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Abstract

Background: In photosynthetic organisms, the influence of light, carbon and inorganic nitrogen sources on the
cellular bioenergetics has extensively been studied independently, but little information is available on the
cumulative effects of these factors. Here, sequential statistical analyses based on design of experiments (DOE)
coupled to standard least squares multiple regression have been undertaken to model the dependence of
respiratory and photosynthetic responses (assessed by oxymetric and chlorophyll fluorescence measurements) upon
the concomitant modulation of light intensity as well as acetate, CO,, nitrate and ammonium concentrations in the
culture medium of Chlamydomonas reinhardtii. The main goals of these analyses were to explain response variability
(i.e. bioenergetic plasticity) and to characterize quantitatively the influence of the major explanatory factor(s).

Results: For each response, 2 successive rounds of multiple regression coupled to one-way ANOVA F-tests have
been undertaken to select the major explanatory factor(s) (1st-round) and mathematically simulate their influence
(2nd-round). These analyses reveal that a maximal number of 3 environmental factors over 5 is sufficient to explain
most of the response variability, and interestingly highlight quadratic effects and second-order interactions in some
cases. In parallel, the predictive ability of the 2nd-round models has also been investigated by k-fold cross-validation
and experimental validation tests on new random combinations of factors. These validation procedures tend to
indicate that the 2nd-round models can also be used to predict the responses with an inherent deviation quantified by
the analytical error of the models.

Conclusions: Altogether, the results of the 2 rounds of modeling provide an overview of the bioenergetic adaptations
of C reinhardtii to changing environmental conditions and point out promising tracks for future in-depth investigations
of the molecular mechanisms underlying the present observations.
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Background

In plants and algae, energy transduction processes
involve the respiratory and photosynthetic electron
transport chains, which take place at the level of the
mitochondrial inner membrane and the thylakoid, re-
spectively, through chemi-osmotic mechanisms coupling
electron transport and ADP phosphorylation [1]. An
ubiquinol-O, terminal oxidase (alternative oxidase, AOX)
which competes with complex III for electrons is also
found in the mitochondrial inner membrane and is re-
sponsible for a cyanide-insensitive “alternative” respiratory
pathway, opposed to the “cytochromial” pathway due to
complexes III and IV. AOX activity does not contribute to
the building of the electrochemical proton gradient and is
therefore qualified as “energy-dissipating”. This enzyme
has long been known to be responsible for heat produc-
tion in the thermogenic tissues of higher plants (the
spadix of Araceae) but is also thought to play important
roles in non-thermogenic cells in some circumstances by
limiting the production of superoxide anion by com-
plexes I and III and accelerating the turnover of reduced
cofactors to ensure a continuous operation of the pri-
mary metabolism [2].

Over the last century, efficient techniques have been
developed to study respiration and photosynthesis
in vivo [3]. In green microalgae, they can easily be char-
acterized in terms of O, consumption/production rate of
cell suspensions using an aqueous phase Clark-type po-
larographic electrode. Determination of the apparent
maximal activities (MA) of the cytochromial and alter-
native pathways is enabled by the use of specific inhibi-
tors, i.e. cyanide and substituted hydroxamic acids,
respectively [4,5]. Monitoring chlorophyll fluorescence is
also a particularly suitable method for studying the func-
tional properties of the photosynthetic apparatus [6]. In
this field, pulse-amplitude modulated (PAM) fluorimetry
is the tool of choice, since it enables to monitor chloro-
phyll fluorescence without any interference of the actinic
light applied to induce the biological response [7]. This
technology gives access to several important parameters
characterizing photosynthesis, notably the quantum yield
of photosystem II (®PSII) and the non-photochemical
quenching of chlorophyll fluorescence (NPQ), which is
actually made of 3 components: qE (ApH-dependent
chlorophyll de-excitation mediated by the xanthophyll
cycle), qT (transition of light-harvesting complexes from
state 1 to 2) and qI (photoinhibition) [8-10]. In contrast
to higher plants, state transitions have been demon-
strated to be very dynamic in green microalgae, so that
qT can importantly contribute to the overall NPQ to-
gether with qE [11].

The unicellular green alga Chlamydomonas reinhardtii
is considered as a model to study the metabolism and bio-
energetics of photosynthetic organisms [12]. As shown in
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Figure 1, C. reinhardtii is not only able to grow photoau-
totrophically by using light energy to fix CO, into organic
molecules, but can also assimilate acetate as an exogenous
organic carbon source under the form of acetyl-CoA
through ATP-dependent enzymatic reactions [13]. These
features enable cells to grow mixotrophically in the light
by harnessing inorganic (CO,) and organic (acetate) car-
bon sources, and even heterotrophically in the dark by
oxidizing acetyl-CoA through the glyoxylate and tricarb-
oxylic acid (TCA) cycles to promote the production of
reduced cofactors and ATP. The glyoxylate cycle, which
bypasses the 2 decarboxylation steps of the TCA cycle,
also accounts for the net biomass accumulation because
its C4 intermediates can be used in biosynthetic pathways
[14]. An important feature of CO, fixation in C. reinhardtii
relies on the carbon concentrating mechanism (CCM), a
whole-cell enzymatic machinery enabling to increase CO,
availability in the local environment of Rubisco through
the dehydration of accumulated bicarbonate to counterbal-
ance the weak catalytic activity of the enzyme and limit its
oxygenase activity under low CO, conditions [14,15]. The
CCM consists of several isoforms of carbonic anhydrases
(CA) catalyzing the interconversion of CO, and bicarbon-
ate in different sub-cellular compartments but also of
diverse inorganic carbon membrane transporters [16,17].

C. reinhardtii can assimilate nitrate and ammonium as
inorganic nitrogen sources, but ammonium is preferred to
nitrate when they are present together in the medium,
consistently with the lower energy cost of ammonium as-
similation [18,19]. Nitrate assimilation first requires its re-
duction into ammonium, which can then be incorporated
within organic molecules under the form of glutamate
through the GS/GOGAT cycle in the chloroplast (Figure 1)
[20,21]. Reduced cofactors and ATP being necessary for
inorganic nitrogen assimilation mainly originate from
photophosphorylation under photoautotrophic culture
conditions, but also from the glyoxylate and TCA cycles
coupled to oxidative phosphorylation in mixotrophically-
grown cells [22,23].

As illustrated in Figure 1 and demonstrated by recent
bioinformatics- and literature-based models of the C.
reinhardtii metabolic network, the assimilatory pathways
of light, carbon and inorganic nitrogen are tightly inter-
connected through complex exchanges of metabolites,
energy and reducing power which are strictly regulated
in response to environmental changes to maintain cellu-
lar homeostasis [24-28]. These features strongly suggest
that bioenergetics is likely to be influenced by the cumu-
lative effect of different factors and even by interactions
between some of them. However, to our knowledge,
most reported studies have only focused on the qualita-
tive or semi-quantitative influence of one or a few envir-
onmental factor(s) on respiration and/or photosynthesis
while other factors were kept constant.
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Figure 1 Assimilatory pathways of light, carbon and inorganic nitrogen in C. reinhardtii. GC, glyoxylate cycle; METC, mitochondrial electron
transport chain; CETC, chloroplastic electron transport chain; e, electrons; NR, nitrate reductase; NiR, nitrite reductase; 3-PG, 3-phosphoglycerate;
G-3-P, glyceraldehyde-3-phosphate; Fd.q, reduced ferredoxin; Fd,,, oxidized ferredoxin.
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Design of experiments (DOE) coupled to multiple
regression are powerful statistical tools to model the
dependence of a physical, chemical or biological process
to different intrinsic or extrinsic factors with a limited
number of experiments [29]. They are commonly used
in diverse applied research fields, in particular for the
screening of culture conditions aiming to heighten the
production of biomass and/or molecules of interest
(metabolites, high-added value compounds, pharmaceut-
ical recombinant proteins, etc.) by diverse organisms
[30-33]. The methodology has successfully been applied
to different microalgae to optimize culture medium for
heterotrophic growth, starch and lipid production, CO,
fixation as well as metabolite extraction for bio-
industrial purposes [34-38].

