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Abstract 

Background:  Swine are considered a major source of foodborne salmonellosis, a public health issue further compli‑
cated by the circulation of multidrug-resistant Salmonella strains that threaten the safety of the food chain. The cur‑
rent study aimed to identify patterns that can help to understand the epidemiology of antimicrobial resistance (AMR) 
in Salmonella in pigs in Spain through the application of several multivariate statistical methods to data from the AMR 
national surveillance programs from 2001 to 2017.

Results:  A total of 1,318 pig Salmonella isolates belonging to 63 different serotypes were isolated and their AMR 
profiles were determined. Tetracycline resistance across provinces in Spain was the highest among all antimicrobi‑
als and ranged from 66.7% to 95.8%, followed by sulfamethoxazole resistance (range: 42.5% − 77.8%), streptomycin 
resistance (range: 45.7% − 76.7%), ampicillin resistance (range: 24.3% − 66.7%, with a lower percentage of resistance in 
the South-East of Spain), and chloramphenicol resistance (range: 8.5% − 41.1%). A significant increase in the percent‑
age of resistant isolates to chloramphenicol, sulfamethoxazole, ampicillin and trimethoprim from 2013 to 2017 was 
observed. Bayesian network analysis showed the existence of dependencies between resistance to antimicrobials of 
the same but also different families, with chloramphenicol and sulfamethoxazole in the centre of the networks. In the 
networks, the conditional probability for an isolate susceptible to ciprofloxacin that was also susceptible to nalidixic 
acid was 0.999 but for an isolate resistant to ciprofloxacin that was also resistant to nalidixic acid was only 0.779. An 
isolate susceptible to florfenicol would be expected to be susceptible to chloramphenicol, whereas an isolate resist‑
ant to chloramphenicol had a conditional probability of being resistant to florfenicol at only 0.221. Hierarchical clus‑
tering further demonstrated the linkage between certain resistances (and serotypes). For example, a higher likelihood 
of multidrug-resistance in isolates belonging to 1,4,[5],12:i:- serotype was found, and in the cluster where all isolates 
were resistant to tetracycline, chloramphenicol and florfenicol, 86.9% (n = 53) of the isolates were Typhimurium.

Conclusion:  Our study demonstrated the power of multivariate statistical methods in discovering trends and pat‑
terns of AMR and found the existence of serotype-specific AMR patterns for serotypes of public health concern in 
Salmonella isolates in pigs in Spain.

Keywords:  Multidrug resistance, Multivariate analysis, Typhimurium, 1,4,[5],12:i:-, Bayesian network analysis, 
Hierarchical clustering
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Introduction
The emergence of antimicrobial resistance (AMR) causes 
a substantial burden on human health and has a strong 
impact on the economy. Up to 33,000 deaths are attrib-
uted or related to multidrug-resistant (MDR, usually 
defined as resistance to 3 or more antimicrobial classes 
[1]) bacterial infections every year in Europe, costing 1.5 
billion Euros [2]. This phenomenon is well-characterized 
in the case of non‐Typhoidal Salmonella [3, 4], one of 
the main foodborne zoonoses worldwide [5], for which 
resistant isolates have been associated with more severe 
conditions and higher mortality [6, 7].

Resistant non‐Typhoidal Salmonella strains that show 
multidrug-resistant phenotypes, such as Typhimurium 
phage type DT104 (characterized by penta-resistance to 
ampicillin, chloramphenicol, streptomycin, sulfonamides 
and tetracycline ─ ACSSuT), are of special concern from 
a public health perspective [8]. Many phenotypic resist-
ant patterns (resistotypes) have been reported in Salmo-
nella, with their distribution and prevalence changing 
over time and space [9–11]. The interplay between Sal-
monella serotypes and resistotypes further complicates 
the picture, since the serotype of Salmonella has been 
shown to be associated with the pathogenicity, virulence, 
host range, and, most relevant here, AMR profile [12–14], 
and certain serotypes tend to show higher levels of resist-
ance. For example, the proportion of MDR strains among 
Derby human clinical isolates in Europe in 2017 was 
lower than among Typhimurium and 1,4,[5],12:i:-  [12]. 
Liao et  al., (2019) also suggested serotype-specific evo-
lutionary patterns of AMR in Typhimurium, Dublin, and 
Newport [14].

In Spain, approximately 35% of foodborne salmonel-
losis cases have been attributed to pigs [15], and a high 
proportion of non‐Typhoidal Salmonella isolates recov-
ered from fattening pig carcases and caecal contents 
showed a multidrug-resistant phenotype [12]. To enable 
effective control programmes aiming at reducing mul-
tidrug resistance in swine-originated Salmonella, it is 
essential to understand factors related to the presence 
of resistance and co-resistance. However, there has been 
limited research on the distribution of AMR profiles of 
swine Salmonella in Spain. One study, using faecal sam-
ples from fattening pigs across Spain in 2003, reported 
the resistoypes of 290 Salmonella isolates to 17 antimi-
crobials, with a high percentage of MDR Typhimurium, 
including ACSSuT Typhimurium, and 4,5,12:i:-[9].

Here, we aimed to provide information about the 
phenotypic AMR profiles found in Salmonella iso-
lates recovered from pigs in Spain from 2001 to 2017 
through a nationwide sampling system. We investi-
gated (a) the temporal and spatial trends of resistance 
to individual antimicrobials, (b) relationships between 

resistance to different antimicrobials and (c) resisto-
types, their associations with common serotypes in 
pigs in Spain and their spatial distribution. The epide-
miological evidence generated by the current study is 
expected to help to identify important relationships 
between resistance to specific antimicrobials and to 
shed some light on the underlying mechanisms of the 
presentation of resistotypes that could help to design 
preventive and mitigation measures.

