
Jin et al. BMC Medicine           (2023) 21:16  
https://doi.org/10.1186/s12916-022-02723-4

RESEARCH ARTICLE

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Medicine

Identification of genetic variants associated 
with diabetic kidney disease in multiple Korean 
cohorts via a genome‑wide association study 
mega‑analysis
Heejin Jin1†, Ye An Kim2†, Young Lee3, Seung‑hyun Kwon3, Ah Ra Do4, Sujin Seo5, Sungho Won1,5,6 and 
Je Hyun Seo3*    

Abstract 

Background  The pathogenesis of diabetic kidney disease (DKD) is complex, involving metabolic and hemodynamic 
factors. Although DKD has been established as a heritable disorder and several genetic studies have been conducted, 
the identification of unique genetic variants for DKD is limited by its multiplex classification based on the phenotypes 
of diabetes mellitus (DM) and chronic kidney disease (CKD). Thus, we aimed to identify the genetic variants related to 
DKD that differentiate it from type 2 DM and CKD.

Methods  We conducted a large-scale genome-wide association study mega-analysis, combining Korean multi-
cohorts using multinomial logistic regression. A total of 33,879 patients were classified into four groups—normal, DM 
without CKD, CKD without DM, and DKD—and were further analyzed to identify novel single-nucleotide polymor‑
phisms (SNPs) associated with DKD. Additionally, fine-mapping analysis was conducted to investigate whether the 
variants of interest contribute to a trait. Conditional analyses adjusting for the effect of type 1 DM (T1D)-associated 
HLA variants were also performed to remove confounding factors of genetic association with T1D. Moreover, analysis 
of expression quantitative trait loci (eQTL) was performed using the Genotype-Tissue Expression project. Differentially 
expressed genes (DEGs) were analyzed using the Gene Expression Omnibus database (GSE30529). The significant eQTL 
DEGs were used to explore the predicted interaction networks using search tools for the retrieval of interacting genes 
and proteins.

Results  We identified three novel SNPs [rs3128852 (P = 8.21×10−25), rs117744700 (P = 8.28×10−10), and rs28366355 
(P = 2.04×10−8)] associated with DKD. Moreover, the fine-mapping study validated the causal relationship between 
rs3128852 and DKD. rs3128852 is an eQTL for TRIM27 in whole blood tissues and HLA-A in adipose-subcutaneous tis‑
sues. rs28366355 is an eQTL for HLA-group genes present in most tissues.

Conclusions  We successfully identified SNPs (rs3128852, rs117744700, and rs28366355) associated with DKD and 
verified the causal association between rs3128852 and DKD. According to the in silico analysis, TRIM27 and HLA-A can 
define DKD pathophysiology and are associated with immune response and autophagy. However, further research is 
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necessary to understand the mechanism of immunity and autophagy in the pathophysiology of DKD and to prevent 
and treat DKD.

Keywords  Diabetic kidney disease, GWAS, Genetic variants, Prediction, Microvascular complications

Background
Diabetic kidney disease (DKD) is the primary etiology 
of chronic kidney disease (CKD) in patients with dia-
betes mellitus (DM) [1] and the leading cause of CKD 
and end-stage renal disease (ESRD) in most developed 
countries [2]. Moreover, risk factors for the develop-
ment of DKD in patients with type 2 DM include car-
diovascular risk factors such as high urinary albumin 
creatinine ratio, old age, hyperglycemia, and hyperten-
sion [3]. Although the importance of hyperglycemia in 
the development of DKD has been illustrated in several 
studies [4–6], some patients with type 2 DM experi-
ence a relatively rapid deterioration in renal function, 
whereas others maintain normal renal function even 
with suboptimal glycemic levels [7]. Furthermore, 
patients with DKD showed familial clustering [8] and 
ethnic group differences [9, 10]. This susceptibility 
highlights the need to identify the specific genetic fac-
tors that affect the onset and progression of DKD in 
patients with DM.

Recently, genome-wide association studies (GWASs) 
have identified more than 33 genes for DKD in type 2 
DM, including APOL1, GABRR1, GCKR, and UMOD 
[11–19]. Moreover, most of the genes reportedly asso-
ciated with DKD need to be confirmed by further repli-
cation studies and a detailed analysis of their functional 
role in DKD using experimental models [20]. Two com-
plex fundamental features define DKD: the decline of 
estimated glomerular filtration rate (eGFR) and the 
presence of proteinuria; hence, it would be better to 
combine these phenotypes during analysis, to incor-
porate DM and hypertension-related CKD. However, 
previous research on GWAS phenotypes for DKD or 
CKD was confined to the assessment of single pheno-
types, such as uric acid, eGFR, ESRD, and proteinu-
ria, and failed to focus on defining DKD [11–19, 21]. 
Hypertension is both an underlying risk factor and a 
consequence of DKD due to persistent high blood pres-
sure in the arteries around the kidney [22]. Addition-
ally, up to 75% of patients with DM also experience 
hypertension, and individuals with only hypertension 
frequently exhibit signs of insulin resistance [23, 24]. 
Although previous studies were singularly focused on 
either CKD or DKD, genes such as UMOD were linked 
to both hypertensive CKD (non-DKD) and DKD [20, 
25, 26]. Hence, we hypothesized that single-nucleotide 
polymorphism (SNP)-related traits for DKD could be 

discovered through a GWAS mega-analysis using mul-
tinomial logistic regression (MLR).

In addition, although there are few studies on 
decreased renal function in middle Eastern descent 
[21], Japanese [17, 27] and Han Chinese [18] popula-
tions, most studies were conducted on the European and 
African-American populations [7, 12–16, 19]. There is 
a need for GWAS on DKD in large-scale Korean multi-
cohorts. As reported in previous studies by the Veter-
ans Health Service Medical Center (VHSMC) [28, 29], 
several elderly veterans are diagnosed with DKD due 
to the extended duration of type 2 DM. Consequently, 
studies on DKD in Korean multi-cohorts would be help-
ful. Toward this goal, we conducted a large-scale GWAS 
mega-analysis of multi-cohorts, combining the VHSMC 
cohorts and Korean Genome and Epidemiology Study 
(KoGES) consortium using MLR with four groups: nor-
mal, DM without CKD (“only DM”), CKD without DM 
(“only CKD”) and DKD.