In the present work, DOE coupled to standard least
squares multiple regression have been used to model the
dependence of several respiratory and photosynthetic
responses upon the concomitant modulation of light
intensity and acetate, CO,, nitrate and ammonium
concentrations in the culture medium of C. reinhardtii.
Bioenergetic responses of interest have been defined as
the dark cellular respiration (CR) and the apparent
maximal activities of the cytochromial (MAcyrt) and

alternative (MAr1) respiratory pathways, as well as the
quantum yield of photosystem II in saturating light
(DPSIlgyp), the gross O, evolution (Pggo, apparent photo-
synthetic rate) and the non-photochemical quenching of
chlorophyll fluorescence (NPQgoy) measured under a
light intensity of 800 pmolphotons.m’z,s’l, which is suffi-
cient to saturate photosynthesis but not to induce
photoinhibition [39]. The main goals of this study were
to determine which environmental factor(s) induce(s)
most of the response variability (in other words, which
factor(s) mostly account(s) for bioenergetic plasticity)
and to characterize quantitatively the influence of these
major explanatory factors. Such goals have been achieved
through a 2 step approach consisting of a Ist-round of
multiple regression aiming to detect the factor(s) of
interest, which were then selected for a 2nd-round to
generate predictive models enabling to simulate the
mathematical profile of their influence. We discuss the
results with regards to data reported in literature and we
propose biological hypotheses attempting to rationalize
the present observations and to provide new promising
tracks for future in-depth investigations of the molecular
mechanisms underlying bioenergetic plasticity in photo-
synthetic organisms.
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Results

Design of experiments

A DOE assuming first- and second-order effects was
constructed on the basis of the features summarized in
Table 1 to define a limited number of combinations of
values for the different environmental factors which
altogether were sufficient to cover the whole design
space. JMP calculated that the DOE had to contain at
least 27 combinations for an unbiased subsequent
modeling, and we decided to raise this number up to 42
(+50%) to ensure more confidence toward the analyses.
The resulting DOE is a 2 level fractional factorial design
with additional center points (i.e. combinations for
which all values are equal to the center of the working
range) with some extra-points typically characterizing
the central composite and box-Behnken types of designs
[see Additional file 1 for a complete list of all DOE
items] [33]. A 3 dimensional representative example
of factor dispatching within the design space is illus-
trated in Figure 2 for acetate, ammonium and nitrate
concentrations.

Pearson's correlation coefficients (r) were calculated to
verify that altogether the different DOE items were uni-
formly covering all directions of the design space. These
analyses demonstrated that the factors did not relevantly
correlate to each other (|r| <0.0382, data not shown).
However, while also considering second-order effects, a
much more important correlation was detected in a
small number of cases (Table 2). Remarkably, an abso-
lute correlation of approximately 0.70 was systematically
observed between each single factor and its combination
with CO, concentration. This feature does not reflect a
sub-optimal experimental design (which would generate
a lack of information in some regions of the design
space), but is rather an artificial bias attributable to the
definition of CO, concentration as an ordinal factor.
Due to this particularity, contrarily to the other second-
order interactions (which all imply 2 continuous factors),
the combination between CO, concentration and an-
other factor cannot be expressed as a continuous prod-
uct term, but rather as a 2 component term with a
specific modality for CO, concentration and a specific
numeric value for the other interacting factor. In such a
situation, calculating the correlation between a single

Table 1 Characteristics of the factors in DOE
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factor and its interaction with CO, concentration im-
plies to correlate this factor with itself. The observation
of an absolute correlation coefficient inferior to 1 is only
attributable to the definition in DOE of a different num-
ber of points for the 2 CO, modalities for each value of
the other interacting factor. As shown in Table 2, an im-
portant correlation (|r| =0.5940) could also be noticed
between squared acetate and nitrate concentrations,
which indicates a lack of test points in a particular re-
gion of the design space. Such a collinearity can generate
a bias in modeling (due to leverage effects of isolated
points) only if these squared concentrations are implied
together in the statistical analyses (as discussed below).

Measurements of the responses

Bioenergetic responses were measured for the 42 combi-
nations of factors defined in DOE and are summarized
in Additional file 1. Measurements were not replicated
because a global compensation of the individual experi-
mental errors was expected in subsequent regression
processes. Figure 3 presents typical oxymetric and
chlorophyll fluorescence traces obtained for one of the
center points (DOE item 4) and explains the calculations
of respiratory (panel a) and photosynthetic (panel b) re-
sponses. It has to be noticed that CR and MAcyt could
not be measured in a few cases (DOE items 14 and 28
for CR, 26 for MAcyr) but that the amount of experimen-
tal data (40 and 41, respectively) remains nevertheless
largely sufficient for an unbiased subsequent modeling. As
emphasized by the high relative standard deviations of the
data (RSD =29% for ®PSllgy, and >50% for the other
responses, data not shown), every response is distributed
within a wide range of values, which provides a highly fa-
vorable experimental background for regression processes.

Selection of the major explanatory factor(s)

(1st-round of modeling)

The 1st-round of modeling was performed using the
available set of experimental data to detect the factor(s)
accounting for most of the response variability. First-
and second-order effects were assumed, ie. it was hy-
pothesized that the responses could depend on each
factor linearly or quadratically (for continuous factors)
but also on the interaction between 2 factors. This

Factor Type Unit Xmin/ My Xmax/M2
Light intensity Continuous umo\phomsm’zs’1 0 200
Acetate concentration Continuous gl™ 0 1

CO, concentration Ordinal (2 M) % 0.035 15
Nitrate concentration Continuous mM 0 20
Ammonium concentration Continuous mM 0 15

M, modality; Xmin and Xmax mMinimal and maximal values of the working range (for continuous variables); M; and M,, 2 modalities of CO, concentration.
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[Acetate] (g.L)

[NH;] (mM)

Figure 2 Factor dispatching within the design space for
acetate, ammonium and nitrate concentrations. Each point is an
item of the DOE and its occurrence is indicated by a surrounding
framed number. Black points correspond to the fractional factorial
basis of the design with additional center points. Grey and white
points are extra-points characterizing the central composite and
box-Behnken types of design, respectively.

feature rose up to 19 the number of effects which had
actually to be involved in the modeling processes,
making necessary to get a previous selection to avoid
any possible underestimation of important contributions.
For this purpose, stepwise regressions were undertaken
to define the subset of effects which would provide al-
together the smallest AICc (corrected Akaike informa-
tion criterion) in subsequent modeling. The selected
effects are listed in Table 3 with the corresponding
AICc, clearly showing that the latter is always dramatic-
ally lower than the AICc including all 19 initial effects.
Modeling was performed through standard least
squares multiple regression with the stepwise-selected
effects to establish a predictive mathematical equation
[provided in Additional file 2] associating a theoretical
response with each of the 42 experimental values [ex-
haustive list in Additional file 1]. In equations, CO,
concentration (which is a factor for ®PSllgy, and Pgqp) is

Table 2 Significantly correlated effects and associated
absolute Pearson's correlation coefficients (|r|)

Factor 1 Factor 2 Ir|

[Acetate]*[CO] [Acetate] 0.7135
Light*[CO.] Light 06968
[INHA*[CO] (NH,] 0.7092
INO3T*[CO,] NO5T] 07135
[Acetate]*[Acetate] [NO5 J*[NOs ] 0.5940

The symbol "*" is used to represent second-order effects (quadratic or interactions)
of individual factors.
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present under the form of an additional extension term
due to its definition as an ordinal factor: this extension
is equal to zero for 0.035% CO, and different from zero
for 1.5% CO, [Additional file 2]. As summarized in
Table 3, R?, R* adjusted (which introduces a trade-off for
the number of effects to enable proper comparisons
among models) and fitting root-mean-square error
(RMSEE) were calculated to evaluate the goodness of fit,
and whole-model and lack-of-fit ANOVA tests were
performed to assess the statistical significance of the
models. RMSEr was also standardized in terms of per-
centage of the average scale of the response (i.e. the
difference between the mean and the minimal experi-
mental values) in order to facilitate comparisons of re-
gression error among models. Remarkably, the statistical
insignificance of lack-of-fit tests (p>0.05 in every
model) suggests that no important effect remained unse-
lected through the stepwise regression processes. The
values of R? R* adjusted (=0.70 and 0.64, respectively,
except in case of NPQgoo for which R*=0.52 and R?
adjusted = 0.44) and RMSE (<45% of the average scale)
as well as the p-values of the whole-model ANOVA tests
(p<0.0001 in every model) tend to indicate that al-
together the effects selected through stepwise regression
account for an important part of the response variability.
The relative contribution of the different effects to the
models was further investigated by calculating ANOVA
tests and [-weights (i.e. regression coefficients which
would result from modeling with previous standardiza-
tion of all variables to a mean of 0 and a variance of 1)
for individual effects (Table 3). The absolute value of the
latter parameter participates (together with the p-value
of the ANOVA test) to characterize the extent to which
the effect contributes to the model, and its sign assesses
whether the effect exerts a positive or negative influence
on the response. As shown in Table 3 (in which the ef-
fects are classified by increasing order of p-value), high
absolute [B-weights are always associated with small p-
values. In most cases, B-weights and individual ANOVA
tests lead to establish the same order of importance for
the different effects, with the exception of Pggy, for which
light intensity exhibits a smaller p-value than squared ni-
trate concentration (0.0001 versus 0.0002) but not a
higher absolute p-weight (0.579 versus -0.755); however,
the 2 parameters similarly point out that these effects
are major explanatory ones.