Methods
Study population and sample collection
The VISAVET Health Surveillance Centre in Madrid 
has been involved in the national antimicrobial resist-
ance surveillance for Salmonella detection in food-
producing pigs, commissioned by the Spanish Ministry 
of Agriculture, Food and Fisheries, during the study 
period. Isolates were recovered from faecal sam-
ples from fattening pigs collected at abattoirs of high 
slaughter capacity (7–20 abattoirs located in ≥ 50% 
of the provinces in Spain each year) and represented 
independent epidemiological units (i.e., farms). More 
details on the sampling strategy can be found in Teng 
et al., 2020 [16].

Information about Salmonella isolates that were col-
lected between 2001 and 2017 and underwent antimi-
crobial susceptibility testing (AST) such as the date of 
sampling, the province and the autonomous community 
of the originated farm of the sampled pigs, the serotype, 
and AST results were included in the current study. Bac-
teriology methods can be found in Teng et al., 2020 [16]. 
Briefly, isolation of Salmonella was performed accord-
ing to ISO 6579:2002/Amd 1:2007 before 2017 and ISO 
6579–1:2017 for 2017 samples. Serological typing was 
conducted based on the White-Kauffmann-Le Minor 
scheme [17]. Minimum inhibitory concentrations (MICs) 
for various antimicrobials for isolates were determined 
using the two-fold broth microdilution reference method, 
according to ISO 20776–1:2006. For each of the tested 
antimicrobials, a binary outcome was constructed based 
on the EUCAST epidemiological cut-off value (ECOFF) 
as suggested by The European Committee on Antimicro-
bial Susceptibility Testing (EUCAST; accessed on 2020 
Mar 17) [18]. More specifically, resistant (i.e., non-wild-
type) isolates have a MIC larger than the ECOFF, while 
susceptible (i.e., wild-type) isolates have a MIC smaller 
than or equal to the ECOFF. The ECOFFs, as well as the 
ranges for each antimicrobial and year, are now provided 
in Supplementary File 1. Although the ranges varied 
slightly across the study period, this did not affect the 
interpretation since the ECOFFs were always within the 
tested ranges.
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Statistical analyses
Data process
Data cleaning, management and analyses were con-
ducted in Microsoft Excel 2013 (Microsoft Corp.) and 
R programme version 3.5.2 (R Core Team) in RStudio 
interface version 1.2.1330 (RStudio Team) [19, 20].

Eleven antimicrobials for which AST results were 
available during most of the study period were con-
sidered in the analysis. Because AST was conducted 
for more antimicrobials in 2008 − 2017, the data were 
grouped into two datasets: one with more years and 
fewer antimicrobials being tested, and the other with 
more antimicrobials being tested and fewer years 
(Table  1). The first dataset (D_am7) included the AST 
results for seven antimicrobials [tetracycline (TET), 
chloramphenicol (CHL), ciprofloxacin (CIP), nali-
dixic acid (NAL), gentamicin (GEN), florfenicol (FFC), 
and cefotaxime (CTX)] from 2001 to 2013. The sec-
ond dataset (D_am10) contained the AST results for 
the aforementioned antimicrobials except for FFC, as 
well as sulfamethoxazole (SMX), ampicillin (AMP), 
trimethoprim (TMP) and ceftazidime (CAZ), which 
were tested in isolates collected from 2008 to 2013 and 
2017 (no sampling was conducted in swine in 2014 and 
2016, and no results were available for 2015). The year 
isolates were recovered and their serotype was also 
included in the datasets. D_am7 and D_am10 datasets 
were analysed separately except in the analyses for spa-
tial trends, which were conducted for individual anti-
microbials using all data across the years [and including 
an additional antimicrobial, streptomycin (STR)]. If not 
otherwise specified, isolates with missing values on the 
AST results were removed from the analyses.

Descriptive analysis
Summary and descriptive analyses to determine the res-
istotypes and their relative frequencies were facilitated 
by the ‘tidyverse’ package [21]. This was also performed 
for the top four most common serotypes in pigs in the 
dataset, namely Typhimurium, 1,4,[5],12:i:-, Derby and 
Rissen, and Venn diagrams were built to explore the simi-
larity between their resistotypes.

Spatial and temporal trends
The proportion of isolates with information on their geo-
graphical origin that was resistant to each of the 12 anti-
microbials at the province level was calculated and later 
adjusted using empirical Bayesian smoothing with the 
‘spdep’ package [22]. For the empirical Bayesian smooth-
ing, the neighbouring relationships were described by 
Queen contiguity, considering two provinces as neigh-
bours when they shared at least one point of their 
boundaries.

With the aim of jointly modelling the evolution over 
time of the proportion of resistant strains for each of 
the antimicrobials, generalized linear models were con-
structed, denoting by π i = πi1, . . . , πiJ , the probability for 
isolate i to be resistant to antimicrobials 1…J  . The con-
sidered model has the following functional form:

To account for the fact that AST results on the same 
isolate are not independent, the parameter estimates 
were not obtained through the classical maximum like-
lihood theory. Rather, the generalized estimating equa-
tions (GEE) approach was followed to incorporate the 
unknown correlation between the outcomes, facilitated 
by “gee” package [23]. The unstructured working cor-
relation was chosen in order not to pose any restric-
tions on the underlying relations. An exhaustive search 
to obtain the best model describing the temporal trends 
for the antimicrobials was conducted for each dataset. 
The search considered the inclusion of an interaction 
between an antimicrobial and the linear year term and 
if the interaction held, the interaction with the quad-
ratic year term. In total, 2,186 and 59,045 possible mod-
els were built for D_am7 and D_am10, respectively, and 
the model with the lowest Quasi Information Criterion 
(QIC) was selected as the best model for each dataset 
using “MuMIn” package [24, 25].

