomass [75]. Given its importance, we created reac-
tions to synthesize each of these glycerolipids and
the corresponding stoichiometric coefficients required
to account for the proportions in Nannochloropsis.
The new reactions enable the use of iNS934 as a predictor
of lipid metabolism in Nannochloropsis.
Furthermore, based on current knowledge of species

of chromista [76], we associated the biosynthesis of
each glycerolipid to specific compartments, relocat-
ing associated metabolites and reactions. We added
a compartment for the endoplasmic reticulum, where
several glycerolipids are synthesized from fatty acids.
Then, the biosynthesis pathways of PC, PE, DGTS and
PI were located at the endoplasmic reticulum [77], while
pathways for PG, DGDG, MGDG, SQDG were located
at the chloroplast. Biosynthesis of TAG was located at
both compartments. See Fig. 3 for a schema of our recon-
structed lipid subsystem.
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Fig. 3 Diagram of lipid production in N. salina, as modeled in iNS934. Starting from CO2 we follow the chain of reactions until the production of
lipids. The biosynthesis of lipids is performed at the Chloroplast and Endoplasmic Reticulum (ER) compartments. The Peroxisome contributes with
the splitting of Acyl-CoAs into Acetyl-CoA, while the Mitochondria produce the citrate required Malonyl-CoA, key for the production of PUFAs at the
ER. Most of the produced lipids end up in membranes (via the Biomass function), while TAG is also stored in lipid bodies. Inspired by diagrams from
[46, 100] and [76]

Urea cycle Nitrogen is quantitatively the most impor-
tant nutrient affecting growth and lipid accumulation in
various algæ [6]. In order to accurately represent the
nitrogen metabolism in iNS934, we examined the reac-
tions involved in this process. We found that N. salina
has a complete urea cycle, including ornithine carbamoyl-
transferase, argininosuccinate synthase, argininosuccinate
lyase, and arginase (Fig. 4). Additionally, we added trans-
porters for nitrate, nitrite, ammonium and urea that

have been identified previously in a Nannochloropsis
genome [78]. Moreover we have determined experi-
mentally that growth in N. salina can be sustained on
nitrate, ammonium or urea as sole nitrogen sources
(Additional file 5).

Overview of general properties of N. salina GSMM
We performed three analyses in order to find the main
network topological features describing the GSMM of N.
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Fig. 4 Nitrogen metabolism: Main reactions and pathways present in iNS934. ARGSL: Argininosuccinate lyase; ARGN:Arginase; ARGSS:
Argininosuccinate synthase; CPS:Carbamoyl-phosphate synthase; OCT: Ornithine carbamoyltransferase; UREA: Urease; NO2R: Ammonia:ferredoxin
oxidoreductase; NITR: Nitrate reductase; UREAt, NH4t, NO2t, NO3t : Urea, ammonia, nitrite and nitrate transport respectively

salina iNS934. We started performing a FVA by max-
imizing and minimizing each reaction of the network.
We compared this result with the ones obtained for the
GSMMs of three other algæ, namely C. reinhardtii [22],
C. vulgaris [29] and P. tricornutum [35]. We observed that
curve shapes are similar between all networks. Moreover,
we found that the amount of reactions having a narrow
flux variation is similar: 174, 158, 150 and 379 reactions
have a range of 0.01 mmol/gDW hr in N. salina, C. rein-
hardtii, P. tricornutum and C. vulgaris respectively. Addi-
tionally, we determined the number of blocked reactions
in the network. We found that 38.7% of the reactions in
N. salina were blocked, while this value decrease to 28.5%
for C. reinhardtii, 11.9% for P. tricornutum and 38.2% for
C. vulgaris. This result suggests that further refinement
of the network is needed in order to accomplish a higher
connection and dead-end elimination.
Second, we performed a FCA to determine coupled,

partially coupled, directionally coupled and uncoupled
reactions. We found that our model has almost the same
proportions of types of reactions found in the compared

algæ models. The uncoupled reactions far outnumber
other types of reactions, representing nearly 90% of the
total reaction pairs. Despite this, a higher percentage of
fully and directionally coupled reactions can be observed
in N. salina compared to the C. reinhardtii network,
suggesting that the GSMM of N. salina is less connected.
Finally, we performed a connectivity and metabolite

participation analysis. As is observed in other metabolic
networks, we observed that a few metabolites participate
in several reactions, meanwhile most metabolites partic-
ipate in one or two reactions. As an example, we found
usual currency metabolites such as H+, ATP, H2O, phos-
phate and coenzyme A between the 10 most connected
metabolites.