In case of Pgyg, 2 second-order effects which had been
shown to correlate to each other with |r| =0.5940, i.e.
squared acetate and nitrate concentrations (Table 2),
were selected through the stepwise regression process.
These effects exhibit high absolute p-weights and small
p-values (p =0.554/p =0.0039 and [ = -0.755/p = 0.0002,
respectively) comparatively to most of the other effects
of the model (Table 3), suggesting that the regression
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could have been affected by a lack of experimental data
in some regions of the design space. However, the obser-
vation of an insignificant lack-of-fit ANOVA test (p =
0.0874) and of similar R*> adjusted and standardized
RMSE; values (R? adjusted = 0.68; RMSEr =37% of the
average scale) than those of the other models (except
NPQgqo which exhibits a lower R* adjusted; see Table 3)
tend to indicate that no bias was introduced due to this
correlation.

As shown in Table 3, one or several effect(s) which do
not exert any statistically significant influence (p <0.05
cutoff) can be found within the models, and consider-
able differences can even be observed among the relative
contribution of the statistically significant effects as indi-
cated by the important heterogeneity of their p-values
(<0.0001 to 0.0424) and absolute B-weights (0.160 to

0.804). These features suggest that some effect(s) within
the models do not substantially influence the responses
despite their selection through the stepwise regression
processes. Consequently, to avoid overfitting and select
the effects which altogether are sufficient to explain
most of the response variability, a trial-and-error method
consisting of several steps of multiple regression was
used: 1st-round effects were removed successively by de-
scending order of p-value (from 9 to 1, see Table 3) and
modeling was tested with the remaining effects at each
step of the process. The remaining effects were consid-
ered as major explanatory ones when the removal of the
less important of them (i.e. the one exhibiting the
highest p-value) led to the observation of a significant
lack-of-fit ANOVA test (p <0.05) and/or a R? coefficient
lower than 0.60 (except in case of NPQgq for which R? =
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Table 3 Summary of the 1st-round of modeling
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CR

MAcyr

MAALT

AlCcp = 263.56 AlICcyop =203.75

R’ =0.83 R? adjusted = 0.81

RMSEr = 2.7 (37% of the average scale)
Whole-model ANOVA: p < 0.0001*
Lack-of-fit: p=0.4295

AlCcar = 285.34 AlCcyop = 22873
R?=0.70 R adjusted = 0.64

RMSEg = 3.4 (45% of the average scale)
Whole-model ANOVA: p < 0.0001*
Lack-of-fit: p=0.9282

AlCca . = 264.77 AlCCuop = 219.39
R?=0.74 R’ adjusted = 0.68

RMSE: = 2.7 (40% of the average scale)
Whole-model ANOVA: p < 0.0001*
Lack-of-fit: p=0.6110

Factor B p-value Factor B p-value Factor B p-value
1  [Acetate] 0.660 <0.0001* 1 [Acetate] 0.608 <0.0001* 1 [NH,'] -0.465 <0.0001*
2 [NH1 -0.471 <0.0001* 2 Light 0.405 0.0002* 2 Light 0.391 0.0001*
3 Light 0.367 <0.0001* 3 [NH,'] -0.355 0.0007* 3 [Acetate] 0.348 0.0004*
4 [Acetate]*[NH,'] -0.292  0.0002* 4 [NH;T*INOs5] 0.155 0.1125 4  [Acetate]*[Acetate] —0.292 0.0026*
5  [Acetate]*Light 0.160 0.0297* 5 [Acetate]*Light 0.136 0.1635 5 [Acetate]*[NH,'] -0.252  0.0078*
6 [NOs] —-0.095 0.3243 6 [NH,T*[NOs7] 0.248 0.0090*
7 INH S T*Light -0.171 00637
8 [NOs] 0.100 0.2671
®PS"800 NPQBOO P800
AlCca L =—53.30 AlCcyop=—110.93 AlCca . =—25.05 AlCcyop =—78.73 AlCca . =422.01 AlCCyop = 373.30
R’ =0.80 R’ adjusted = 0.76 R?=0.52 R? adjusted = 044 R?=0.75 R? adjusted = 0.68
RMSE = 0.056 (28% of the average scale) RMSEg =0.081 (40% of the average scale) RMSE: =164 (37% of the average scale)
Whole-model ANOVA: p < 0.0001* Whole-model ANOVA: p < 0.0001* Whole-model ANOVA: p < 0.0001*
Lack-of-fit: p=0.1462 Lack-of-fit: p=0.2226 Lack-of-fit: p=0.0874
Factor B p-value Factor B p-value Factor B p-value
1 Light 0.804 <0.0001* 1 [NO31*[NOs7] -0.418 0.0011* 1 Light 0.579 <0.0001*
2 Light*[NH4'] -0.243 0.0029* 2 [Acetate]*Light -0.360 0.0041* 2 [NO3 I*[NOs37] -0.755 0.0002*
3 [Acetate]*[Acetate] —0.225  0.0062* 3 [Acetate] -0.354  0.0046* 3 [Acetate]*[Acetate] 0.554 0.0039*
4 [Acetate] 0.161 0.0424* 4 [NH,'] -0.202 0.0928 4 [NOs] 0.273 0.0043*
5 [COy -0.153 0.0534 5  Light -0.126 02919 5 [NH4TF[NOs7] -0.251 0.0083*
6 [NH47] 0.044 0.5675 6  [NOs] -0.114 0.3388 6  [Acetate]*Light -0216  0.0214*
7 [CO5] 0.152 0.0991
8  [NH4] -0.129 0.1555
9  [Acetate] -0.048  0.5948

AlCcar. and AlCcyep correspond to hypothetical models which would comprise every 19 initial effects and the 1st-round models which only contain the stepwise-
selected effects, respectively. RMSE; standardized in terms of percentage of the average scale (i.e. the difference between the mean and minimal experimental
response values) is displayed to facilitate error comparison among models. Numbers ranging from 1 to 9 classify the different effects by increasing order of
individual p-value, and B-weights are also provided. Statistically significant p-values (p < 0.05) are surrounded by *. Effects which are highlighted in bold were
considered as major explanatory ones and selected for the 2nd-round of modeling.

0.52 in the 1st-round model) (data not shown). As
expected, the selected effects (bold characters in Table 3)
had been shown to exhibit small p-values (p <0.01) and
high absolute B-weights (20.252) in the 1st-round models
comparatively to the unselected effects, which confirms
their particularly important contribution.

As emphasized in Table 3 (bold characters), maximum
3 different environmental factors over 5 (with squared
effects and second-order interactions in some cases) ap-
pear to be sufficient to explain an important part of the
response variability. Acetate concentration and light in-
tensity are major explanatory factors for every response

except for @PSIIgy, for which light intensity is the only
one. In addition, ammonium and nitrate concentrations
seem to influence to a large extent respiratory (CR,
MAcyr, MAarT) and other photosynthetic (NPQggo, Psoo)
responses, respectively, unlike CO, concentration which
does not appear to be an important effector of bioener-
getic plasticity.

Mathematical simulation of the influence of the major
explanatory factor(s) (2nd-round of modeling)

The 2nd-round of multiple regression was performed
with the effects selected through the I1st-round (bold
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characters in Table 3) in order to build a simplified
model for each response. A few unselected first-order
effects were also included in the modeling processes for
NPQgoo (light intensity and nitrate concentration) and
Py (acetate concentration) because of the selection of
second-order effects containing these factors (Table 3).
This process led to establish a simplified mathematical
expression (Equations 1 to 6) associating a new pre-
dicted response with each of the 42 experimental values:

CR = 6.67 + 9.01 [Acetate] + 0.0259 Light-0.428 [NH,"]
-0.566 ([Acetate]-0.463) ([NH,]-7.69)
(1)
MAcyr = 5.81 + 7.58 [Acetate] + 0.0264 Light
-0.283 [NH, "]
(2)
MAarr = 11.1 + 3.64 [Acetate] + 0.0210 Light
~0.318 [NH,4*|-13.5 ([Acetate]-0.488)*
-0.383 ([Acetate]-0.488) ([NH,1]-7.32)
(3)
®PSIIgy = 0.308 + 0.00103 Light (4)

NPQgy = 0.334-0.0877 [Acetate]-0.000146 Light
~0.00146 [NO37]-0.00109 ([NO57]-9.76)>

-0.000918 ([Acetate]-0.488) (Light—107)
(5)
Pyoo = 42.3-3.18 [Acetate] + 0.185 Light + 0.879 [NO5]

+183 ([Acetate]-0.488)°~0.608 ([NO37]-9.76)*

(6)

An exhaustive list of the 2nd-round predicted re-
sponses is provided in Additional file 1, which also
summarizes the 1st-round predicted responses obtained
prior to the restriction of the models to the major
explanatory factor(s). AICc, R?% R* adjusted, RMSEy, -
weights and ANOVA tests for whole-model, individual
effects and lack-of-fit were calculated and are summa-
rized in Figure 4 and Additional file 3. Comparatively to
the 1st-round models, the observations that R* and R>
adjusted decreased by maximum 0.15 and 0.14 units,
respectively, and that AICc and RMSEg did not increase
by more than 8.6 units and 8% of the response average
scale, respectively, tend to confirm that the eliminated
effects did not substantially account for the response
variability. As expected, p-weights and p-values of the
individual ANOVA tests are similar to those of the
1st-round [see Additional file 3], so that the relative
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contribution of the essential effects described in Table 3
seems to be globally conserved.