Bayesian network analysis
Bayesian networks were built for binary AST results 
using the R package ‘bnlearn’ [26]. Bayesian networks 
are graphical models where vertices represent random 
variables and arcs represent probabilistic dependencies 
between them [27]. Hill-Climbing greedy search was 
applied to identify directed network structure. Arcs were 
retained in the networks if their empirical frequency 
in 100,000 bootstrap samples was ≥ 40%. Four Bayes-
ian networks were built for D_am7 with (a) all data, (b) 
data from 2001 to 2004, (c) data from 2005 to 2008, and 
(d) data from 2009 to 2013 to assess if the structure of 
the network changed over time. Similarly, for D_am10, 
three were constructed using (a) all information, (b) 
data from 2008 to 2010, and (c) data from 2011 to 2017, 
respectively.

Hierarchical clustering
Hierarchical clustering analysis was carried out for both 
binary logarithms of the MICs and binary AST results 
by using R packages ‘FactoMineR’, ‘factoextra’ and 
‘missMDA’ [28–30]. The regularised iterative principal 
components analysis algorithm and the regularised itera-
tive multiple correspondence analysis algorithm were 
used to impute missing AST results (2 isolates with one 

logit(πij) = xijβ
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missing AST result each) and serotype information (16 
isolates) in the numeric and binary data, respectively 
[30]. Hierarchical trees were constructed using Ward’s 
minimum variance method based on Euclidean dis-
tances [31], and the number of clusters was determined 
when the partition had the highest relative loss of inertia 
[32]. The composition of binary AST results of the anti-
microbials and the serotype of the isolates were elicited 
for each cluster. The percentage of isolates of a cluster 
belonging to each specific province was depicted on the 
map, and the temporal trends in the percentage were also 
generated.

Results
Descriptive results
A total of 1,318 pig Salmonella isolates belonging to 63 
different serotypes that were retrieved between 2001 
and 2017 were included in at least one of the datasets 
(Table 1). The yearly number of isolates ranged from 40 
to 211. D_am7 consisted of 1,154 isolates from 58 sero-
types, of which 23.5% were Typhimurium, 21.2% were 
Rissen, 16.6% were Derby, 10.1% were 1,4,[5],12:i:-, 5.2% 
were Anatum, and 4.7% were Bredeney. Among the 1,154 
isolates, 318 (27.6%) did not have geographical infor-
mation. D_am10 included 680 isolates from 46 sero-
types of which the most frequent were Rissen (23.9%), 
1,4,[5],12:i:- (21.1%), Typhimurium (19.9%), Derby 
(14.1%), Anatum (2.5%) and Bredeney (2.5%). A total of 
281 (41.3%) isolates had missing geographical informa-
tion in D_am10. Trends in serotypes have been described 
elsewhere [16]. 

Twenty-nine out of the 256 (27) possible resisto-
types in D_am7 were observed, (including 21 present 
in Typhimurium, 17 in Rissen, 12 in Derby, and 12 in 

1,4,[5],12:i:- isolates) (Fig.  1). Almost 15% (n = 170) of 
the isolates were susceptible to all seven antimicrobi-
als (Supplementary File 2). Isolates with a MDR res-
istotype (i.e., resistance to 3 or more antimicrobial 
classes) accounted for 8.9% (n = 103) of all isolates, and 
the annual percentage of MDR isolates decreased from 
30.1% (n = 22) in 2001 to only 1.6 (n = 1) in 2008 
(Table  2). However, it then increased to 7.2 − 10.4% 
in 2011 − 2013. Among the 607 (52.7%) isolates that 
were resistant to only one antimicrobial, 592 (51.4%) 
were resistant to TET, and 9 (0.8%) and 6 (0.5%) were 
resistant to CHL and CIP, respectively. In D_am10, 65 
resistotypes were observed among the 1024 (210) pos-
sible combinations of resistances (Supplementary File 
2). There were 21 resistotypes in Typhimurium iso-
lates, 30 in Rissen isolates, 15 in Derby isolates, and 25 
in 1,4,[5],12:i:- isolates  (Fig.  1). More than half of the 
resistotypes identified among Rissen and 1,4,[5],12:i:- 
isolates were specific to that serotype. Around 15% of 
the isolates (n = 103) were susceptible to all the antimi-
crobials, which is similar to the proportion in D_am7. 
However, there was a higher percentage of MDR iso-
lates (54.0%, n = 366) due to the inclusion of two anti-
microbials (SMX and AMP) against which high levels 
of resistance were found, and an increasing trend in the 
annual proportion of MDR isolates was observed (from 
37.5% in 2008 to 62.8% in 2017; Table 2). Most isolates 
that were resistant to TET were also resistant to SMX 
and/or AMP, and just 14.2% (n = 96) were only resistant 
to TET.