Methods
Study population
Clinical and genetic data from multi-cohorts of the 
VHSMC cohort and the KoGES consortium were inte-
grated in this study (sample size, n = 81,039, Fig.  1). 
In the previously constructed VHSMC cohort, diag-
nosed with type 2 DM by VHSMC endocrinologists 
[28, 29], those who met the inclusion criteria (n = 
916) were enrolled in this study. The KoGES con-
sortium is a nationwide cohort representative of 
genome research in Korea [30], of which three cohorts 
related to population-based studies [Korean Associa-
tion Resource from Ansan and Ansung (KARE, n = 
8840) cohort, KoGES Health Examinees (HEXA, n 
= 61,568) cohort, and KoGES cardiovascular disease 
association study (CAVAS, n = 9,715) cohort] were 
enrolled in this study. This study excluded subjects 
without Korea Biobank Array genotype data or phe-
notype (DM, eGFR, albuminuria, and hypertension) 
data, those who had chronic diseases affecting DM 
(kidney cancer, pancreatic disease, etc.) and renal 
function (liver cancer, chemotherapy, etc.), and those 
younger than 65 years for the control group from the 
VHSMC cohort and KoGES consortium. After apply-
ing the exclusion criteria, 30,069 participants were 
included in the GWAS mega-analysis (Fig.  1). The 
VHSMC cohort contained patients diagnosed with 
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type 2 DM and hypertension by certified doctors, 
whereas in the KoGES cohort data, DM was defined 
by any of the following four categories (Table  1): (1) 
DM diagnosis checked in the questionnaire, (2) blood 
glucose levels ≥ 200 mg/dL 2 h after glucose loading, 

(3) glycosylated hemoglobin (HbA1c) amount ≥ 6.5%, 
and (4) overnight fasting blood glucose levels ≥ 126 
mg/dL. To develop a distinct control group, partici-
pants aged 65 years or above who did not have DM or 
renal failure were included in the analysis.

Fig. 1  Schematic representation of the selection of the study population. VHSMC, Veterans Health Service Medical Center; KoGES, Korean 
Genome and Epidemiology Study; HEXA, KoGES health examinees; CAVAS, KoGES cardiovascular disease association study; SNP, single-nucleotide 
polymorphisms; DM, diabetes mellitus; CKD, chronic kidney disease; DKD, diabetic kidney disease; HTN, hypertension

Table 1  Criteria for the outcome groups for multinomial logistic regression

HbA1C Glycosylated hemoglobin

Satisfied with any of the following?

1 1) Checking in DM diagnosis of the questionnaire
2) 2 h loading of blood glucose levels ≥ 200 mg/dL
3) HbA1c ≥ 6.5%
4) Overnight fasting blood glucose levels ≥ 126 mg/dL

✓ ✓

2 1) Creatinine 1.3 mg/dL (men), 1.0 mg/dL (women)
2) eGFR < 60 mL/min/1.73 m2

3) Albuminuria

✓ ✓

Group DKD (1) Only DM (2) Only CKD (3) Control (4)
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DKD phenotype definition
The eGFR was calculated using the abbreviated Modifi-
cation of Diet in Renal Disease equation as follows: 175 
× serum creatinine−1.154 × age−0.203 (×0.742 if female) 
[31]. According to the Kidney Disease: Improving Global 
Outcomes (KDIGO) guidelines, eGFR and albuminuria 
categories were used to assess a renal complication [32]. 
Albuminuria was classified into three categories based on 
the following albumin-to-creatinine ratios: < 3 mg/mmol 
creatinine, normal to mildly increased; 3–29 mg/mmol, 
moderately increased; and ≥ 30 mg/mmol creatinine, 
severely increased. Since the dysfunction of the glomeru-
lar barrier (represented by proteinuria) and reduced renal 
function (assessed using the eGFR) may develop inde-
pendently, the various phenotypes for DKD were defined 
as follows (Table  1): (1) creatinine level > 1.3 mg/dL 
(men), > 1.0 mg/dL (women), (2) eGFR < 60 mL/min/1.73 
m2, and (3) albuminuria.

Ethics
The institutional review board (IRB) at the Veterans 
Health Service Medical Center approved the study pro-
tocols for the VHSMC cohorts after obtaining informed 
consent (IRB No. 2018-08-032 and IRB No. 2020-02-
031). However, the IRB approved the protocol for the 
KoGES consortium (IRB No. 2021-05-007) after waiv-
ing the need for informed consent since this was a retro-
spective study; the committee of the National Biobank of 
Korea, the Korea Disease Control and Prevention Agency 
(KBN-2021-042), approved the use of bioresources in this 
study. This study was conducted in compliance with the 
Declaration of Helsinki.

Genotyping and imputation
Genomic DNA was extracted from venous blood sam-
ples, and 100 ng DNA was genotyped using the c Affym-
etrix Axiom 1.1 (Affymetrix, Santa Clara, CA) [33]. The 
genotypes were identified using a K-medoid clustering-
based algorithm to minimize the batch effect [34]. The 
PLINK (version 1.9, Boston, MA) and ONETOOL [35] 
software packages were used for quality control pro-
cesses. We excluded samples matching any of the fol-
lowing criteria: (1) sex inconsistencies or (2) a call rate 
of up to 95%. Furthermore, SNPs were filtered out if (1) 
the call rate was lower than 95% or (2) the Hardy–Wein-
berg equilibrium (HWE) test showed P < 1×10−5. The 
genotype imputation was conducted using the Northeast 
Asian Reference Database imputation server (https://​
nard.​macro​gen.​com/), and data of 1779 Northeast Asians 
[36] were used for the reference panel. Pre-phasing and 
imputation were performed using Eagle v2.4 [37] and 
Minimac4 [38], respectively. Post imputation, imputed 
SNPs were removed if the R-squared value was less than 

0.8, there were duplicated SNPs, missing genotype rates 
were more than 0.05, P-values for HWE were less than 
1×10−5, or minor allele frequencies were less than 0.01. 
After quality control and imputation, 6,159,267 SNPs 
were selected for association analyses.