Validation of N. salina GSMM
To assess the predictive power of our iNS934 metabolic
model, we simulated growth under different conditions
using FBA and compared our results to experimental data.
We reproduced existing observations of Nannochloropsis
growth from the literature and from our experiments.
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Considering the lack of experimental evidence for N.
salina, we based part of this validation on experiments
from other Nannochloropsis species. We complemented
this evidence by performing experiments that could help
us improve and validate our model.
We modeled in silico autotrophic, mixotrophic and het-

erotophic media conditions by setting model constraints
according to literature. In particular, for the autotrophic
condition, we allowed the model to fix carbon from
solar light measured from Earth’s surface. Carbon fix-
ation through other types of light were set to zero. A
maximum oxygen consumption uptake of 10 mmol/gDW
was allowed. Water was allowed to travel only from the
chloroplast to the cytosol and not viceversa. No carbon
sources were allowed to enter the cell. Additionally, the
chloroplastic enzymes divinylprotochlorophyllide vinyl-
reductase, phosphofructokinase, glucose-6-phosphate-1-
dehydrogenase and fructose-bisphosphate aldolase were
turned off since these enzymes are inactivated with light
[79, 80]. Tomodel a mixotrophic condition, we applied the
same restrictions except for carbon sources which were
allowed to enter the cell. To simulate a heterotrophic con-
dition, acetate, carbon dioxide and oxygen were allowed
to enter the cell. Also a dark condition was modeled by
inactivating light associated reactions.
Data on Nannochloropsis growth under different con-

ditions gathered from the literature was not sufficient
to calculate experimental growth and/or uptake rates in
all cases, so we used these data for a qualitative vali-
dation, where only growth/non-growth prediction accu-
racy was evaluated. Qualitative assessment of metabolic
reconstructions has been previously used to evaluate
the biological capabilities of microorganisms on differ-
ent experimental conditions. In particular, it has been
widely used to study the consequences of environmen-
tal and genetic parameters that can be experimentally
changed [81]. For example, this approach has been used
to assess the prediction of nutrient requirements in dif-
ferent strains of E. coli [82] as well as other microorgan-
isms [83] and to assess prediction of gene deletions in S.
cerevisiae [84, 85]. Therefore, we carried out this simple
analysis to explore a broader spectrum of scenarios for
Nannochloropsis growth.
For a quantitative assessment of our model predictions

we performed N. salina growth experiments using dif-
ferent nitrogen sources and different levels of CO2 and
compared the obtained growth rates with those estimated
in silico [85].

Qualitative validation
Table 1 shows the experimental conditions considered
for qualitative validation. In all cases, biomass production
both experimental and in silico were simplified into binary
values (growth/no growth). Corresponding binary results

obtained for all experiments were paired with simulations,
with exact agreement in 29 cases (24 true positives and
5 true negatives). Three false positives were observed:
N. salina growing at 3000μE m−2 s−1 , 4μE and 40μE.
In the first case an inhibition of growth was expected
[86]. Unfortunately, GSMMs are not yet able to simulate
inhibitions. Therefore, this behavior could not be repro-
duced. In the second and third case, it was expected that
growth would be severely affected. However, growth rate
was not decreased when compared with cultures grown
under control conditions. This result is likely the prod-
uct of over-optimistic flux simulations and can be reduced
through parameter tuning.
The model predicted that phosphate was essential for

growth. However, it has been shown that it is not needed
to sustain growth experimentally [87]. Based on the
model’s predictions, we decided to repeat experimentally
the result reported in the literature. When we eliminated
phosphate from the culture media we obtained growth in
the first subculture. However, whenwe took cells from this
first subculture without phosphate, new subcultures did
not grow in a media without phosphate, but did grow in
a media with phosphate. We presume that N. salina cells
may accumulate phosphate granules as reservoirs which
allowed them to grow in the first subculture and there-
fore the result reported by Forjan et al. [87] gave a false
negative. In light of these new results, we concluded that
phosphate was essential to sustain growth of N. salina.
Therefore the prediction of iNS934 was considered accu-
rate and was classified as a true negative result.
Overall, these growth/no growth simplified compar-

isons resulted in a prediction accuracy of 0.90 for the 32
evaluated conditions.