Spatial trends
The empirically adjusted spatial distribution of the 
proportion of isolates resistant to each of the 12 

Fig. 1  Venn diagrams illustrating the number of resistotypes in Salmonella isolates of serotypes Typhimurium, Rissen, Derby, and 1,4,[5],12:i:- from 
pigs recovered through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme. (a) contains 1,154 isolates with seven 
antimicrobial susceptibility results between 2001 and 2013 (D_am7); (b) contains 680 isolates with ten antimicrobial susceptibility results between 
2008 and 2017 (D_am10)
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antimicrobials is shown in Fig.  2 and Supplemen-
tary File 3. The percentage of isolates resistant to TET 
across Spain was the highest among all antimicrobi-
als and ranged from 66.7% to 95.8%, followed by SMX 
(range: 42.5% − 77.8%), STR (range: 45.7% − 76.7%), 
AMP (range: 24.3% − 66.7% with a lower percentage of 
resistance in the South-East of Spain), and CHL (range: 
8.5% − 41.1%). A higher proportion of isolates were 
resistant to TMP (range: 7.1% − 58.3%) in the southwest 
of Spain. The percentage of resistant isolates for CIP 
(range: 4.3% − 19.3%) and NAL (range: 3.1% − 18%) was 
lower in the northwest corner of Spain; in contrast, the 
value for FFC (range: 0% − 20.0%) was higher there.

Temporal trends
Detailed model results and work correlations can be 
found in Supplementary File 4.

D_am7
A significant tempeoral  change in the percentage of 
resistant isolates during 2001–2013 was found for all 

the antimicrobials except NAL. While the change for 
CHL was linear, a quadratic year term was included 
in the final models for TET, CIP, GEN, FFC and CTX 
(Fig. 3). According to the GEE estimates, a much higher 
percentage of isolates resistant to TET was expected 
(lowest in 2009 at 78.8% and highest in 2001 at 92.1%) 
than to other antimicrobials (median values <23.9%). 
From  2001  to  2013, the percentage of resistant isolates 
for TET, CIP and GEN first decreased and then increased 
again, while the odds of being resistant to CHL decreased 
by 8.9% [95% confidence interval (CI): 5.1 − 12.5%] each 
year. The predicted percentage of CTX and FFC resistant 
isolates remained below 10% for the most part.

D_am10
A relatively high level of resistance to TET, SMX, AMP 
(median values >53.7%) compared to other antimicrobials 
(with median values <27.1%) was shown in the GEE pre-
dicted results. The GEE model found temporal changes 
in the percentage of resistant isolates between 2008 to 
2017 for all the antimicrobials except TET, NAL and CAZ 
(Fig.  4), but the variation in the observed percentage of 
resistant isolates for TET was rather substantial. The per-
centage of isolates resistant to CIP, GEN, AMP increased 
over this period, and the odds of isolates being resistant 
to AMP was 1.12 times (95% CI: 1.08 − 1.17) higher than 
the previous year. Although the percentage of resistant 
isolates to CHL, SMX and TMP seemed to decrease from 
2008 to 2013, the values in 2017 increased significantly. 
These observed and predicted figures for CTX and CAZ 
have remained below 10% over the years.

The estimates of the pairwise correlations obtained 
from the GEE modelling using D_am10 are shown in 
Fig.  5. As expected, the correlation coefficient for CIP 
and NAL was the highest among all pairs (0.82), and the 
correlation between CTX and CAZ was also relatively 
high (0.49). Among antimicrobials from different classes, 
SMX and AMP had a high correlation coefficient of 0.71, 
and both had relatively high correlation coefficients with 
TET, CHL and TMP (range: 0.33–0.51). GEN did not 
appear to be correlated with any other antimicrobials.

Bayesian network analysis
The overall Bayesian networks identified for D_am7 and 
D_am10 are presented here (Fig. 6), and networks using 
data from specific periods for both D_am7 and D_am10 
are shown in Supplementary File 5. The strength and 
the direction of the arcs in each of the networks can be 
found in Supplementary File 6.

For D_am7, five relations were built with CHL located 
in a central position. Except the relation between GEN-
TET, all the others were also maintained in at least one 

Table 2  Percentage of multidrug-resistant Salmonella isolates 
(the  number of multidrug-resistant Salmonella isolates/number 
of all Salmonella isolates) by year from pigs collected through 
the Spanish Veterinary Antimicrobial Resistance Surveillance 
Network programme that were tested for susceptibility to eleven 
antimicrobials from 2001 to 2017

a D_am7 included the antimicrobial susceptibility testing results for seven 
antimicrobials (tetracycline, chloramphenicol, ciprofloxacin, nalidixic acid, 
gentamicin, florfenicol, and cefotaxime) from 2001 to 2013;
b D_am10 contained the antimicrobial susceptibility testing results for 10 
antimicrobials (tetracycline, chloramphenicol, ciprofloxacin, nalidixic acid, 
gentamicin, cefotaxime, sulfamethoxazole, ampicillin, trimethoprim and 
ceftazidime) from 2008 to 2013 and 2017

Year D_am7a D_am10b

2001 30.1% (22/73)

2002 15.6% (7/45)

2003 10.7% (9/84)

2004 6.3% (7/111)

2005 8.6% (11/128)

2006 3.8% (4/104)

2007 12.8% (10/78)

2008 1.6% (1/63) 37.5% (24/64)

2009 4.7% (10/211) 52.6% (111/211)

2010 5.0% (2/40) 57.5% (23/40)

2011 8.5% (7/82) 48.1% (39/81)

2012 10.4% (5/48) 56.2% (27/48)

2013 7.2% (5/69) 55.1% (38/69)

2017 62.8% (103/164)

Total 8.9% (103/1152) 54.0% (366/678)
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of the partial networks (Supplementary File 5). A strong 
relationship between resistance to certain pairs of anti-
microbials was identified in the overall network. The con-
ditional probability for an isolate susceptible to CIP that 
was also susceptible to NAL was 0.999 but for an isolate 
resistant to CIP that was also resistant to NAL was only 
0.779. An isolate susceptible to FFC would be expected 
to be susceptible to CHL, whereas an isolate resistant to 
CHL had a conditional probability of being resistant to 
FFC at only 0.221.