Genome‑wide association analysis
Baseline characteristics of the study population have 
been reported as means ± standard deviation (SD) for 
continuous variables and numbers and as proportions for 
categorical variables. Genome-wide association analyses 
were conducted with an MLR model for the categorical 
response variable with four levels (normal, only DM, only 
CKD, and DKD), implemented in SNPTEST v2.5.6 [39]. 
We evaluated the overall fit of the model by comparing 
the likelihood of the two models: a full model with gen-
otype risk factors and a reduced model with covariates 
only. Age, sex, and ten principal component scores were 
selected as covariates. To estimate the marginal genetic 
effects for six contrasts [contrast (1) only DM vs. nor-
mal, (2) only CKD vs. normal, (3) only DKD vs. normal, 
(4) only CKD vs. only DM, (5) DKD vs. only DM, and 
(6) DKD vs. only CKD], a Wald test was used. To verify 
that there was no confounding due to population strati-
fication in this study, the variance inflation factor (VIF) 
was calculated, whereby a VIF value close to 1 indicated 
no genomic inflation. The regional plot for significant 
genetic variation was generated using the LocusZoom 
software with linkage disequilibrium (LD) information 
of East Asians from the 1000 Genomes Project [40]. 
The bottom panel displays gene symbols and the loca-
tion within the region, derived from 1000 genomes (ASN 
hg19/Nov2014). The threshold for statistical significance 
in this model was P < 5.0×10−8, which is convention-
ally considered to reflect genome-wide significance. To 
estimate the relative proportion of phenotypic variance 
explained by all observed common SNPs, genome-wide 
complex trait analysis (GCTA v1.91.7) was used for herit-
ability calculation [41].

Conditional analyses
HLA has been reported to have an effect on T1D, and 
variants in the HLA region were adjusted to remove 
the confounding effects of T1D on DKD. A conditional 
MLR model was applied, adjusting the effect of T1D-
associated HLA variants. Among 35 previously reported 
T1D-associated HLA variants, one SNP (rs9275490) in 
DR-DQ loci and one SNP (rs9271346) in non-DR-DQ 
loci were included as covariates for the analysis [42]. 
Furthermore, to determine the variants that affect DKD 
independently of DM and CKD, we performed additional 
logistic regression analyses for DKD after adjusting for 
the effects of DM and CKD.

https://nard.macrogen.com/
https://nard.macrogen.com/
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Fine‑mapping analysis
To prioritize whether the variants discovered are can-
didate causal variants, fine-mapping analysis was per-
formed. Among significant GWAS hits, even after 
adjusting for effects of T1D-associated HLA variants, 
DM, and CKD, only SNPs with genome-wide signifi-
cantly related to DKD were used for fine-mapping anal-
ysis. For each target variant, we first selected the set of 
SNPs, consisting of the most significant SNP and a 100-
kb window of SNPs around it. The LD matrix between 
SNPs was computed using PLINK (version 1.9) [43]. 
Using a Bayesian approach (PAINTOR method) [44], we 
estimated the posterior probabilities of causative SNPs at 
a given fine-mapping locus.

Functional annotation analyses
The eQTL analysis was performed using the Genotype-
Tissue Expression (GTEx) dataset. To identify significant 
eQTL genes, it was assumed that approximately 200,000 
SNPs were used in the eQTL analysis considering 20,000 
genes and LD block [45]. Therefore, using the Bonfer-
roni correction, we set the significance threshold to 
0.05/200,000 (=2.5×10−7). We used the LocusFocus tool 
to generate a colocalization plot, showing the lead SNP 
responsible for both GWAS and eQTL signals at loci [40]. 
GTEx version V7 and 1000 Genomes Phase 3 East Asian 
LD were used for this plot. The associated genes were fur-
ther investigated for differently expressed genes (DEGs) 
in the glomeruli of patients with DM while controlling 
for age from the Gene Expression Omnibus (GEO) data-
set (GSE30529). The platform used for the analysis of 
GSE30529 was the GPL571 [HG-U133A_2] Affymetrix 
Human Genome U133A 2.0 Array, which included genes 
from the kidneys of ten subjects with diabetes and twelve 
control samples of genes from the kidneys of healthy 
people. Furthermore, the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) open-access data-
base was used to identify biological functions based on 
the identified genes [46]. The minimum required interac-
tion score was set as 0.4 (medium confidence). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis [47] was also conducted using the 
STRING database.

Transcriptome‑wide association analysis
Gene-based association analyses were performed for 
7254 protein-coding genes using PrediXcan [48]. We 
imputed tissue-specific (whole blood) gene expression 
variation from GWAS summary statistics using weights 
derived from a reference transcriptome dataset provided 
by PrediXcan. Statistical analyses were performed with 
the “limma” package in R (http://​www.​bioco​nduct​or.​org/) 

[49]. Transcriptome-wide significance was defined at P = 
6.89×10−6 (0.05/7254) via the Bonferroni correction.