In Figure 4, experimental values (y) are plotted as a
function of predicted responses (§) calculated from
Equations 1 to 6. The y =y straight line (corresponding
to a perfect match of the model) and the 95%-confidence
intervals of the whole-model ANOVA tests are also rep-
resented for visual evaluation of goodness of fit and stat-
istical significance, respectively (the more the confidence
intervals are close to the y = j straight line, the more the
statistical significance of the model is important). R? R*
adjusted and RMSEr of the different responses (quantify-
ing the goodness of fit) are shown to be >0.60, 20.54 and
<47% of the response average scale, respectively, except in
case of NPQgq for which R? = 0.48 and R> adjusted = 0.41.
ANOVA test p-values (characterizing the statistical signifi-
cance of the models) appear to be inferior or equal to
0.0002 [see Additional file 3]. In Figure 5, contour plots
representing the evolution of the experimental (panel a)
and predicted (panel b) responses as a function of the 2
factors exhibiting the smallest individual effect p-values
[see Additional file 3] are compared and reveal closely re-
lated global profiles. For ®PSlIlgyo, contour plots were re-
placed by line plots since this response was modeled with
only 1 factor (light intensity) in the 2nd-round. These dif-
ferent observations tend to confirm that altogether the ef-
fects included in the 2nd-round of modeling are sufficient
to explain an important part of the response variability.

Figure 6 presents a graphical simulation of the influ-
ence of each factor as predicted by the 2nd-round
models with the corresponding p-weight(s) and individ-
ual effect ANOVA test p-value(s) [see also Additional
file 3]. The mathematical profile of each factor was
established by applying a specific value (i.e. the arith-
metic mean of all DOE items) to the other factors of the
model within Equations 1 to 6 to generate a new single-
unknown predictive equation. In case of quadratic pro-
file, the factor value for which the response is maximal
or minimal (for concave and convex shapes, respectively)
is displayed and the B-weights and p-values are provided
for the first- and second-order parameter estimates. The
profile of light intensity is not presented for NPQgg
since this factor does not relevantly account for response
variability per se (p =-0.120/p = 0.3280); its presence in
the model is exclusively due to a second-order inter-
action with acetate concentration as detailed below. As
expected, in case of linear dependence, increasing and
decreasing profiles are associated with positive and nega-
tive B-weights, respectively; for quadratic relationships,
the type of dependence (convex or concave) is pointed
out by the sign of the B-weight of the second-order
effect (characterizing the second degree coefficient of
the polynomial simulation equation), which is positive
for convex profiles and negative for concave ones.
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Figure 4 Experimental values (y) as a function of predicted responses (y) for the 2nd-round of modeling. The diagonal full straight line
and the curved dotted lines indicate a perfect match of the model (y =) and the 95%-confidence intervals of the whole-model ANOVA test,
respectively. The horizontal dotted straight line represents the mean of the response as experimentally observed. The value indicated in parentheses is
the RMSE: standardized in terms of percentage of the average scale of the response (i.e. the difference between the mean and the minimal

As illustrated in Figure 6, CR linearly depends on acet-
ate concentration (B =0.652), light intensity ( =0.374)
and ammonium concentration (=-0.466) with p<
0.0001 (Figure 6a). MAcyt exhibits a similar dependence
upon these factors with the following parameters: 3 =
0.602/p < 0.0001 for acetate concentration, p=0.419/p =
0.0001 for light intensity and P =-0.337/p =0.0015 for
ammonium concentration (Figure 6b). MA ;7 is linearly
modulated by light intensity (=0.395/p =0.0004) and
ammonium concentration (f§ = -0.450/p < 0.0001), and is
also quadratically influenced by acetate concentration
(p=-0.296/p =0.0058 and P =0.344/p =0.0016 for the

second- and first-order parameter estimates, respectively;
maximum for 0.623 g.L’l) (Figure 6c). ®PSllgo0 and Pgog
linearly increase with light intensity ( = 0.810 and 0.572,
respectively) with p <0.0001. In addition Pgy also qua-
dratically depends on nitrate (B =-0.875/p =0.0002 and
p=0272/p=0.0145 for the second- and first-order
parameter estimates, respectively; maximum for 10.5 mM)
and acetate (B=0.657/p=0.0034 and P=-0.049/p=
0.6448 for the second- and first-order parameter estimates,
respectively; minimum for 0.497 g.L™!) (Figure 6d and f).
NPQgq is quadratically modulated by nitrate concentra-
tion (p=-0.414/p=0.0016 and =-0.120/p =0.3260 for
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factor of the model.
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Figure 5 Comparative profiles of experimental (a) and predicted (b) responses for the 2nd-round of modeling. Graphs were drawn using
JMP on the basis of the 2 explanative factors with the highest individual ANOVA p-value. Data points are positioned on the graphs and their
occurrence is indicated by surrounding numbers. For OPSllgy, line plots are presented instead of contour plots because light intensity is the only

the second- and first-order parameter estimates, respectively;
maximum for 9.1 mM), and also linearly decreases with

acetate concentration (f = -0.360/p = 0.0049) (Figure 6e).

In most cases, mathematical profiles (Figure 6) are not
influenced by the other factors of the model since modi-

tying their value only induces a translation of the graphs
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Figure 6 Simulation of the influence of each major explanatory factor as predicted by the 2nd-round models. Panels a to c are for
respiratory responses (CR, MAcyr and MAx 1, respectively). Panels d to f are for photosynthetic responses (OPSllgao, NPQggo and Pgo, respectively).
The black vertical dotted lines indicate the arithmetic DOE mean, and the small black vertical full straight lines the factor value for which the
response is maximal or minimal in case of quadratic profile. The grey curved dotted lines are the 95%-confidence intervals of the simulation.
B-weights and individual ANOVA p-values [see also Additional file 3] are displayed and highlighted in bold characters while statistically significant
(p <0.05). For quadratic profiles, these parameters are provided for the second- and first-order parameter estimates (symbolized by x* and

X, respectively).

along the ordinate axis without alteration of their
general shape. However, as revealed by the occurrence
of product terms within Equations 1 to 6 (second-order
interactions), a mutual influence between the individual
effects of acetate and ammonium concentrations can be
observed in case of CR (f=-0.297/p=0.0003) and
MAarr (p=-0.263/p =0.0127), as well as a strong influ-
ence of light intensity on the individual effect of acetate
concentration in case of NPQgg ( = -0.366/p = 0.0043).
The negative sign of f-weights indicates that heightening
the value of one of the interacting factors leads to a
decrease of the slope (i.e. the first degree coefficient of the
simulation equation) characterizing the profile of the
other factor. In Figure 7, the influence of each interacting

factor is independently simulated for 2 different values of
the other one (i.e. the minimal and maximal values of the
DOE range; see Table 1) by the same procedure as
described for Figure 6 (the third, non interacting factor is
kept equal to the arithmetic DOE mean). No graph is
presented for light intensity in case of NPQgq, since this
factor poorly contributes to the model (=-0.120/p =
0.3280) whatever the acetate concentration is. Remark-
ably, for CR and MA,rp, the effects of acetate and
ammonium concentrations appear to be weakened and
strengthened, respectively, by increasing the value of the
other factor (Figure 7a and b). Concerning MA 1, rising
ammonium concentration also generates a displacement
of the optimal acetate concentration towards smaller

a £=00003 b 200127 c £=0.0043
309 p=-0.297 =-0.263 0.4 B=0.366
201 o7 Light=0
M A g =
x 201 Cety, te)s g ‘(\:\,Q 4 cetarejﬂ (jn i
1 o-\j‘:“// e lose ek =
TH 15 [Acetate 01
0 : . - - 01 - - ; . : .
0 0.4 08 0 5 10 0 0.4 08 0 5 10 0 0.4 0.8
[Acetate] [NH;] [Acetate] [NH4*] [Acetate]
Figure 7 Second-order interactions characterizing the 2nd-round models. Panels a, b and c are for CR, MAx + and NPQgq, respectively. The
B-weight and individual ANOVA p-value are provided for each interaction. In panel b, the small black vertical full straight lines with surrounding
numbers indicate the optimal acetate concentrations.
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values (maximum for 0.727 and 0.514 gL ™" in case of 0
and 15 mM ammonium, respectively). For NPQgqo, a
relevant effect of acetate concentration is only observed
upon high irradiance (Figure 7c).

Validation of the 2nd-round models: cross-validation and
experimental validation on new random combinations

In parallel to the main goals of the present study (i.e. to
explain response variability and to characterize the influ-
ence of the major explanatory factors), we wondered
whether the 2nd-round models could also be used as
tools to predict the responses associated with any com-
bination of factors within the range of DOE (Table 1).