Regarding D_am10, SMX was located at the centre of 
the overall Bayesian network with 10 edges. Associations 
between CIP and NAL and between SMX and TET, CHL, 
AMP and TMP also persisted in all other partial net-
works. According to the overall D_am10 Bayesian net-
work, the conditional probability for an isolate that was 
susceptible to SMX also being susceptible to CHL was 
1 and to TMP was 0.972, while one that was resistant to 
SMX had a 0.310 probability of being resistant to CHL 

and a 0.413 probability of being resistant to TMP. An 
isolate resistant to CAZ would be expected to be resist-
ant to CTX. Although networks of D_am7 suggested the 
occurrence of associations between resistance to CHL 
and resistance to TET and GEN, in the D_am10-based 
networks (which included more antimicrobials but fewer 
isolates), resistance to CHL became independent from 
TET and more dependent on the patterns for SMX and 
TMP which were not included in D_am7.

Hierarchical clustering
For D_am7, three and six clusters were generated using 
binary logarithms of the MICs and binary AST results, 
respectively, while the number of clusters identified for 
D_am10 was three and four. Here we present the hierar-
chical clustering results using binary AST information, 
and results of the analysis using binary logarithms of the 
MICs are shown in Supplementary File 7).

Fig. 2  Spatial trends adjusted by empirical Bayesian smoothing in the proportion of Salmonella isolates from pigs resistant to twelve antimicrobials 
from 2001 to 2017, collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme. Provinces in grey indicate 
where there was no isolate

TET tetracycline, CHL chloramphenicol, CIP ciprofloxacin, NAL nalidixic acid, GEN gentamicin, FFC florfenicol, CTX cefotaxime, SMX sulfamethoxazole, 
AMP ampicillin, TMP trimethoprim, CAZ ceftazidime, STR streptomycin
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D_am7
Six clusters with 185 (16.0%), 720 (62.4%), 58 (5.0%), 61 
(5.3%), 21 (1.8%) and 109 (9.4%) isolates, respectively, 
were identified using the binary AST results in D_am7 
(Fig.  7). Isolates in  Cluster (n =  185,  16.0% of isolates 
in D_am7) were susceptible to almost all seven antimi-
crobials (with a few resistant to either CHL and/or CIP) 
(Fig. 7). The most abundant serotype in this cluster was 
Bredeney (36 isolates, accounting for two-thirds of all 
Bredeney isolates in D_am7), and several other sero-
types including Montevideo, Enteritidis or Infantis were 
also overrepresented (i.e., with a percentage higher than 
the expected value in the cluster). In contrast, the most 
prevalent serotypes in the D_am7 collection, including 
Rissen, Derby, Typhimurium and especially 1,4,[5],12:i:- 
were under-presented in Cluster 1 (with only between 
2 and 22 isolates from each). Cluster 2 was the largest 
(n = 720, 62.4%) and was characterized by resistance to 

TET and susceptibility to all other antimicrobials except 
CHL (17.6% resistance, n = 127). Serotype distribution 
in Cluster 2 was similar to that observed in the whole 
D_am7 panel with Rissen (27.8%; n = 200) and Derby 
(20.3%; n = 146) being overrepresented and Bredeney 
being underrepresented (1.5%, n = 11).

Resistance to both TET and GEN was the predominant 
feature present in all isolates in Cluster 3 (n = 58, 5.0%), 
with close to 60% of them being also resistant to CHL 
(n = 35). The most common serotypes in this cluster were 
1,4,[5],12:i:- (32.8%; n = 19) and Brandenburg (22.4%; 
n = 13, representing 41.9% of all Brandenburg isolates in 
D_am7). Close to all isolates in Cluster 4 (n = 61, 5.3%) 
were resistant to TET, CHL and FFC and susceptible to 
CTX, and 85 − 92% of isolates (n = 52 − 56) were sus-
ceptible to CIP, NAL and GEN. This cluster was domi-
nated by Typhimurium (86.9%; n = 53) isolates. Isolates 
in Cluster 5 (n = 21, 1.8%) were resistant to TET and 

Fig. 3  Temporal trends in the percentage of resistant Salmonella isolates from pigs collected through the Spanish Veterinary Antimicrobial 
Resistance Surveillance Network programme towards seven antimicrobials from 2001 to 2013. Red dots are the observed percentage of resistant 
isolates; black lines are the fitted values of generalized estimating equation models using the binary results (i.e., resistant and susceptible)

TET tetracycline, CHL chloramphenicol, CIP ciprofloxacin, NAL nalidixic acid, GEN gentamicin, FFC florfenicol, CTX cefotaxime
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CTX and susceptible to FFC, with varying resistance lev-
els to other antimicrobials. Typhimurium accounted for 
57.1% (n = 12) of the isolates in the cluster; 14.3% (n = 3) 

were Anatum and Rissen, respectively, and 9.5% were 
Derby (n = 2). Cluster 6 consisted of 109 isolates (9.4% 
of D_am7), including isolates that were typically resistant 

Fig.4  Temporal trends in the percentage of resistant Salmonella isolates from pigs collected through the Spanish Veterinary Antimicrobial 
Resistance Surveillance Network programme towards ten antimicrobials from 2008 to 2017. Red dots are the observed percentage of resistant 
isolates; black lines are the fitted values of generalized estimating equation models using the binary results (i.e., resistant and susceptible)

TET tetracycline, CHL chloramphenicol, CIP ciprofloxacin, NAL nalidixic acid, GEN gentamicin, CTX cefotaxime, SMX sulfamethoxazole, AMP ampicillin, 
TMP trimethoprim, CAZ ceftazidime

Fig. 5  Estimated pairwise correlations obtained from the generalized estimating equations for the binary results (i.e., resistant and susceptible) of 
antimicrobial susceptibility testing for ten antimicrobials

TET tetracycline, CHL chloramphenicol, CIP ciprofloxacin, NAL nalidixic acid, GEN gentamicin, CTX cefotaxime, SMX sulfamethoxazole, AMP ampicillin, 
TMP trimethoprim, CAZ ceftazidime
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to CIP, NAL and TET and susceptible to GEN, FFC and 
CTX. Wien (9.2%; n = 10), Kapemba (8.3%; n = 9), Bri-
kama (4.6%; n = 5) were overrepresented in Cluster 6, 
and the only isolates of Essen (n = 3) and Choleraesuis 
(n = 2) in D_am7 were in this cluster.