Results
Clinical characteristics of the study participants
A total of 33,879 subjects were enrolled in this study, 
and the baseline characteristics of the study population 
are presented in Table 2. Among them, 15,664 subjects 
(46%) were part of the control group, whereas 8844 
(26%), 6839 (20%), 2532 (8%) were part of the only DM, 
only CKD, and DKD groups, respectively. The mean 
age of the multi-cohort was 66.19 years; the VHSMC 
cohort had the highest mean age of 73.93 years, fol-
lowed by CAVAS cohort with the mean age of 68.81 
years, KARE cohort with the mean age of 68.50 years, 
and HEXA cohort with the mean age of 64.57 years. 
The proportion of male subjects was 45% of the multi-
cohort; most of the VHSMC cohort were male (88%), 
whereas the KARE, HEXA, and CAVAS cohorts had 
46, 56, and 42% male subjects, respectively. The mean 
body mass index (BMI) for the multi-cohort was 24.47, 
whereas the mean BMI for each cohort showed a simi-
lar distribution—25.30, VHSMC; 24.85, KARE; 24.33, 
HEXA; and 24.57, CAVAS. The proportion of DM sub-
jects in the multi-cohort was 34%, whereas in the indi-
vidual cohorts, it was 86, 39, 33, and 24% in VHSMC, 
KARE, HEXA, and CAVAS, respectively. In addition, 
hypertension showed a similar trend as diabetes. The 
proportion of patients with hypertension in the multi-
cohort was 32%, whereas in the individual cohorts, it 
was 83, 37, 28, and 32% in VHSMC, KARE, HEXA, and 
CAVAS. The mean HbA1c (%) for the multi-cohort was 
6.09. The VHSMC cohort with the highest proportion 
of patients with DM had the highest mean HbA1c (%) 
at 7.63. The mean HbA1c (%) for the KARE, HEXA, 
and CAVAS cohorts was 6.22, 6.05, and 5.94, respec-
tively. The mean creatinine (mg/dL) level for the multi-
cohort was 0.93, with the highest mean creatinine 
level detected in the VHSMC cohort at 1.61. The rest 
of the cohorts showed a similar trend for mean creati-
nine (mg/dL): KARE, 1.01; HEXA, 0.86; and CAVAS, 
1.00. Furthermore, the mean eGFR (mL/min/1.73 m2) 
level for the multi-cohort was 76.18. However, this 
biomarker varied significantly based on the individual 
cohorts: VHSMC, 56.12; KARE, 67.25; HEXA, 82.10; 
and CAVAS, 65.78. The average uric acid level (mg/
dL) was 4.98 for the multi-cohort, whereas for the 
individual cohorts, it was 5.74, VHSMC; 5.10, KARE; 
4.92, HEXA; and 5.01, CAVAS. Although the number 
of patients with proteinuria was 7% overall and 4% in 
KARE, 7% in HEXA, and 5% in CAVAS cohorts, it was 
significantly higher in the VHSMC cohort at 44%.

http://www.bioconductor.org/
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Genome‑wide association analysis for DKD
We conducted a GWAS mega-analysis using MLR on 
6,159,267 SNPs from 30,069 subjects from the VHSMC 
cohort and the KoGES consortium, and they were ana-
lyzed after the genotype quality control (Fig.  1). First, 
we investigated genetic variants that significantly dif-
fered between the four groups, using the likelihood 
ratio test (LRT). Three genetic variants passed the 
genome-wide significant threshold (P <5.00×10−8) and 
were identified as novel variations for DKD. The most 
significant SNP was rs3128852 near OR5V1 (LRT P = 
8.21×10−25), followed by rs117744700 near HIATL1 
(LRT P = 8.28×10−10), and rs28366355 near human 
leukocyte antigens HLA-DRB1 and HLA-DQA1 (LRT P 
= 2.04×10−8; (Table 3 and Additional file 1: Table S1). 
Notably, rs3128852 and rs117744700 were significant 
in DKD even after adjusting for the association of the 
T1D-associated HLA variants, whereas rs28366355 
in the HLA region lost significant association (Addi-
tional file  1: Table  S2). Furthermore, we confirmed 
that rs3128852 and rs117744700 were associated with 
DKD independently of the link between DKD and DM 
or CKD (Additional file  1: Table  S3). Figure  2 repre-
sents the quantile–quantile (Q-Q) plot, which veri-
fied that there was no inflation in the test statistics 
(VIF=1.025), and Manhattan plots of the results of the 

MLR GWAS mega-analysis. Regional association plots 
are shown in Fig.  3. In addition, two more suggestive 
variants (P <1.00×10−6) were identified: rs1824125 
near PGR (LRT P = 6.58×10−7) and rs75292524 near 
PARD3B and NRP2 (LRT P = 7.82×10−7; Table 3). The 
Q-Q and Manhattan plots for six contrasts for each pair 
are shown in Additional file  2: Fig. S1. Since the HLA 
region has a notably higher level of variability than the 
rest of the genome, it was confirmed through the mul-
tidimensional scaling (MDS) plot that the false-positive 
association was not caused by population stratification 
(Additional file  2: Fig. S2). Furthermore, fine-mapping 
results supported that the top SNP (rs3128852) with 
the highest posterior probability (almost 1.0) is likely to 
have a potential causal effect on DKD (Additional file 1: 
Table S4 and Additional file 2: Fig. S3A). However, the 
posterior probability of the second (rs117744700) sig-
nificant variants was almost zero (Additional file 2: Fig. 
S3B). These SNPs may not actually be potential causal 
variants, or the causality may not be estimated owing to 
the absence of SNPs with high LD relationships around 
the target SNP (Fig.  3B, C). Since GWAS is designed 
for identifying variants associated with the pheno-
type of interest, and not causal variants, the top SNP 
can be interpreted as a potential causal SNP for DKD 
and a related SNP for the other two SNPs. The eQTL 

Table 2  Baseline characteristics of the study populations (total sample size = 33,879)

VHSMC Veterans Health Service Medical Center, KoGES Korean Genome and Epidemiology Study, KARE KoGES Ansan and Ansung, HEXA KoGES Health Examinees, 
CAVAS KoGES cardiovascular disease association study
a ANOVA test, bChi-square test

Entire VHSMC cohort KoGES Consortium P

KARE cohort HEXA cohort CAVAS cohort

Sample size 33,879 908 4,899 21,693 6,379 -

Age (years) 66.19 ± 8.00 73.93 ± 5.93 68.50 ± 8.40 64.57 ± 7.54 68.81 ± 7.67 <0.001a