In order to investigate the predictive ability of the
2nd-round models, experimental data were divided into
k=5 subsets (defined in Additional file 1) and k-fold
cross-validation was undertaken. Each of the 5 test sets
was compared to the corresponding training model
(built from all data except those of the test set) in terms
of cross-validation mean absolute error (MAEcy) and
root-mean-square error (RMSEcy,). Table 4 presents for
each response the average MAEcy and RMSEcy sum-
marizing the deviation of the 5 test data sets to their
respective training model, as well as the average R? R*
adjusted, MAE (fitting mean absolute error) and RMSEg
summarizing the analytical error of the 5 training
models (for an exhaustive description of cross-validation
results, see Additional file 4). The average scales of the
different responses are also provided as a reference to
assess the extent of the deviations. As shown in Table 4,
the R R* adjusted, MAE; and RMSE of the training
models are identical or very similar to those of the 2nd-
round models (which are also presented in Table 4 to
facilitate result overview). Remarkably, the MAEcy and
RMSEcy characterizing the deviation of the test data sets
to their respective training model do not exceed the
analytical error of more than 37% for MAEcy and 21%
for RMSEcy, and these proportions are reduced to 29%
and 12%, respectively, if Pggq is not taken into account.
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In addition to cross-validation, the predictive ability of
the 2nd-round models was also evaluated by measuring
the bioenergetic responses for 6 new randomly-generated
combinations of factors (different from any DOE item)
with 3 experimental replicates each (independent cultures
and functional measurements) (Table 5). Every algal cul-
ture was undertaken with 1.5% CO, for technical conveni-
ence since CO, concentration was not included in the
2nd-round models. Because of the quite large standard
deviations related to NPQgoy measurements (RSD = 19.7%
on average), 2 more combinations were tested for photo-
synthetic responses (total number = 8) in order to increase
confidence toward the general tendency of data. The
predicted responses associated with the random com-
binations were calculated from Equations 1 to 6, as
summarized in Additional file 4. The deviation of the
experimental validation data sets (containing 6 or 8 items)
to the 2nd-round models was assessed in terms of experi-
mental validation mean absolute error (MAEgy,) and root-
mean-square error (RMSEgy) (Table 4); this deviation is
also illustrated in Figure 8, in which the experimental
values are plotted as a function of the predicted ones. As
shown in Table 4, the MAEgy and RMSEgy of the experi-
mental validation data are inferior to the analytical error
of the 2nd-round models for CR, MAcy, MAAT and
NPQgqo; for DPSIIgyy and Pggg, they exceed the analytical
error of only 28 and 27% for MAEgy and 15 and 19% for
RMSEEgy; respectively. As clearly evidenced while compar-
ing Figure 4 and Figure 8a, it has to be noticed that the
responses measured for the new random combinations do
not cover the full range observed in the DOE study
(except for Pgg). This feature could be attributable to the
random choice of the factor values for the 6 or 8 valid-
ation points without consideration of the responses
predicted by the 2nd-round models.

Altogether, these different validation results indicate
that the 2nd-round models can be used as tools to
predict the responses associated with any combination
of factors, with an inherent average deviation being

Table 4 Summary of cross-validation and experimental validation of the 2nd-round models

2nd-round models K-fold cross-validation (average values for k =5) Experimental Average
Training models Test sets validation sets scale

R? R*adj. MAE; RMSEx R’ R*adj. MAE; RMSE MAE., RMSEc, MAE;, RMSEg,
CR 0.81 0.78 22 29 0.81 0.79 22 2.8 26 3.1 19 22 74
MAcyr 064 061 27 35 066 062 26 35 32 39 17 2.1 75
MAALT 064 059 22 30 065 059 2.1 30 27 32 18 19 6.8
OPSllggy 066 065 0.053 0.068 0.65 0.64 0.053 0.068 0.054 0.067 0.068 0.078 0.201
NPQgoo 048 041 0062 0084 050 041 0.061 0.083 0.076 0.093 0.039 0.044 0.205
Psoo 060 054 136 196 060 054 134 196 184 23.7 173 234 439

Cross-validation was performed by the k-fold method with k =5; the R?, R? adjusted, MAE and RMSE presented for the training models (“F”) and the test data sets
(“CV") are the average values compiling the 5 iterations. For each response, the average scale (i.e. the difference between the mean and minimal experimental
values of the DOE study) is also provided as a reference to assess the importance of the deviations. R? adj.,, R? adjusted.
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Table 5 Randomly-generated combinations of factors and associated mean experimental responses used for

experimental validation

[Ac.] Light [NH4" [NO5] [CO,] CR MAcyr MAaLT OPSllgoo NPQgoo Psoo
1 0.58 61 10.0 7.0 15 8.1+05 73+02 10.1£02 0.273+0.019 0.218+£0.020 503+17
2 0.32 58 15.0 30 1.5 6.7+03 58+03 6.6+04 0.250 +0.025 0.183+£0.028 589+24
3 0.21 90 150 9.0 1.5 64+05 6.1£02 80x10 0.369 +0.005 0.235+0.052 64004
4 0.75 65 120 50 1.5 106+08 88+06 83+08 0.307 +0.064 0.166 £0.075 488+16
5 035 144 0.0 10.0 1.5 90+13 83+08 129+09 0428 +0.013 0.244 £ 0.042 1349+9.1
6 0.25 75 75 100 1.5 52+07 52+07 72+06 0.270+0.022 0.273 £0.025 713£39
7 0.82 167 0.0 0.0 15 0467 +0.054 0.097 £0.021 152+32
8 1.00 21 15.0 0.0 1.5 0.260 +0.015 0.133+£0.024 232+19

Data result from 3 independent sets of cultures and measurements. [Ac.], acetate concentration.

quantified by the MAEr and RMSEg characterizing the
analytical error of the models. As deduced from Table 4,
this deviation is comprised between 26 and 36% of the
response average scale for MAEr and 34 and 47% for
RMSEE.

Discussion

In the present work, DOE coupled to standard least
squares multiple regression have been used to model the
dependence of different respiratory (CR, MAcyr, MAarT)
and photosynthetic (Pgog, PPSIlgpy, NPQgop) responses
upon the concomitant modulation of light, carbon and
inorganic nitrogen sources in the culture medium of C.
reinhardtii. This methodology was applied to characterize
the extent to which the different environmental factors
contribute to bioenergetic plasticity (through a 1st-round
of modeling) as well as the mathematical profile of their
influence for those accounting for most of the response
variability (through a 2nd-round of modeling). Altogether,
these analyses provide an overview of the bioenergetic

adaptations resulting from global changes in culture con-
ditions. This type of sequential statistical approach, which
is commonly undertaken for the optimization of industrial
production yields and the design and analysis of “-omics”
experiments, had never been used to characterize the bio-
energetic plasticity of photosynthetic cells. The individual
influence exerted by one or a few environmental factor(s)
(maintaining the others constant) on the cellular bioener-
getics and metabolism had extensively been studied inde-
pendently, but little information was available concerning
their cumulative effect and their relative contribution to
bioenergetic plasticity in a context in which they vary
concomitantly in the medium.

The present analyses demonstrate that maximum 3
environmental factors over 5 are sufficient to explain
most of the response variability (Table 3) and remarkably
evidence squared effects and second-order interactions
in some cases (Figure 6; Figure 7). As shown in Figure 4,
comparatively to the other responses, lower R* and R*
adjusted characterize the 2nd-round models obtained for
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Figure 8 Mean experimental values as a function of predicted responses for random combinations in Table 5. Mean experimental values
(y) result from 3 independent sets of cultures and measurements. Predicted responses (y) were calculated from Equations 1 to 6 (2nd-round
models). The diagonal full straight line represents a perfect match of the model (y = ). In panel a, axis scaling is identical to that of Figure 4 to
facilitate visual comparison. The framed zone in panel a is enlarged in panel b, in which scaling is adapted to data points and standard deviations
are drawn except in case of they are comprised within the limits of the markers. For Pgqo, standard deviations are presented in panel a since it
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NPQgqo (this difference was also noticed in the 1st-
round models; see Table 3). Such discrepancies could (at
least partly) be attributable to the higher experimental
error inherent to NPQgo, measurements (see in Table 4
and Figure 8b the large standard deviations among the 3
experimental replicates of the random combinations
tested for model validation: on average, RSD =19.7% for
NPQgoo and <9.0% for the other responses).

In order to check whether the 2nd-round models
could also be used to predict the responses associated
with any combination of factors within the range of
DOE (Table 1), k-fold cross-validation and experimental
validation tests on new random combinations have been
undertaken. The similarity between the deviation of the
validation points (quantified using MAEcy/MAEgy and
RMSEcy/RMSEgy) and the analytical error of the
training or 2nd-round models (for cross-validation and
experimental validation, respectively) tend to confirm
the predictive ability of the 2nd-round models (Table 4).
It must nevertheless be emphasized that deviations of 26
to 36% of the response average scale (in terms of MAEp)
or 34 to 47% (in terms of RMSEE) corresponding to the
analytical error of the 2nd-round models are inherent to
the predictions.

In literature, O, evolution commonly appears to be
normalized in terms of chlorophyll concentration. How-
ever, in the present analyses, it was rather chosen to use
protein concentration because of the high dependence
of C. reinhardtii pigment content upon culture condi-
tions, particularly light and acetate [40-42]. Our un-
conventional normalization strategy could therefore
generate apparent discrepancies between previously
reported studies and the present results in some cases.