The spatial distribution of the proportion of isolates 
belonging to each of the clusters is shown in Fig. 8. While 

no obvious spatial patterns were observed for Clusters 
1 and 2, a higher proportion of isolates of Cluster 3 was 
seen in the North and South of Spain. Northern prov-
inces and provinces adjacent to the Mediterranean Sea 
had a larger proportion of isolates of Cluster 4. Some 
provinces in the Northeast and the South harbored more 
isolates belonging to Cluster 5. Last, the proportion of 

Fig. 6  Bayesian networks for (A) seven and (B) ten binary antimicrobial susceptibility testing results of Salmonella isolates from pigs collected 
through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2001 and 2013 for (A) and between 2008 and 
2017 for (B). TET: tetracycline; CHL: chloramphenicol; CIP: ciprofloxacin; NAL: nalidixic acid; GEN: gentamicin; FFC: florfenicol; CTX: cefotaxime; SMX: 
sulfamethoxazole; AMP: ampicillin; TMP: trimethoprim; CAZ: ceftazidime; r: resistant; s: susceptible

Fig. 7  Hierarchical clusters using the binary antimicrobial susceptibility testing results of seven antimicrobials among 1,154 Salmonella isolates 
from pigs collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2001 and 2013 (left: the 
proportion of isolates resistant to seven antimicrobials; right: the composition of serotypes in each of the clusters). Cluster 0 shows the serotype 
distribution of all isolates in the dataset (D_am7). Only serotypes accounting for ≥5% of the isolates in each particular cluster are shown in the 
graph
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isolates of Cluster 6 seemed lower in the West of Spain, 
except the province Cáceres. No clear temporal trends in 
the proportion of isolates in different clusters were noted 
(Fig. 9).

D_am10
Four clusters with 227 (33.4%), 366 (53.8%), 84 (12.4%) 
and 3 (0.4%) isolates, respectively, were identified using 
the binary AST results in D_am10. In Cluster 1, half of 
the isolates were resistant to TET, and most were sus-
ceptible to the rest of the antimicrobials. Compared to 
the percentage of isolates of different serotypes in the 
whole D_am10, Cluster 1 had higher percentage of Ris-
sen (30.8%; n = 70) and Derby (20.3%; n = 46) and much 
lower percentage of Typhimurium (6.6%; n = 15) and 
1,4,[5],12:i:- (4.8%; n = 11) (Fig.  10). All the Montevi-
deo (n = 7) and Infantis (n = 5) isolates and 3 out of the 
5 Enteritidis isolates in D_am10 belonged to this cluster. 
Most of the isolates in Cluster 2 were resistant to AMP, 
SMX and TET, and susceptible to CIP, NAL, GEN, CTX, 
and CAZ. This cluster was dominated by 1,4,[5],12:i:- 
(n = 122; 33.3%) and Typhimurium (n = 96; 26.2%), and 

more than 90% of the Wien isolates (n = 10) were in this 
cluster. Cluster 3 was different from Cluster 2 in the addi-
tion of very high (> 84.5%) levels of resistance to CIP and 
NAL. The percentage of Rissen, Derby and Typhimu-
rium was similar to the one of Cluster 2, but 1,4,[5],12:i:- 
only accounted for 11.9% (n = 10) of the isolates. All the 
Kapemba isolates (n = 6) in D_am10 belonged to this 
cluster. Finally, Cluster 4, which included only three iso-
lates (all from different serotypes), was mainly character-
ized by full resistance to CAZ.

Figure  11 shows the proportion of isolates originat-
ing from different provinces in Spain in different clus-
ters. Although there were no isolates from many of the 
provinces in the West, some patterns might be observed. 
A higher proportion of isolates in Cluster 1 was in the 
East than in the West, which seemed to be the opposite 
for Cluster 2. The proportion of isolates in Cluster 3 was 
higher in the far East and the far West of Spain, and all 
the isolates in Cluster 4 were in a single province of the 
west. The temporal trends in the proportion of isolates in 
the clusters seemed to oscillate over the period (Fig. 12).

Fig. 8  Spatial distribution of six clusters elicited from hierarchical clustering using binary antimicrobial susceptibility testing results of 836 
Salmonella isolates from pigs collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2001 
and 2013. Provinces in grey indicate where there was no isolate
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Discussion
The current study demonstrates the usefulness of a range 
of methods that can be easily applied to transform phe-
notypical AST data into information helpful in assessing 
the evolution of AMR over time, including temporal and 
spatial trends, and pairwise and multiple associations 
[33]. Some studies have previously presented multid-
rug-resistant patterns for Salmonella isolates recovered 
from pigs in (part of ) Spain and elsewhere [9, 11, 34–37]. 
Although some AMR studies using multi-sourced Salmo-
nella isolates have applied some multivariate analyses to 
explore the relations between the isolates [38, 39], to our 
best knowledge, reports of longitudinal AMR data from 
swine Salmonella isolates in Spain using multivariate 
analyses to explore links between resistances to specific 
antimicrobials were missing.