Quantitative validation
We assessed iNS934 quantitative predictive power by
simulating N. salina growth in experimentally tested con-
ditions. These conditions included growth on different
nitrogen sources (nitrate, ammonium and urea) and dif-
ferent CO2 concentrations (0.03%, 2% and 5%) in the gas
inlet. Measured uptake rates of nitrogen sources as well
as estimated uptake rates of CO2 used as constraints in
the model can be found in Additional file 6. Using these
constraints we obtained an average error of 15% in pre-
diction of growth rates (Table 4). This result indicates
that iNS934 has a good level of accuracy since, in gen-
eral, models are considered accurate when they achieve
relative errors in growth rate predictions close to 10%
[85, 88]. Further refinement of biomass composition as
well as experimental measurement of CO2 uptake rate
could improve growth rate predictions.
We also analyzed the inter-compartment fluxes of

experimental conditions with different nitrogen sources
in order to understand the main metabolic mechanisms
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Table 4 Experimental and predicted growth rates of iNS934
Experimental and predicted growth rates for N. salina batch
cultures growing in six different conditions

CO2 Nitrogen source Experimental μ Predicted μ Error (%)

0.03% Nitrate 0.0207 0.0169 22.1%

0.03% Ammonium 0.0206 0.0156 32.2%

0.03% Urea 0.0109 0.0098 11.1%

0.03% Nitrate 0.0203 0.0186 9.3%

2% Nitrate 0.0183 0.0207 11.8%

5% Nitrate 0.0185 0.0178 4.2%

Nitrate, ammonium and urea were used independently as nitrogen sources and CO2

was used as the inorganic carbon source for each batch culture. Air (0.03% of CO2)
and CO2 enriched air (2% and 5% of CO2) were used independently in the gas inlet

that are involved in each case. In the first condition,
the cell consumes nitrate as the nitrogen source. This
is transformed to nitrite by the nitrate redutase in the
cytosol. The nitrite is then transported to the chloro-
plast where it is further transformed to ammonium by
the nitrite reductase. This ammonium is used to build
some building blocks such as L-serine by the threonine
ammonia-lyase (EC: 4.3.1.19). For carbon fixation, car-
bon dioxide entered the cytosol and was transported to
the chloroplast where it participated in the Calvin Cycle.
The malonyl-CoA used to build fatty acids is also created
from carbon dioxide. Fatty acids such as decanoic acid and
PUFAs such as eicosanopentanoic acid were synthesized
in the chloroplast. PUFAs leave the chloroplast and travel
to the endoplasmic reticulum to synthesize glycerolipids.
In the second condition,N. salina consumes ammonium

which is transformed in the cytosol to urea (EC: 3.5.1.5)
and amino acids such as L-glutamine, L-threonine and
glycine. Urea enters the urea cycle and is further trans-
formed to L-arginine. To simulate carbon fluxes, acetyl-
CoA, which is synthesized in the cytosol, is transported
to the mitochondria in order to generate energy and
reducing power through the tricarboxylic acid cycle.
In the third conditionN. salina consumes urea. The urea

is transformed to ammonium by two consecutive reac-
tions (EC: 6.3.4.6 and 3.5.1.54) in the cytosol. Additionally,
ammonium is transported to the chloroplast where it
is also used to synthesize glutamine and L-serine. The
same mechanisms of carbon fixation and biosynthesis of
fatty acids observed in experimental condition one was
observed for cases where N. salina consumed ammonium
or urea.

Applications
Simulation of lipid production in nitrogen starvation
It has been shown that lipid content in Nannochloropsis
changes when cells growing on a nitrogen replete media
are transferred to a nitrogen-depleted condition. In par-
ticular, the content of TAG increases at least 100 fold [73].