In the following sections, the authors will attempt to
propose literature-based hypotheses addressing the pos-
sible biological implications of their observations. They
insist on emphasizing that these hypotheses must not be
considered as firm assertions, but rather aim to provide
tracks for future in-depth molecular investigations.

Light stimulates CO, fixation through the Calvin cycle

and provides mitochondrial respiration with oxidizable
substrates

The gross photosynthetic O, evolution and the quantum
yield of photosystem II of C. reinhardtii cells adapted to
moderate light intensities (0-200 umol]g,hotom,.m’z.s’1
have been measured under 800 pmolphomns.m’z.s
Under such a so-called “saturating” intensity, the elec-
tron transport rate (ETR) is not limited by light availabil-
ity but rather by the capacity of downstream metabolic
pathways that consume photo-generated reductant and
ATP (such as the Calvin cycle). In these conditions, the
gross O, evolution (which is partly mediated by the rate
of water photolysis) can primarily be considered as

-1
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representative of the capacity of these pathways, even if
numerous studies indicate that complex photosynthesis-
associated O,-consuming processes (particularly PTOX
chlororespiration and Mehler reaction) can also import-
antly contribute in some circumstances to modulate this
response in C. reinhardtii [43].

The present analyses indicate that light intensity exerts
a positive linear influence on ®PSIIgy, and Pgy (Figure 6d
and f). Accordingly, the maximal gross O, evolution was
previously reported to be doubled in C. reinhardtii cells
grown under illumination of 400 |,lmolphomns.m’Z.S’1 com-
paratively to a lower illumination of 50 pmolphomm.m’z.s’1
[40]. These observations could (at least partly) be attribut-
able to the well-known stimulation of the expression and
activity of Calvin cycle enzymes by light [44], in good
agreement with the higher CO, fixation rates observed
upon increasing illumination in C. reinhardtii [45]. This
improvement of CO, fixation by light was reported to be
correlated to higher cellular metabolite content, respira-
tory O, consumption and TCA cycle-mediated CO, pro-
duction, in line with the linear stimulation of CR, MAcyt
and MA,r1 by light which could also be detected here
(Figure 6a to c). For MAcyr and MA 11, the term “appar-
ent” is used because measurements were carried out on
entire cells but not on isolated mitochondria. The avail-
ability of respiratory substrates could therefore not be dir-
ectly controlled, so that the measured maximal activities
could have been underestimated comparatively to the ac-
tual capacities if the intracellular reductant concentration
was insufficient to saturate the mitochondrial electron
transport chain in the presence of KCN or salicylhydroxa-
mic acid (SHAM).

In apparent contradiction with these considerations,
the present analyses did not retain CO, concentration as
a major explanatory factor of bioenergetic plasticity
(Table 3). Such an absence of influence had already been
highlighted for the maximal gross O, evolution in a
previous study, in which the sum between the net O,
evolution monitored under 600 |Vlmolphotons.m’z.s’1 and
the dark respiration measured before illumination was
shown to be similar in low and high CO,-grown C. rein-
hardtii cells [46]. These observations could be explained
by the existence of a low CO,-inducible CCM in C. rein-
hardtii, by which a high CO, availability for Rubisco is
maintained in low CO, condition. Several transcriptomic
analyses demonstrated that adaptation to different CO,
concentrations mainly occurs through the regulation of
the genetic expression of CCM components but not
Calvin cycle enzymes in C. reinhardtii [47-49]. Moreover,
transferring C. reinhardtii cells from high to low CO,
external concentration was shown to result in a transient
decrease of the amount of the small and large Rubisco
subunits before returning (within the time period required
to induce CCM) to the levels characterizing high CO,-
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grown cells [50]. Altogether, these different observations
and the present ones tend to indicate that adaptation to
low CO, environment in C. reinhardtii principally occurs
through CCM induction but not Calvin cycle regulation.

Acetate down-regulates the capacity of the Calvin cycle
and promotes its own uptake and storage to counteract
the osmotic stress associated with high extracellular
acetate concentrations

The present analyses indicate that Pgoy depends on acet-
ate concentration following a quadratic convex profile
with a minimal value for 0.497 gL' (Figure 6f). In a
previous study, the net O, evolution measured under
600 |,lmolphotons.m’2.s’1 was shown to decrease with
acetate concentrations ranging from 0 to 1.75 g.L™%, but
rates had been normalized in terms of chlorophyll
concentration and cultures conducted under the same
saturating light intensity than that of measurements
(600 pmolphotons.m’z.s’l) [51].

In C. reinhardtii and Chlorogonium elongatum (a
closely related unicellular green alga), acetate is known
to repress the expression of the genes encoding the
small and large Rubisco subunits (rbcS and rbcL, re-
spectively), thereby lowering the capacity for CO, fix-
ation through the Calvin cycle [51-53]. In this context,
carbon originating from acetate can substitute for up to
half the photoautotrophically-generated biomass content
[51,54], and light-driven photosynthetic reactions im-
portantly contribute to provide reductant and ATP for
biosynthetic acetate assimilation (as shown in Chlamydo-
monas mundane) [55]. In heterotrophically-grown C. rein-
hardtii cells, acetate storage as starch is also known to be
promoted through the improvement of the expression and
activity of enzymes of the glyoxylate cycle (as isocitrate
lyase, ICL) and gluconeogenesis [56,57]. In parallel to its
influence on carbon metabolism, acetate inhibits C.
reinhardtii heterotrophic growth beyond 0.4 gL' in the
medium (“substrate inhibition”) [58]. From this concentra-
tion, the osmotic potential reaches a critical value beyond
which active transport processes are impaired and energy
requirements for cellular maintenance are considerably
heightened. Interestingly, for Pggo, the present analyses
point out a “concentration of inflexion” (0.5 g.L.”" approxi-
mately) which is very close to the critical substrate
inhibition concentration of 0.4 g.L”* (Figure 6f). This ob-
servation tends to indicate that Pgyy could be influenced
by 2 independent acetate-responsive metabolic processes
consuming photo-generated reductant and ATP: the
Calvin cycle (repressed while increasing acetate concen-
tration due to Rubisco down-regulation) and the biosyn-
thetic assimilation of acetate (stimulated while increasing
acetate concentration, especially beyond 0.5 gL', to
promote acetate uptake and storage in order to attenuate
the osmotic stress).
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Acetate stimulates mitochondrial respiration by
heightening the intracellular reductant content and the
capacity of the cytochrome pathway

The present analyses indicate that acetate concentration
exerts a positive linear influence on CR and MAcyr
(Figure 6a and b). Accordingly, when grown in an
acetate-containing medium, C. reinhardtii cells were
previously shown to exhibit a twice-enhanced respiratory
rate (partly due to the improvement of the intracellular
reductant content in mixotrophic condition) [59] as well
as increased transcript levels for diverse components of
oxidative phosphorylation, suggesting a higher capacity
of the cytochrome pathway [60]. In parallel, MAart
depends on acetate concentration following a quadratic
concave profile with an optimum for 0.623 g.L ™", As il-
lustrated in Figure 6c, this response can nevertheless be
considered as linearly stimulated up to 0.5 g.L " acetate
without further increase beyond this concentration. This
observation tends to indicate that substrate-saturation
of the alternative pathway in the presence of KCN
could be reached beyond 0.5 g.L. ™! acetate, which would
imply that AOX capacity is not responsive to acetate
concentration. Accordingly, enhancement of the cap-
acity of the cytochrome pathway was already suggested
to contribute to the acetate-induced improvement of
dark respiration without concomitant modification of
AOX capacity [61].

Acetate inhibits NPQ through repression of the LHCSR3-
dependent gE component

The present analyses demonstrate that acetate concen-
tration exerts a negative linear influence on NPQgg
(Figure 6e), but only in case of high light intensity
(Figure 7c). Interestingly, the extent of qE has recently
emerged as being dramatically lowered by the presence
of acetate in the growth medium, as notably evidenced
by Finazzi and co-workers who demonstrated that qT
is the major contributor to the global NPQ in
mixotrophically-grown C. reinhardtii cells [62]. Even if
the molecular mechanisms underlying the functional re-
lationship between NPQ and acetate are not yet under-
stood, the present results tend to confirm these findings
and indicate that the magnitude of the inhibitory effect
of acetate on gE could depend on its external concentra-
tion. Recently, qE has been proposed to be mediated by
LHCSR3, a light-harvesting complex orthologue which is
only expressed upon high irradiance [63,64]. NPQ plasti-
city induced in response to changing environmental con-
ditions (such as different acetate concentrations) could
therefore be disabled in the dark and low light intensities
due to the down-regulation of LHCSR3. These interpre-
tations must be considered with caution due to the im-
possibility to distinguish the contributions of qE and qT
to the global NPQ here.
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Mitochondrial respiration contributes to provide nitrate
assimilation with reductant through the acetate-dependent
activity of AOX

Ammonium concentration is shown here to exert a
negative linear influence on CR, MAcyr and MAr
(Figure 6a to c). In Selenastrum minutum (another green
alga), mitochondrial respiration was proposed to play a
role in nitrate assimilation by acting as a trigger factor
for the TCA cycle. This would in turn promote the pro-
duction and export of reductant in the cytoplasm and
the chloroplast to support nitrate reduction [65]. In C.
reinhardtii, the enzymatic activity and genetic expression
of proteins involved in nitrate assimilation are known to
be repressed by ammonium [20,21]. These regulatory
events are responsible for a strict control of inorganic
nitrogen uptake and assimilation by ammonium avail-
ability and enable to preferentially exploit this reduced
N form if nitrate is also present in the medium [18].
Such a primary control of nitrate assimilation by ammo-
nium could rationalize the present observations with
regards to the postulated role of mitochondrial respir-
ation in this metabolic process.