Two multivariate analyses, Bayesian network analysis 
and hierarchical clustering were conducted to investi-
gate potential relationships between and patterns among 
the resistances to antimicrobials, whose existence was 

also demonstrated by the pairwise correlations from the 
GEE. Bayesian network analysis provides conditional 
probabilities of resistance to an antimicrobial given one 
or more resistances to other antimicrobials. This allows 
to uncover co-resistance patterns among the antimi-
crobials of interest efficiently and to discern the degree 
to which the resistance of an antimicrobial is associated 
with another one. However, although directionality was 
indicated in our Bayesian networks, causality should not 
be implied. Changes in Bayesian network structures and 
conditional probabilities between or among antimicro-
bials may indicate shifts in mechanisms of co-resistance 
among antimicrobials over time or space. Some of these 
changes were observed in the networks built with sub-
sets of data of different periods while certain patterns 
were more stable. In any case, the volume of our data 
might have been insufficient to exhibit meaningful tem-
poral trends. On the other hand, hierarchical clustering 
provides a rather straightforward way to explore com-
mon resistotypes whose spatial and temporal trends 

Fig. 9  Temporal distribution of six clusters elicited from hierarchical clustering using binary antimicrobial susceptibility testing results of 836 
Salmonella isolates from pigs collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2001 
and 2013
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and dominant serotypes can be subsequently inspected. 
When this method was applied to both the binary loga-
rithm of MIC and binary AST results, the results showed 
that, although the optimal number of clusters found 
might be different, the composition of clusters was simi-
lar if the number of clusters was the same. For example, 
the composition of three clusters generated using both 
types of data of D_am10 was very alike. However, when 
the number of clusters increased to four for D_am10, a 
CAZ-resistant cluster and a GEN-AMP resistant cluster 
were found using the binary logarithm of MICs and the 
binary AST results, respectively.

In our data, a large proportion of the isolates (>53.7%) 
were resistant to TET, SMX or AMP, fewer isolates 
(9.4 − 27.1%) were resistant to CHL, CIP, NAL or TMP, 
and very few isolates (<6.9%) were resistant to GEN, 
FFC, CTX, or CAZ. The resistance profile of Salmo-
nella revealed by the current study was notably differ-
ent from the ones in other countries in Europe [12], the 
United States [40] and China [41], although TET resist-
ance seemed to be the most prominent in all the coun-
tries. There was a 4-year gap between 2013 and 2017, and 
the percentage of resistant isolates to some antimicrobi-
als such as SMX, AMP and TMP increased substantially 
during this period. It is not clear whether this increase 
reflects the true situation in the field as the results of 
2015 and 2019 were unavailable to us (The Spanish Vet-
erinary Antimicrobial Resistance Surveillance Network 
programme started to survey AMR in Salmonella in 
pigs every odd year since 2013). When comparing with 
the AST results of the isolates from clinical human 
salmonellosis cases in Spain from 2010 to 2017, the 

resistance levels to all antimicrobials except FFC (not 
tested in human isolates), CTX, and CAZ were substan-
tially higher [42–48]. Still, similar temporal trends in the 
percentage of resistant isolates from swine (this study) 
and humans [42–48] were observed for TET and CHL 
(decreasing trend) and CIP (increasing trend) but not for 
other antimicrobials, which may suggest the existence of 
other sources of foodborne salmonellosis for the general 
public in Spain in which antimicrobial resistance dynam-
ics may be different.

The values of and trends in the percentage of isolates 
with MDR resistance varied substantially between D_
am7 and D_am10, which could be explained by the inclu-
sion of SMX and AMP, two antimicrobials in which high 
levels of resistance were observed in D_am10. Except in 
2008, the proportion of MDR isolates in D_am10 was 
always between 50–60% (Table 2), while a clear decreas-
ing trend in the percentage of clinical human MDR iso-
lates (about 50% in 2012 to about 25% in 2017) has been 
reported in the same time frame [42–47].

The relationships revealed by Bayesian networks largely 
agreed with the clustering patterns found by hierarchical 
clustering and were expected in certain cases, such as the 
CIP and NAL, CHL and FFC, and CTX and CAZ links. 
Interestingly, although different antimicrobials were used 
in D_am7 and D_am10, similar patterns were still discov-
ered by hierarchical clustering. These included a cluster 
of mostly pan-susceptible isolates (although about half of 
the isolates were resistant to TET in this D_am10 clus-
ter), a cluster of isolates resistant to CIP and NAL (and 
TET) and a cluster of isolates with resistance to GEN 
(and TET and to a lesser extent CHL) (for D_am10, this 

Fig. 10  Hierarchical clusters using the binary antimicrobial susceptibility testing results of ten antimicrobials among 680 Salmonella isolates 
from pigs collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2011 and 2017 (left: the 
proportion of isolates resistant to ten antimicrobials; right: the composition of serotypes in each of the clusters). Cluster 0 shows the serotype 
distribution of all isolates in the dataset (D_am10). Only serotypes accounting for ≥5% of the isolates in each particular cluster are shown in the 
graph
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pattern was shown in the results using binary AST infor-
mation with a pre-set cluster number). Clusters of resist-
ance to CHL and FFC (which was not in D_am10) and 
to CTX were also observed in D_am7, and a cluster with 
isolates resistant to CAZ (which was not in D_am7) was 
identified in D_am10. Antimicrobials that did not show 
clear patterns in the hierarchical clusters─ CHL in D_
am7 and SMX, AMP, and TMP in D_am10─ were located 
in a more central position in the Bayesian networks.