We wanted to test if the iNS934 could predict this behav-
ior at least qualitatively. To do this, using dFBA, we
simulated cells growing in a batch culture that faced
a sudden change in nitrogen availability. In this sim-
ulation we defined three stages. The first stage repre-
sented cells growing in a medium with a high availability
of nitrate, used as the only nitrogen source. For this
purpose we used the biomass equation in a nitrogen-
replete condition and we set a maximum value for
growth of 0.0045 h−1 according to Simionato et al. [75].
At the end of the first stage, we simulated that cells
were inoculated into a nitrogen-free media. This repre-
sented the beginning of stage 2. In this stage we changed
the biomass equation to the one a for nitrogen-depleted
condition and we set a maximum value for growth of
0.0036 h−1 [75]. At the end of stage 2, cells were once
again inoculated in a nitrogen-rich media. In stage three
we again used the biomass equation for a nitrogen-replete
condition.
As shown in Fig. 5, in the first stage of our simula-

tion, N. salina consumed nitrate and generated biomass
according to the biomass equation for a nitrogen-replete
condition. The glycerolipids were consequently increased
as biomass increased. At the second stage, the lipid pro-
duction increased significantly with respect to stage one.
In the third stage, the growth rate and the lipid production
were the same as stage one. This preliminary simulation
showed that iNS934 is able to accurately describe the
behavior in both nitrogen replete and nitrogen depleted
conditions. Therefore this a feature that could be further
exploited in biotechnological applications related to lipid
optimization.

Using iNS934 to guidemetabolic engineering of N. salina
As an example for iNS934 use, we focused on TAG
production optimization as a case study. We used our
model to search for sets of reactions whose blockage
resulted in a higher in silico rate of TAG production in
N. salina. This is a powerful and low-cost tool to pre-
dict the behavior of N. salina in different genetic and
media contexts, working as a guide for metabolic engi-
neering efforts. In order to find those in silico mutants,
we initially used OptKnock [89] to obtain reactions whose
group elimination allowed greater TAG production.
However, we performed a FVA which revealed that
removal of none of the reaction sets predicted by this
tool guaranteed a minimum production of the desired
lipids. We also tried OptForce [90], but we could not find
reactions whose FVA indicated non-overlapping ranges
of values. This is probably caused by the lack of experi-
mental values that could constrain the possible fluxes of
reactions in our model. Therefore, we developed an in
house algorithm to determine sets of reactions that guar-
antee a minimum desired production, while keeping the
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a b

c d

Fig. 5 Dynamic FBA simulation of lipid accumulation in N. salina using iNS934. We simulated growth and lipid production using COBRA tools in
three stages: NO3 available, NO3 depleted and NO3 available again. a NO3 available in the media. We set an initial amount of NO3 that was
consumed by N. salina and eventually depleted. After this event, we added NO3 to the media, allowing N. salina to grow normally again. b Biomass
accumulation of N. salina. After NO3 depletion, biomass production was reduced in stage 2 and increased again in stage 3. c Total lipid production
(including TAG). In the first stage, lipid production increases according to the stoichiometric coefficients in the biomass formation reaction. Once
NO3 is depleted, the lipid production increases in a higher rate than stage 1 due to the high amount of TAG produced toward lipid bodies. In stage
3, the lipid production rate is once again as described in stage 1. d TAG accumulated on lipid bodies. We created a compartment called “lipid
bodies”, where the TAG produced, and not consumed by biomass, was stored

capacity to produce biomass (see Methods). We applied
this algorithm to optimize our target metabolites.
TAGs, like other glycerolipids, are represented as

biomass constituents in GSMMs. This represents a chal-
lenge when optimizing these types of compounds because
most strain design algorithms are conceived to opti-
mize metabolic products which are secreted from the
cell, such as succinate or lactate, not biomass con-
stituents. To simulate an additional production of TAG,
we created artificial reactions leading to the produc-
tion of additional TAG. A demand reaction for that
additional TAG was considered as the target objective
function. Using our in-house algorithm for strain opti-
mization, we found 82 sets of reactions whose indepen-
dent elimination guaranteed a minimum TAG production
(Additional file 7). We ranked those sets according to