Sex (male %) 15,332 (45%) 800 (88%) 2271 (46%) 12,117 (56%) 2685 (42%) <0.001b

BMI (kg/m2) 24.47 ± 3.06 25.30 ± 2.89 24.85 ± 3.19 24.33 ± 3.02 24.57 ± 3.12 <0.001a

DM (%) 11,376 (34%) 777 (86%) 1916 (39%) 7158 (33%) 1525 (24%) <0.001b

Hypertension (%) 10,715 (32%) 752 (83%) 1803 (37%) 6,116 (28%) 2044 (32%) <0.001b

HbA1c (%) 6.09 ± 1.04 7.63 ± 1.74 6.22 ± 1.17 6.05 ± 1.03 5.94 ± 0.85 <0.001a

Creatinine (mg/dL) 0.93 ± 0.42 1.61 ± 1.60 1.01 ± 0.47 0.86 ± 0.39 1.00 ± 0.34 <0.001a

eGFR (mL/min/1.73 m2) 76.18 ± 16.80 56.12 ± 22.47 67.25 ± 15.12 82.10 ± 18.24 65.78 ± 12.40 <0.001a

Uric acid (mg/dL) 4.98 ± 1.38 5.74 ± 1.55 5.10 ± 1.45 4.92 ± 1.34 5.01 ± 1.43 <0.001a

Proteinuria <0.001b

  No 29,690 (88%) 491 (54%) 4651 (95%) 19,726 (91%) 4822 (76%) -

  Yes 2425 (7%) 403 (44%) 185 (4%) 1549 (7%) 288 (5%) -

MLR group (%) <0.001b

  Normal 15,664 (46%) 72 (8%) 1968 (40%) 10,518 (49%) 3106 (49%) -

  Only DM 8844 (26%) 330 (36%) 1459 (30%) 5978 (28%) 1077 (17%) -

  Only CKD 6839 (20%) 59 (7%) 1015 (21%) 4017 (18%) 1748 (27%) -

  DKD 2532 (8%) 447 (49%) 457 (9%) 1180 (5%) 448 (7%) -
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colocalization plots for potential causal variants of DKD 
are shown in Additional file 2: Fig. S4.

Functional annotation
The most significant variant (rs3128852) was an eQTL 
for TRIM27 (tripartite motif-containing 27) in whole 
blood (P = 2.10×10−9) and adipose-subcutaneous cells 
(P = 1.60×10−7; Table 4). However, the second significant 
variant (rs117744700) did not have any eQTL-associated 

genes in the GTEx database. The third significant variant 
(rs28366355) was an eQTL for CYP21A1P, HLA-DQA1, 
HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRB1, HLA-
DRB6, and XXbac-BPG154L12.4 in most tissues. The 
eQTL analysis results for major tissues that may be asso-
ciated with renal function (whole blood; artery-aorta, 
artery-tibial; adipose-subcutaneous; heart-left ventricle; 
renal-cortex, adrenal gland) are presented in Table  4 and 
Additional file 1: Table S5. Colocalization plots for the top 

Table 3  Results of the GWAS mega-analysis using multinomial logistic regression (leading SNPs, top five)

AF Allele frequency, CKD Chronic kidney disease, Dist Distance, DM Diabetes mellitus, DKD Diabetic kidney disease, SNP Single-nucleotide polymorphism, OR Odds 
ratio
a Major/minor allele

Chr Position rsID Allelea AF GWAS Gene symbol

OR (95% CI) P

6 29364135 rs3128852 C/T 0.281 8.21×10−25 OR5V1 (intronic)

- only DM vs. normal 1.079 (1.030–1.132) 5.81 × 10−4

- only CKD vs. normal 0.977 (0.934–1.024) 0.342

- DKD vs. normal 1.421 (1.296–1.572) 2.32 × 10−24

- only CKD vs. only DM 0.905 (0.859–0.955) 2.28 ×10−4

- DKD vs. only DM 1.317 (1.226–1.416) 4.72 × 10−14

- DKD vs. only CKD 1.455 (1.351–1.567) 3.13 ×10−23

9 97149910 rs117744700 G/C 0.249 8.28×10−10 HIATL1 (intronic)

- only DM vs. normal 0.950 (0.911–0.993) 0.030

- only CKD vs. normal 0.967 (0.926–1.017) 0.216

- DKD vs. normal 0.769 (0.725–0.818) 6.22 ×10−11

- only CKD vs. only DM 1.020 (0.966–1.078) 0.481

- DKD vs. only DM 0.809 (0.745–0.879) 5.22 ×10−7

- DKD vs. only CKD 0.793 (0.729–0.863) 7.65 ×10−8

6 32565056 rs28366355 G/T 0.498 2.04×10−8 HLA-DRB1(dist=7443),

- only DM vs. normal 1.117 (1.070–1.169) 3.38 × 10−8 HLA-DQA1(dist=40127)

- only CKD vs. normal 1.085 (1.037–1.137) 1.46 × 10−4 (intergenic)

- DKD vs. normal 1.114 (1.040–1.201) 9.52×10−4

- only CKD vs. only DM 0.971 (0.925–1.018) 0.224

- DKD vs. only DM 0.998 (0.931–1.068) 0.941

- DKD vs. only CKD 1.027 (0.958–1.102) 0.448

11 100902053 rs1824125 A/C 0.248 6.58 × 10−7 PGR (UTR3)

- only DM vs. normal 1.075 (1.026–1.131) 1.50 × 10−3

- only CKD vs. normal 1.030 (0.981–1.084) 0.229

- DKD vs. normal 1.211 (1.114–1.327) 1.59 × 10−7

- only CKD vs. only DM 0.957 (0.907–1.012) 0.118

- DKD vs. only DM 1.126 (1.043–1.215) 2.14×10−3

- DKD vs. only CKD 1.176 (1.088–1.272) 4.58×10−5

2 206490310 rs75292524 A/G 0.283 7.82×10−7 PARD3B(dist=5424),

- only DM vs. normal 0.960 (0.921–1.002) 0.072 NRP2(dist=56914)