For MA 1, ammonium concentration is the factor
which explains the highest proportion of response vari-
ability (B =-0.450/p <0.0001; Figure 6c). Interestingly,
the gene encoding AOX (AoxI) is known to be located
within a gene cluster which also encodes components of
the nitrate assimilatory pathway and is tightly regulated
by the nitrogen source [66]; consequently, AOX expres-
sion and capacity were shown to be induced by nitrate
and repressed by ammonium in a concentration-
dependent manner [61]. With regards to the peculiar
genetic localization and regulation of AoxI, the postu-
lated role of mitochondrial respiration in nitrate assimi-
lation was proposed to be essentially mediated by AOX,
as also indicated by a recent comparative proteomic
study published by our group [67]. The present results
are in good agreement with these findings.

Interestingly, a mutual influence could be detected
between the individual effects of acetate and ammonium
concentrations for CR and MA ;1 (second-order inter-
actions). As illustrated in Figure 7a and b (left panels),
the effect of acetate concentration is attenuated by am-
monium. For MA 517, there is also a displacement of the
optimal acetate concentration toward smaller values
with increasing ammonium concentration (0.727 and
0.514 gL ™" for 0 and 15 mM ammonium, respectively).
These results are consistent with a negative influence of
ammonium concentration on AOX capacity. They also
tend to confirm that the involvement of mitochondrial
respiration in nitrate assimilation is essentially mediated
by AOX since no relevant second-order interaction was
retained for MAcyr. Reciprocally, as illustrated in
Figure 7a and b (right panels), ammonium concentration
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exerts a relevant influence on CR and MA 1t only upon
high acetate concentration (these responses exhibit a
basal ammonium-independent value in the absence of
acetate). This observation tends to indicate that acetate
assimilation could provide the TCA cycle with oxidizable
substrates to support the involvement of AOX in nitrate
assimilation.

Nitrate assimilation is retro-inhibited to prevent the
deleterious effects of nitrite and ammonium intracellular
accumulation

The present analyses demonstrate that nitrate concen-
tration exerts a quadratic concave influence on Pggo with
an optimum for 10.48 mM (Figure 6f). In C. reinhardtii,
photosynthesis is known to contribute to provide nitrate
reduction with electrons (together with mitochondrial
respiration as stated beyond) [22,23,67], so that the rate
of nitrate assimilation can influence Pgy, in the same
way as for the Calvin cycle. The effect of nitrate on Pggq
can therefore be thought to result (such as for acetate)
from 2 distinct metabolic processes of which the relative
importance varies with nitrate concentration: substrate
stimulation of reductase activity (predominant from 0 to
10 mM) and retro-inhibition of nitrate reduction by
nitrate-derived intracellular ammonium (predominant
beyond 10 mM). Such a retro-inhibition could attenuate
the production of nitrite and ammonium (despite the
higher nitrate availability) and prevent the deleterious
effects which would result from their intracellular
accumulation (nitric oxide overproduction and buffering
disturbance, respectively) [20,68,69].

Similarly to Pgpp, NPQggo also depends on nitrate
concentration following a quadratic concave profile with
an optimum for 9.09 mM (Figure 6e). Assuming that the
NADPH-to-ATP stoechiometric ratio of nitrate assimila-
tion is superior to the yield of photosynthesis, the
reoxidation of photo-generated reductant may not be
paralleled with ATP turnover. This feature could result
in heightening ApH across the thylakoid membrane,
which would in turn stimulate high energy state chloro-
phyll de-excitation (qE) in an extent depending on the
rate of nitrate assimilation.

Conclusions

In the present work, DOE coupled to standard least
squares multiple regression have been applied to model
the dependence of respiration and photosynthesis upon
light, carbon and inorganic nitrogen sources in C. rein-
hardtii through a 2 step approach consisting of 2 succes-
sive rounds of modeling. This methodology enabled to
demonstrate that maximum 3 environmental factors over
5 account for most of the variability of the different re-
sponses (i.e. can induce a relevant bioenergetic plasticity)
and also permitted to obtain a mathematical simulation of
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the influence of the major explanatory factors. Altogether,
these results provide an overview of the adaptations of C.
reinhardtii bioenergetic pathways to changing culture
conditions and point out new promising tracks for future
more specific investigations. In order to further char-
acterize the molecular adaptations underlying the present
functional observations, we have undertaken a DOE-based
comparative proteomic analysis (using two dimensional-
differential in-gel electrophoresis) coupled to the determin-
ation of pigment and lipid composition by chromatography,
of which the results are currently being modeled.

Methods

Algal cultures

The cwlS mt" wall-less strain 83 of C. reinhardtii
[70] was pre-cultured at 25°C in 1 L Erlenmeyer flasks
under orbital agitation (120 rpm), moderate light in-
tensity (75 pmolphotom.m’z.s’l) and ambient air in
400 mL of a classical pre-culture medium (NaNOj
20 mM, K,HPO, 54 mM, KH,PO, 4.6 mM, MgSO,
1.4 mM, CaCl, 450 uM, oligo-elements (H3BO3 180 uM,
ZnSO, 75 puM, MnCl, 25 pM, FeSO, 18 pM, CoCl,
6.8 uM, CuSO, 6.3 pM, (NH4)sMo,;0,, 890 nM), Tris—
HCl 20 mM pH 7.2) (photoautotrophic growth). After
6 days, pre-cultured algae were span down by centrifuging
at 1,000 g for 3 min and washed once in the targeted cul-
ture medium by successive resuspension and centrifuga-
tion to eliminate pre-culture medium. Algae were finally
resuspended in 75 mL of targeted culture medium,
transferred to lab-scale tubular photobioreactors (Multi-
Cultivators MC 1000, Photon System Instruments)
allowing an accurate control of light intensity (from 0 to
200 umolphomns.m’z.s’l) and cultured for 48 h at 25°C
prior to performing functional measurements. Algal
cultures were bubbled either with ambient air or with a
mixture composed of 98.5% ambient air and 1.5% CO,.
Culture media invariably contained K,HPO, 54 mM,
KH,PO,4 4.6 mM, MgSO, 1.4 mM, CaCl, 450 pM, oligo-
elements (see above), Tris—HCI 20 mM pH 7.2. Acetic
acid (O to 1 g.L’l), NaNO; (0 to 20 mM) and/or NH,CI (0
to 15 mM) could also be added to reach a definite concen-
tration depending on the specificity of each culture
medium. Given the high dependence of algal growth rate
upon environmental conditions, algal cultures were inocu-
lated at a variable initial cellular density allowing to reach
a dry biomass concentration of 250 pg.mL™' (approxi-
mately corresponding to an absorbance of 1.1 at 750 nm)
after 48 h. To measure the dry biomass concentration,
samples of algal cultures were washed twice with milliQ
water and dried for 24 h at 75°C.

Measurements of respiratory responses: CR, MAcyr, MAL T
48 h-old algal cultures were concentrated up to a 500 pg.
mL™" dry biomass to optimize resolution of functional
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measurements. For this purpose, algae were span down by
centrifuging at 1,000g for 3 min, half of the culture
medium was removed and algal pellets were resuspended
in the remaining volume. Respiratory parameters were
determined by oxygen concentration measurements using
Clark electrode and related oxygraph device and software
(Hansatech). Measurements were carried out in the dark
at 25°C. Oxygen concentration was monitored for 4 min
before adding SHAM 2 mM (as a specific inhibitor of the
alternative pathway) or KCN 2 mM (as a specific inhibitor
of the cytochrome pathway). After 4 more min, KCN
2 mM or SHAM 2 mM was further added, respectively,
and oxygen concentration was monitored for 4 min before
ending record (total time: 12 min). The experiment was
carried out twice by reversing the addition order of
inhibitors (KCN + SHAM and SHAM + KCN). Cellular
respiration (CR) was considered as the oxygen consump-
tion rate in the absence of inhibitors (mean of the 2
independent measurements). Apparent maximal activities
of cytochromial (MAcyt) and alternative (MAart) path-
ways were assessed as the oxygen consumption rates in
the presence of SHAM or KCN alone, respectively. In
each case, the weak oxygen consumption rate remaining
after adding the 2 inhibitors (residual respiration due to
inhibitor-insensitive cellular oxidases) was substracted.
Oxygen consumption rates were reported to protein
concentration of algal suspension and expressed in
nmolOz.min’I,mg;,rlotemS.