growth rate, minimum TAG guaranteed and number of
knockouts. Higher growth rates and TAG productions as
well as lower knockout sets lead to better scores.
The first observation we made is that growth rates for

mutants were less than the growth obtained for wild-
type. This observation makes sense since carbon must be
redistributed into the biosynthesis pathways of lipids to
produce more lipids, resulting in decreased carbon for use
in other pathways. Since the carbon that was used to max-
imize growth rate in the wild-type is now being used for
lipid biosynthesis in the mutant, the growth rate of the
mutantmust be less than the wild-type. The second obser-
vation we made is that, unlike wild-type, the additional
TAG production is coupled with growth for all mutants.
This explains why a minimum flux is guaranteed for the
reaction producing additional TAG.
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Most knockout sets involve reactions related to biosyn-
thesis or transport of amino acids between different
compartments. For example, one of these sets involves
the knockout of a chloroplastic glutamate synthase, an
enzyme that consumes glutamine and oxoglutarate to pro-
duce glutamate. The glutamate synthase knockout redi-
rects the carbon flux that would be used to synthesize
glutamate into the biosynthesis of fatty acids also located
in this compartment. The forced flux into the biosynthe-
sis of fatty acid leads to a forced flux into the biosynthesis
of TAG. It is worth noting that glutamate is still produced
in the cytosol satisfying the requirements for biomass
production.
In the case of inter-compartment amino acid transport,

the blockage of some transport reactions and the preven-
tion of some transaminations in specific compartments,
prevents the interchange of central metabolites, such
as pyruvate and oxoglutarate, between compartments.
This limits the paths in which they can be consumed,
which redirects the carbon flux through triacylglicerol
biosynthesis.
The results showed in this section demonstrate that

iNS934 could be used to propose strategies for optimiza-
tion of lipid production as well as other biotechnologi-
cal targets. However, it is worth mentioning that these
strategies only involve mass balances and other regulatory
mechanisms are not considered. Further experimental
information related to reaction knockouts could be used
as input in the model to improve the identified strategies.

Conclusions
We have reconstructed iNS934, the first genome-scale
metabolic model of the marine algæ N. salina. To develop
this model we used the alga genome annotation and addi-
tionally we generated transcriptomic data that allowed us
to identify new putative genes for N. salina. iNS934 con-
tains 1985 metabolites, 2345 reactions, 934 genes and 10
compartments, which in total, achieve a precise descrip-
tion of the metabolism of this alga. We tested iNS934
and we found it was able to make simple growth/non-
growth predictions on 32 different conditions with an
accuracy of 90%. These experiments included autotrophic,
mixotrophic and heterotrophic conditions as well as key
knockouts related to nitrogen metabolism. Moreover, a
quantitative estimation of growth rates was achieved with
an average error of only 15% for growth experiments with
different nitrogen sources and CO2 supply levels.
iNS934 includes the Nannochloropsis-specific biosyn-

thesis pathways for glycerolipids supported by experimen-
tal evidence. It has been shown that Nannochloropsis can
grow to where 50% of its biomass is in the form of lipids.
Thus, this model could be used to describe and predict
the biosynthesis of lipids in high lipid producing species,
especially for the biodiesel industry.

We employed iNS934 to find strategies for increasing
the production of TAGs. We used a novel approach to
handle the optimization of these biomass constituents,
which could be used for other new strain optimization
algorithms. Additionally, we created an algorithm of strain
optimization which allowed us to find 82 sets of knockout
reactions whose independent elimination in the network
resulted in an improved production of TAG. The results
highlight that further experimental information is needed
in order to validate the knockout sets experimentally. The
incorporation of regulatory mechanisms into GSMMswill
probably allow users to predict strategies of strain opti-
mization more accurately.
iNS934 could also be employed for other purposes

such as metabolic engineering for improved production
of omega-3 and omega-6 or improved production of beta-
glucans. Both cases represent important cases of study for
producing nutraceuticals with high value for human care.

Endnotes
1http://www.phrap.org/phredphrap/phrap.html
2http://transdecoder.github.io
3http://bigg.ucsd.edu/data_access
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