- only CKD vs. normal 0.991 (0.947–1.039) 0.720 (intergenic)

- DKD vs. normal 0.815 (0.768–0.867) 7.82×10−7

- only CKD vs. only DM 1.126 (1.043–1.215) 0.239

- DKD vs. only DM 0.848 (0.784–0.918) 4.06×10−5

- DKD vs. only CKD 0.822 (0.759–0.891) 1.59×10−6
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SNP (rs3128852) in the TRIM27 and HLA-A gene and 
a third significant SNP (rs28366355) in the HLA region 
(from 29,677,984 to 33,485,635 bp in chromosome 6) are 
shown in Additional file 2: Fig. S4. Moreover, the decreased 
expression levels of TRIM27 [estimate of the log2-fold-
change (logFC) corresponding to the DKD control glo-
meruli was −0.506 and P = 4.10×10−3], HLA-A (logFC = 
−1.053 and P = 1.19×10−3), HLA-DQA1 (logFC =−1.758 

and P = 8.09×10−3), HLA-DQB1 (logFC = −1.234 and 
P = 4.78×10−4), HLA-DQB2 (logFC = −0.450 and P = 
2.21×10−2), and HLA-DRB6 (logFC =−0.725 and P = 
3.53×10−5) genes were associated with DKD glomeruli in 
GEO datasets (GSE30529; Table  5 and Additional file  1: 
Table S6). Except for HLA-DRB6, which cannot be anno-
tated in the STRING database, five genes were used as 
input genes in the STRING database to identify known and 
predicted biological functional networks. The HLA genes 
(HLA-A, HLA-DQA1, HLA-DQB1, and HLA-DQB2) had 
a strong interaction with each other (interaction score > 
0.75), but TRIM27 did not interact with any of these genes 
(Additional file  2: Fig. S5). Although 10 KEGG pathways 
were associated with this network, only two genes (HLA-
DQA1 and HLA-A) were annotated for DKD, which are 
associated with the immune response related to DKD 
pathogenesis (Table  6). Heritability estimates for DKD, 
CKD, and DM are presented in Table 7.

Transcriptome‑wide association analysis (TWAS) for DKD
mRNA expression levels for 7254 protein-coding 
genes were imputed for TWAS. Additional file 2: Fig. 
S6 presents the Q-Q plot, which verified that there 
was no inflation in the test statistics (VIF=1.047), 
and volcano plots of the results of the TWAS. None of 
the genes showed significant differences between the 
patients with DKD and the control group in the DEG 
analysis. Summary statistics for TWAS are provided 
in Additional file 1: Table S7.

Discussion
In this study, we demonstrated that three novel SNPs 
(rs3128852, rs117744700, and rs28366355) are significantly 
linked to DKD. In particular, we noted that the potential 
causal relationship between rs1328852 and DKD was also 
confirmed through fine-mapping analysis. The functional 
analysis for rs3128852 suggests that TRIM27 and HLA-A 
are potential genes for determining DKD pathophysiology. 
This study has elucidated the pathological mechanism of 
DKD through genome analysis.

Earlier, GWASs for DKD or CKD were limited to 
the analysis of specific phenotypes, such as uric acid, 
eGFR, ESRD, and proteinuria [11–19], and several key 
genes were identified—UMOD, MANBA, DAB2, and 
SHROOM3 [50]. We hypothesized that comparing the 
genomes of patients with DKD and healthy normal 
individuals would reveal DM-related SNPs and CKD-
related SNPs; hence, we divided our investigation into 
four subgroups, which were specialized for DKD phe-
notypes. In this study, the eQTL for rs3128852 showed 
substantial TRIM27 and HLA-A expression, and the 
results of the subsequent functional genome studies 
supported these results.

Fig. 2  Quantile–quantile (Q-Q) and Manhattan plots for multinomial 
logistic regression analysis. A Q-Q plot showing expected vs. 
observed −log10P-values. The expected line is shown in red, and 
confidence bands are shown in gray. B Manhattan plot of the 
P-values in the genome-wide association study (GWAS) multinomial 
logistic analysis for DKD phenotype (red = genome-wide line, blue = 
suggestive line)
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Fig. 3  LocusZoom plots for significant single-nucleotide polymorphisms. A Regional plot of rs3128852. B Regional plot of rs117744700. C Regional 
plot of rs28366355. Vertical axis indicates the −log10 of the P-values, whereas the horizontal axis indicates the chromosomal position Each dot 
represents the single-nucleotide polymorphism (SNP) results for GWAS mega-analysis. Approximate linkage disequilibrium of East Asians from the 
1000 Genome Project between the most significant SNPs are listed at the top of each plot; the other SNPs are shown by the 𝑟2 key in each plot
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TRIM27 encodes the tripartite motif protein fam-
ily, which is involved in a variety of biological activi-
ties that may be related to autophagy and pyroptosis 
[51]. Recent studies demonstrated that TRIM27 was 
involved in the injury of glomerular endothelial cells 
in lupus nephritis (LN) through the FoxO1 pathway 
[52, 53] and in IgA nephropathy (IgAN) via T cell 
signaling [54]. Although the pathogenic processes 
of DKD and immune-related neuropathy such as LN 
and IgAN are different, the molecular pathways in 
cells may overlap, which supports our previous find-
ings that suppression of the protein kinase B path-
way could attenuate the damage by mediating the 
expression of TRIM27 [52, 55]. Autophagy is strictly 
regulated to maintain an optimal balance of cellular 

component synthesis, degradation, utilization, and 
recycling of cellular components [56]. When kidney 
cells are exposed to stress, dysregulated autophagy 
may contribute to the accumulation of cellular dam-
age, resulting in age-related kidney disease [56]. Sev-
eral experimental studies have shown that autophagy 
is inhibited by podocytes or proximal tubule epithelial 
cells [57–59], which is consistent with our results. The 
accumulation of mitochondria plays a key role in the 
formation of reactive oxygen species, which activates 
pro-apoptotic signals and may result in hypertrophy 
of podocytes [60, 61], apoptosis of proximal tubular 
cells, and kidney fibrosis caused by the WNT-induc-
ible signaling protein-1 [62]. Moreover, upregulation 
of nephrin expression in the glomeruli inhibits the 