Measurements of photosynthetic responses: ®PSllgq,
NPQSOOI PBOO

48 h-old algal cultures were diluted down to 80 pg.mL™"
dry biomass (approximately corresponding to 8 pg/mL
chlorophylls) to avoid any light screen effect which
would otherwise affect functional measurements. For
this purpose, a culture sample was centrifuged at 10,000 g
for 3 minutes to spin down algae and the supernatant,
only containing culture medium, was added to an un-
treated culture sample following a 2:1 volume ratio to
generate a 3-fold dilution of algal suspension. Photosyn-
thetic parameters were determined using a PAM fluor-
imeter coupled to an oxymetric device (Clark electrode
and oxygraph) (Hansatech). Measurements were carried
out at 25°C in the presence of NaHCO3; 10 mM to avoid
any experimental bias due to CO, limitation. Chloro-
phyll fluorescence and oxygen concentration were moni-
tored for 6 min without actinic light and for 6 more min
under a saturating actinic light of 800 umolphotons.m’z.s’1
(total time: 12 min). 2 pulses of saturating light (5,000
pmolphotons.m’z.s’1 for 2.5 s) were applied after 5 and
11 minutes to close transitorily all photosystem II Q4 cen-
ters, resulting in a brief fluorescence raise before returning
instantaneously to the baseline level. Chlorophyll fluores-
cence traces were analyzed to determine the value of F
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(fluorescence baseline under 800 umolphomm.m’z.s’l) as
well as Fy and Fy/ (maximum fluorescence values
reached during the saturating pulse in the dark and under
800 pmolphotons.m’z.s’l, respectively). These values were
used to calculate ®PSIIgy, = (Fa/-F)/Fpt) [8] and NPQggo =
(Fam-Em)/Ea) [9]. Oxygen concentration traces were
employed to calculate Pggy by adding the dark oxygen
consumption rate to the net oxygen release rate moni-
tored under 800 pmolphotons.m’z.s’l. Oxygen consump-
tion rate was reported to protein concentration of algal
suspension and expressed in nmolOz.min’l.mggrloteins.

Determination of protein concentration

In case of respiratory and photosynthetic measurements,
1 mL and 6 mL of algal suspension, respectively, were
centrifuged at 10,000 g for 5 minutes. Algal pellets were
invariably resuspended in 1 mL extraction buffer (NaCl
150 mM, EDTA 1 mM, Triton X-100 1%, Tris—HCI
50 mM pH 7.5) and 25 mg polyvinylpolypyrrolidone
(PVPP, insoluble in aqueous solution) were further
added to complex polyphenols which would otherwise
interfere with protein assay. Samples were sonicated at
3 Amp for 30 s on ice (Sonifier Cell Disruptor B-12,
Branson) and thoroughly vortexed for 5 min at 4°C.
PVPP was span down by centrifuging at 10,000g for
5 min and the supernatant was used for determination
of protein concentration (mg.mL™") by a Reagent Com-
patible/Detergent Compatible protein assay kit (Bio-Rad)
derived from the Lowry-Ciocalteu method (for details
see the manufacturer’s instructions) [71].

Statistical analyses related to DOE and multiple
regression

All statistical analyses were carried out using the JMP 10
software from SAS Institute. The DOE was constructed
using the “custom designer” module with a single
continuous response as described in Table 1. First- and
second-order effects were considered, i.e. it was assumed
that the response could depend on each factor linearly
or quadratically (for continuous factors) but also on the
interaction between 2 factors. The presence of 7 “center
points”, i.e. combinations of factors for which all the
values are equal to the center of the working range, was
imposed in DOE.

Stepwise regressions were undertaken with minimum
AICc as stopping rule and the following features as
selection process: forward (progressive selection of the
effects) and combine (automatic selection of a first-order
effect in case of a second-order one containing the same
environmental factor is selected). Comparatively to AIC
(the corresponding “uncorrected” Akaike information
criterion), AICc introduces a supplemental penalty while
increasing the number of factors and experimental data
to avoid overfitting. It is believed to exhibit theoretical
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and experimental advantages in the field of regression-
based modeling in comparison with other likelihood-
derived statistical parameters such as the Bayesian
information criterion (BIC) [72].

Modeling was performed through standard least
squares multiple regression to minimize the error mean
square between experimental (y) and predicted () re-
sponses by adjusting the coefficients of the following
type of equation:

y =bo+ Z bix; + Z byxixj + Z bix! + e

where b, is the intercept (constant term), x; .- ; the
factors, b;, b; and b;; the respective linear, interaction
and squared parameter estimates and e the residual.
One-way ANOVA statistical F-tests, coefficients of
multiple determination (R* and R* adjusted) and fitting
root-mean-square error (RMSEg) were calculated on the
basis of total, model and error sum of squares (SS)
resulting from the distances illustrated in Figure 9.
ANOVA tests were undertaken on the basis of mean
squares (MS) calculated from model and error SS with k
and n-k-1 degrees of freedom (DF), respectively, where k
is the number of factors and n the number of experi-
mental values (MS =SS/DF). R? was assessed as the
quotient between model and total SS to estimate the
proportion of the variability of the response which can
be attributed to the model. R* adjusted was calculated as
1-error MS/total MS (with n-1 DF for determination of
total MS) to introduce a trade-off for the number of

A Data point

Experimental responses (y)

Predicted responses (§)

Figure 9 Distances used for SS determination in the context of
R? R? adjusted, RMSE; and ANOVA test calculations. Distances
1, 2 and 3 were employed for the assessment of total, model and
error SS, respectively.
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factors, as required to perform proper comparisons of
goodness of fit among different models. RMSEr was ob-
tained from error MS and standardized in terms of per-
centage of the average scale (i.e. the difference between
the mean and the minimal values of experimental data).

Whole-model ANOVA tests were applied to char-
acterize the statistical significance of the models. The
F-ratio was calculated as the quotient between model
and error MS and the null hypothesis (i.e. MS equality)
was rejected for p <0.05, indicating the variability of the
response to be predominantly attributable to one or
several first- or second-order effect(s).

Individual effect B-weights and ANOVA tests were cal-
culated to compare the relative contribution of the dif-
ferent effects to the model. B-weights are the regression
coefficients which would be obtained if the different
variables had been standardized to a mean of 0 and a
variance of 1 prior to modeling. The more the absolute
value of this parameter is high, the more the weight of
the effect within the model is important. Individual
effect ANOVA tests characterize the extent to which the
regression error would be increased if modeling was per-
formed without the effect. Effect SS was assessed as the
difference between the error SS of the model deprived of
the effect and the actual error SS of the model, 1 DF be-
ing used for subsequent MS determination. The F-ratio
was calculated as the quotient between effect and error
MS and the null hypothesis was rejected for p <0.05,
indicating the effect to be statistically significant (the
smaller the p-value, the stronger the contribution to the
model).

Lack-of-fit tests were carried out to estimate the likeli-
hood for the model to lack one or several important
effect(s). Pure error SS was assessed as the error SS of a
saturated model, and lack-of-fit SS as the difference be-
tween error and pure error SS; for detailed explanation,
see [73] and the “Regression Reports” webpage of the
JMP online support [74]. The F-ratio was calculated as
the quotient between lack-of-fit and pure error MS and
the null hypothesis was rejected for p <0.05, indicating
at least one important effect to be missing in the model.

Model validation

Cross-validation was performed by the k-fold method
with k=5 using the Statistica 10 software from Statsoft.
The deviation of each test data set to its training model
was quantified in terms of MAEcy (cross-validation
mean absolute error) and RMSEcy (cross-validation
root-mean-square error). R%, R? adjusted, MAEy (fitting
mean absolute error) and RMSE inherent to the train-
ing models were also calculated to assess the goodness
of fit. In addition, responses were measured for several
randomly-generated combinations of factors (different
from any combination included in DOE) and the
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deviation of these experimental validation data sets to
the 2nd-round models was assessed in terms of MAEgy,
(experimental validation mean absolute error) and
RMSEEgy (experimental validation root-mean-square error).

Artwork and graph designs

Artwork was undertaken using the PowerPoint and
Picture Manager softwares of the 2007 Microsoft Office
suite. Data obtained from functional measurements were
processed using the Excel software from the same com-
pany to calculate respiratory and photosynthetic re-
sponses and display them graphically. Graphs reporting
results of multiple regressions and mathematical simula-
tions (including line plots and contour plots) were
drawn using the JMP 10 software from SAS Institute.

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its additional files.
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restriction of the models to the major explanatory factor(s) (as done in
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ANOVA tests of the 2nd-round of modeling. Numbers ranging from 1
to 5 classify the different effects by increasing order of individual p-value.
P-values which are surrounded by * are considered as statistically
significant (p < 0.05).
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