The strong linkage between resistance to CIP and 
NAL (found in all analyses carried out) was independ-
ent of the resistance to other antimicrobials according 
to the Bayesian network analyses, and isolates resistant 
to CIP and NAL were classified in the same cluster in 
both D_am7 (Cluster 6) and D_am10 (Cluster 4). These 
results indicate that mechanisms of the resistance of CIP 
and NAL are independent of the resistance to other anti-
microbials, which points out the existence of chromo-
somal mutations in the quinolone resistance determinant 
regions (not related to the horizontal transfer of resist-
ance determinants along with resistance genes to other 

antimicrobial families). However, a small proportion 
(22.1%) of NAL-susceptible or CIP-resistant isolates were 
also found. This atypical quinolone resistance phenotype 
has been linked to the carriage of plasmid‐mediated qui-
nolone resistance genes [49, 50]. The association in the 
presentation of fluoroquinolone resistance with resist-
ance to aminoglycosides (as suggested in the Bayesian 
network for D_am10) and β-lactams and sulfonamides 
(as indicated in the clustering analysis) could suggest the 
involvement of mechanisms other than chromosomal 
mutations in at least a proportion of the strains, although 
this hypothesis should be confirmed using molecular 
tools such as whole-genome sequencing.

A strong correlation between the resistance phenotype 
of FFC and CHL, both belonging to the phenicol family, 
was also found as expected, and could be mediated by 
genes conferring resistance to both antimicrobials such 
as the floR gene. However, approximately 80% of the 
CHL-resistant genes were susceptible to FFC, suggesting 
the presence of other genes whose presence do not result 
in resistance to FFC, including cat and cmlA [10, 51–53].

Fig. 11  Spatial distribution of six clusters elicited from hierarchical clustering using binary antimicrobial susceptibility testing results of 399 
Salmonella isolates from pigs collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2011 
and 2017. Provinces in grey indicate where there was no isolate
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In D_am10, resistotypes with a core pattern of TET, 
SMX, and AMP were most common in Typhimurium 
(83.0%) and its monophasic variant (78.3%) (and this 
could also be true for isolates in D_am7 for which SMX 
and AMP were not tested). This could indicate isolates 
carried the resistance background typical of DT104 
as, among AMP-SMX-TET resistant isolates that were 
also tested for STR, 93.5% were also resistant to STR. 
The AMP-SMX-TET resistance pattern was also found 
in more than 40% of the Rissen isolates, in agreement 
with previous AMR results of Salmonella from pigs 
in Spain from 2003 to 2004 [9]. A similar AMP-CHL-
SMX-TET-TMP pattern has been also described as 
very prevalent among Derby isolates from poultry [54], 
while the majority of the core resistant pattern of our 
Derby isolates was TET-SMX, thus suggesting the cir-
culation of different strains/resistance genes in the dif-
ferent host species as previously suggested for Derby 
isolates circulating in pig and poultry populations in 
France [55].

The results of hierarchical clustering demonstrate the 
existence of serotype-specific differences in the pres-
entation of several resistance patterns: For example, 
1,4,[5],12:i:- isolates were more likely associated with 
MDR profiles, with no isolate presenting pan-suscepti-
ble profiles and most (92.3%) of the isolates in D_am10 
being classified in highly resistant clusters (e.g., Clus-
ter 2 and 3). In contrast, all Montevideo isolates were 

pan-susceptible, and most 65  –  100%) of the isolates 
belonging to serotypes Enteritidis, Infantis and Bredeney 
were classified in the “susceptible” clusters in D_am7 
(Cluster 1) and D_am10 (Cluster 1). These results provide 
directions for further exploration of patterns of AMR 
within isolates of specific serotypes.

There are some limitations to the current study. First, 
due to the difference in the antimicrobials tested, we 
could not analyse the data as a whole nor every test 
result. Second, as the panels used for AST did not 
remain the same across the years, the range of inhibi-
tory concentrations of some antimicrobials changed. 
This made the results of hierarchical clustering using the 
binary logarithm of MIC less reliable. Also, the graphi-
cal information of some Salmonella isolates was missing, 
compromising the reliability of the results of the spatial 
analysis. Furthermore, since samples were collected at 
abattoirs of high slaughter capacity (adding up to >50% 
of the national slaughter capacity), the results might not 
be representative of the farms that did not usually work 
with these abattoirs. Nevertheless, this strategy is in fact 
in line with the EU regulations regarding sampling strat-
egies for monitoring and reporting of AMR in zoonotic 
and commensal bacteria, and the inclusion of a large 
number of samples throughout the study period and the 
consistency in the tests performed for at least several 
periods allowed the detection of certain robust trends in 
our collection.

Fig. 12  Temporal distribution of six clusters elicited from hierarchical clustering using binary antimicrobial susceptibility testing results of 399 
Salmonella isolates from pigs collected through the Spanish Veterinary Antimicrobial Resistance Surveillance Network programme between 2011 
and 2017
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Conclusion
Our study demonstrated the power of multivariate statisti-
cal methods such as Bayesian network analysis and hierar-
chical clustering in combination with spatial and temporal 
analyses applied to phenotypical AMR data for generating 
valuable insights about patterns of and associations between 
AMR phenotypes. Besides spatial and temporal trends in 
the percentage of isolates being resistant to various anti-
microbials, we also found pairwise relationships between 
antimicrobials and patterns of resistotypes. The existence 
of serotype-specific AMR patterns for serotypes of public 
health concern in Salmonella isolates in pigs in Spain allows 
us to draw hypotheses on their possible genetic background. 
Future research should focus on testing these hypotheses 
using highly discriminatory molecular tools to decipher the 
relationship between strains and resistance patterns found 
in Salmonella from different origins.
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