Table 4  cis-eQTLs of SNPs associated with DKD

Chr Chromosome, NES Normalized effect size

Chr SNP Gene symbol P NES Tissue

6 rs3128852 TRIM27 2.10×10−9 −0.19 Whole blood

HLA-A 1.60×10−7 0.23 Adipose - Subcutaneous

9 rs117744700 - - - -

6 rs28366355 CYP21A1P 1.30E−11 0.30 Whole blood

1.50E−08 0.28 Artery - Tibial

HLA-DQA1 5.40E−15 −0.34 Artery - Aorta

5.00E−12 −0.22 Artery - Tibial

6.20E−11 −0.27 Adipose - Subcutaneous

6.60E−09 −0.13 Whole blood

HLA-DQA2 1.00E−97 0.90 Whole blood

6.70E−80 1.00 Adipose - Subcutaneous

2.30E−77 0.91 Artery - Tibial

8.50E−45 0.93 Heart - Left ventricle

HLA-DQB1 4.30E−13 −0.25 Whole blood

2.90E−11 −0.34 Adipose - Subcutaneous

8.30E−08 −0.34 Heart - Left ventricle

2.00E−07 −0.22 Artery - Tibial

2.00E−07 −0.28 Artery - Aorta

HLA-DQB2 2.00E−24 0.44 Whole blood

1.90E−15 0.38 Artery - Tibial

8.10E−15 0.46 Adipose - Subcutaneous

HLA-DRB1 1.70E−25 −0.18 Whole blood

1.90E−22 −0.24 Artery - Tibial

5.20E−22 −0.37 Heart - Left ventricle

1.20E−21 −0.32 Adipose - Subcutaneous

4.70E−19 −0.31 Artery - Aorta

HLA-DRB6 2.40E−95 1.00 Adipose - Subcutaneous

4.70E−75 0.7 Whole blood

1.20E−67 0.67 Artery - Tibial

3.30E−41 0.71 Artery - Aorta

3.20E−16 0.34 Whole blood

XXbac-BPG154L12.4 5.30E−10 0.34 Adipose - Subcutaneous
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expression of mammalian target rapamycin, which 
promotes progressive tubular damage [63]. These 
results support the notion that profound autophagy 
dysregulation is related to DKD [64].

Our study discovered that HLA-A-related genes (HLA-
A, HLA-DQA1, HLA-DQB1, HLA-DQB2, and HLA-
DRB6) were involved in the etiology of DKD. Although 
research has been conducted on the role of the immune 
system in CKD development, there are few studies on 
DKD; therefore, these results must be taken into account. 
According to previous studies [65, 66], renal function is 
associated with HLA type, such as HLA-A*01:01, HLA-
A*03:01, and DQB1*02:01, which were related to CKD 
or ESRD. Furthermore, immune mechanisms may play 
a crucial role in DKD pathogenesis, especially leukocyte 

accumulation and associated molecular mechanisms 
[67]. Moreover, hyperglycemia-induced oxidative stress 
pathologically stimulates circulating immune cells, which 
enter the affected kidney and exacerbate tissue inflam-
mation by producing pro-inflammatory cytokines and 
chemokines abundantly [68]. Furthermore, DNA meth-
ylation via the upregulated activity of DNA methyltrans-
ferase 1 revealed that inflamed memory immune cells 
aggravate DKD [54]. In addition, HLA-DPA1 may be 
involved in immune mechanisms underlying DKD devel-
opment, since it has been identified as a significant gene 
for DKD [69]. Nevertheless, inflammatory response is a 
major factor in the progression of DKD, and the immune 
response exacerbates inflammation, indicating that the 
adaptive immune response is crucial in DKD [70, 71]. 
Combining the relevance of immune responses in DKD 
and the results of this study, immune responses and 
autophagy may be considered as possible pathways in the 
pathophysiology of DKD.

The true strength of this study includes the utilization 
of a relatively large elderly cohort sample that provides 
a better DKD phenotype. This is because diabetes is an 
age-related disorder, and a longer duration of diabetes 

Table 5  Differentially expressed genes of significant loci for DKD 
using Gene Expression Omnibus (GEO) dataset (GSE30529)

logFC estimate of the log2-fold-change corresponding to the effect or contrast, 
AveExpr average log2-expression for the probe over all arrays and channels, B 
log-odds that the gene is differentially expressed, NA not available

Gene symbol log FC AveExpr P-value B

TRIM27 −0.506 0.066 4.10×10−3 −0.556

HLA-A −1.053 0.071 1.19×10−3 −0.904

CYP21A1P 0.162 0.013 0.261 −5.750

HLA-DQA1 −1.758 0.951 8.09×10−3 −2.783

HLA-DQA2 NA NA NA NA

HLA-DQB1 −1.234 0.307 4.78×10−4 −0.132

HLA-DQB2 −0.450 0.170 2.21×10−2 −3.698

HLA-DRB1 NA NA NA NA

HLA-DRB6 −0.725 0.018 3.53×10−5 2.347

XXbac-BPG154L12.4 NA NA NA NA

Table 6  KEGG pathway analysis results with the five genes

This measure describes how large the enrichment effect is. This measure describes how large the enrichment effect is. It is the ratio between the number of proteins in 
the network that are annotated with a term and the number of proteins that we can expect to be annotated with this term in a random network of the same size

KEGG Kyoto Encyclopedia of Genes and Genomes, FDR false discovery rate, Strength Log10(observed/expected)

KEGG ID Pathway description Counts in network Strength FDR Matching 
proteins in the 
network

hsa04612 Antigen processing and presentation 2/63 2.09 0.011 HLA-DQA1, HLA-A

hsa04940 Type I diabetes mellitus 2/39 2.30 0.011 HLA-DQA1, HLA-A

hsa05320 Autoimmune thyroid disease 2/48 2.21 0.011 HLA-DQA1, HLA-A

hsa05330 Allograft rejection 2/34 2.36 0.011 HLA-DQA1, HLA-A

hsa05332 Graft-versus-host disease 2/36 2.34 0.011 HLA-DQA1, HLA-A

hsa05416 Viral myocarditis 2/55 2.15 0.011 HLA-DQA1, HLA-A

hsa04145 Phagosome 2/142 1.74 0.024 HLA-DQA1, HLA-A

hsa04514 Cell adhesion molecules 2/137 1.76 0.024 HLA-DQA1, HLA-A

hsa05169 Epstein-Barr virus infection 2/193 1.61 0.036 HLA-DQA1, HLA-A

hsa05166 Human T cell leukemia virus 1 infection 2/211 1.57 0.039 HLA-DQA1, HLA-A

Table 7  Heritability estimates for phenotypes via GCTA​

GCTA​ Genome-wide complex trait analysis, V(G)/Vp ratio of genetic variance to 
phenotypic variance, SE standard error, LRT likelihood ratio test, P P-value, DM 
diabetes mellitus, CKD chronic kidney disease, DKD diabetic kidney disease

DM CKD DKD

V(G)/Vp 0.176 0.054 0.064

SE 0.012 0.011 0.011

LRT 36.867 1.488 6.437

P 6.32×10−10 0.111 5.58×10−3
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is connected with an increased risk of developing DKD 
[24]. Furthermore, our study focused on DKD using MLR 
and compared it with DM without CKD and CKD with-
out DM, which have not been evaluated earlier. How-
ever, there are a few limitations of this study. First, in this 
study, DKD was not diagnosed through kidney biopsy, 
but by clinical diagnosis. In a previous genetic study of 
patients with DKD selected based on a definite diagnosis 
via a kidney biopsy [72], it was difficult to recruit a sig-
nificant number of participants due to the diversity of the 
etiological processes of DKD, limiting the study method-
ology. Moreover, diagnostic kidney biopsy is rarely per-
formed in clinical practice [73]. However, our work has 
overcome this limitation by using in silico analysis and 
generating reproducible results, minimizing this disad-
vantage. Second, subjects with T1D would be at greater 
risk of developing DKD due to longer DM duration, 
and the genome-wide significant SNPs can have a verti-
cal or horizontal pleiotropic effect on T1D and DKD. 
For instance, rs28366355, located near HLA, was sig-
nificantly associated with DKD in our analysis; this sig-
nificant result can be inferred from its association with 
T1D. However, for rs3128852 and rs117744700 or nearby 
SNPs, no significant results were reported and pleio-
tropic effects thereof on T1D and DKD are not expected. 
Furthermore, the prevalence of T1D is very rare, rang-
ing from 0.017 to 0.021% in Koreans [74]. Thus, most 
individuals with DKD in our analyses may not experi-
ence T1D, and there is very low chance of a confounding 
effect by T1D. Further studies with individuals with DKD 
and T1D and T2D disease status are necessary. Third, 
as a study design, a mega-analysis was conducted; how-
ever, the disparity in the cohort mix is limiting. Since the 
CAVAS cohort was established for cardiovascular disease 
research, it has relatively high prevalence of hypertension 
and non-DM-CKD. Furthermore, the VHSMC cohort is 
a hospital-based cohort, whereas the KoGES consortium 
is based on community survey results. Hence, the sever-
ity of diabetes in these cohorts is different. By contrast, 
the difference in diabetes severity across these cohorts 
might yield more relevant results when analyzed with 
respect to real-world data. Fourth, bioinformatics analy-
sis revealed that certain genetic variants and metabolic 
pathways were related to DKD pathogenesis, but the 
underlying mechanism of these factors needs further 
investigation. Because a simple overlap of GWAS lead 
variants with GTEx nominal P-value results is expected 
to yield several false-positive candidate causal genes [75], 
we conducted a QTL colocalization analysis and TWAS. 
However, the results were underpowered given the sam-
ple size in our study. In the PheWAS catalog (https://​
phewa​scata​log.​org/), for the SNP located in HLA-A 

(rs2860580) and its LD relationship with the top SNP 
(rs3128852), there is a significant association with genito-
urinary phenotype (Additional file  2: Fig. S7). Further 
studies are required to elucidate the mechanism through 
which immune responses and autophagy influence DKD 
pathogenesis, as discovered in our study. Fifth, our study 
results are related to some HLA-related regions, and 
typically, the HLA region has a higher level of variability 
than the rest of the genome; thus, we need to be careful 
when interpreting the results. To address these concerns, 
we attempted to address this issue by applying an MDS 
plot and conducting a fine-mapping analysis. Neverthe-
less, the variants identified as significant genome-wide in 
our study were not all fine-mapped because fine-mapping 
analysis requires high-quality genetic data and a much 
larger sample size than that required for a GWAS [76].

Conclusions
This study has demonstrated that three novel SNPs 
(rs3128852, rs117744700, and rs28366355) are signifi-
cantly associated with DKD based on the MLR GWAS 
mega-analysis. Moreover, the causal relationship between 
rs1328852 and DKD was confirmed through fine-map-
ping analysis. The functional analysis of the genetic vari-
ants (rs1328852) detected has revealed that TRIM27 
and HLA-A, associated with immune response and 
autophagy, contribute to the etiology of DKD. Consid-
ering the mechanism through which immune responses 
and autophagy influence the pathophysiology of DKD, 
further research is necessary for effective prevention and 
treatment of DKD.
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