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A cross‑sectional study evidences 
regulations of leukocytes in the colostrum 
of mothers with obesity
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Abstract 

Background:  Breastmilk is a dynamic fluid whose initial function is to provide the most adapted nutrition to the neo‑
nate. Additional attributes have been recently ascribed to breastmilk, with the evidence of a specific microbiota and 
the presence of various components of the immune system, such as cytokines and leukocytes. The composition of 
breastmilk varies through time, according to the health status of mother and child, and altogether contributes to the 
future health of the infant. Obesity is a rising condition worldwide that creates a state of systemic, chronic inflamma‑
tion including leukocytosis. Here, we asked whether colostrum, the milk produced within the first 48 h post-partum, 
would contain a distinct leukocyte composition depending on the body mass index (BMI) of the mother.

Methods:  We collected peripheral blood and colostrum paired samples from obese (BMI > 30) and lean (BMI < 25) 
mothers within 48 h post-partum and applied a panel of 6 antibodies plus a viability marker to characterize 10 major 
leukocyte subpopulations using flow cytometry.

Results:  The size, internal complexity, and surface expression of CD45 and CD16 of multiple leukocyte subpopula‑
tions were selectively regulated between blood and colostrum irrespective of the study groups, suggesting a gen‑
eralized cell-specific phenotype alteration. In obesity, the colostrum B lymphocyte compartment was significantly 
reduced, and CD16+ blood monocytes had an increased CD16 expression compared to the lean group.

Conclusions:  This is the first characterization of major leukocyte subsets in colostrum of mothers suffering from 
obesity and the first report of colostrum leukocyte subpopulations in Latin America. We evidence various significant 
alterations of most leukocyte populations between blood and colostrum and demonstrate a decreased colostrum 
B lymphocyte fraction in obesity. This pioneering study is a stepping stone to further investigate active immunity in 
human breastmilk.
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Background
Human breastmilk has been historically regarded as a 
source of nutrition for infants. Recent studies have evi-
denced that breastmilk is a complex and dynamic tis-
sue that provides newborns with components involved 
with functions beyond nutrition, such as the breast-
milk microbiota and mother-derived cytokines and 
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leukocytes [1]. The production and composition of 
breastmilk are partially modulated by external param-
eters such as the mother’s diet, stress levels, or health 
status [2–4].

Obesity is an expanding public health problem world-
wide that can be regarded as a state of low-grade systemic 
inflammation where larger adipocytes secrete proinflam-
matory mediators and recruit leukocytes [5, 6]. Indi-
viduals suffering from obesity exhibit altered peripheral 
blood cell counts with increased risks of leukocytosis, 
and modulations in the phenotypes of lymphocyte sub-
populations [7, 8]. Obesity directly hampers breastfeeding 
by various mechanisms, including delayed lactogenesis, 
decreased milk supply, and issues in adequately position-
ing the infant, all of which have been previously described 
[9–11]. In addition, obesity impacts micro- and macronu-
trient breastmilk composition and selectively regulates its 
abundance in soluble immune components. Higher lev-
els of immunoglobulin A (IgA) and secretory IgA (sIgA) 
concentrations were found in obese serum and colostrum, 
respectively, while IgG and IgM concentrations were 
unaffected by maternal body mass index (BMI) [12]. The 
relevance of increased sIgA in obese colostrum remains 
to be elucidated. It may be a consequence of the observed 
disruption of the microbiota in these samples. In Mexico, 
the colostrum from obese mothers overall contains a 
microbiota with more bacterial species (increased rich-
ness) and more diversity between species abundances 
(decreased evenness) compared to colostrum microbiota 
from lean mothers [13, 14]. Obese colostrum microbiota 
also include more potentially pathogenic bacteria genus 
such as Staphylococcus [14]. This may also partly explain 
the regulation of immune soluble factors described in 
obese breastmilk, including decreased TGF-β and sCD14, 
while IL-1 β, IL-6, IL-8, IL-10, and TNF- α concentrations 
were not significantly altered [15–17].

While historical empirical observations have associ-
ated breastfeeding with a moderately decreased risk of 
suffering from obesity later in life, in these studies, the 
weight status of breastfeeding mothers was not inves-
tigated and may be a confounding factor skewing con-
clusions [18, 19]. Indeed, overall maternal obesity is 
associated with multiple immune-mediated negative 
outcomes for infants, including neurodevelopmental dis-
orders and increased morbidity [20–22]. To date, these 
outcomes have been discussed as consequences of epige-
netic regulations and gut microbiota alterations in early 
life [22]. Recent evidence suggests breastmilk-transferred 
immune factors may impact infant health as the transfer 
of immune factors through breastmilk may also promote 
the development of autoimmune conditions [23, 24]. 
However, the consequences of obesity on the majority of 

breastmilk leukocyte populations have not been reported 
to date [25].

As alterations in breastmilk immune components 
could impact infants’ future health, we sought to investi-
gate the consequence of obesity on breastmilk leukocytes 
in a cross-section observational study [25]. The primary 
objective of this study was to explore possible variations 
in leukocyte proportions in the colostrum of mothers 
suffering from obesity. A secondary objective of this work 
was to compare the proportions and characteristics of 
leukocytes depending on the tissue of origin: colostrum 
or peripheral blood.

Methods
Study design and participants
We conducted a cross-sectional study of leukocyte sub-
populations in blood and colostrum of mothers with BMI 
<25 and BMI >30. This study was approved by the Eth-
ics Committee of the Hospital Regional Materno Infan-
til, Servicios de Salud de Nuevo León, Mexico, and the 
Institutional Review Board at Escuela de Medicina y 
Ciencias de la Salud, TecSalud, in Monterrey, Mexico, 
with the ID CarMicrobioLHum-2018. All samples were 
collected and used following signed informed consent 
and anonymization, between October 2020 and March 
2021 at the Hospital Regional Materno Infantil, in Nuevo 
León, Mexico. Briefly, adult mothers between 18 and 34 
years of age were invited to participate during the first 
obstetric consultation occurring during the first trimes-
ter of gestation. Participants were allocated to the obese 
cohort (BMI >30) or lean cohort (BMI <25), according to 
declared pre-pregnancy weight during the first visit and 
in accordance with the World Health Organization clas-
sification guidelines [26]. Eligibility to participate in the 
study was determined based on (1) mother’s age between 
18 and 34 years, (2) adequate prenatal visits without any 
adverse event during pregnancy, (3) pre-pregnancy BMI 
<25 or >30, (4) term infant, and (5) willingness to partici-
pate. Exclusion criteria included (1) having received anti-
biotics anytime during the 3-month period before birth, 
or having received a prolonged antibiotic treatment (>3 
months) anytime during pregnancy; (2) having received 
immunosuppressive doses of steroids during pregnancy; 
(3) previous monoclonal antibody treatment; (4) history 
of chronic disease (outside of obesity); (5) suffering from 
any dietary disease; (6) episodes of diarrhea during the 
last 2 weeks of pregnancy; (7) history of surgery within 
12 months prior to pregnancy; and (8) history of antineo-
plastic treatment. Elimination criteria included (1) having 
received antibiotics for >24 h post-birth, (2) necessity of 
intensive care unit admission of the neonate, and (3) any 
additional cause impeding sample collection. Oxytocin 



Page 3 of 15Piñeiro‑Salvador et al. BMC Medicine          (2022) 20:388 	

was not used during the first stages of labor. However, 
oxytocin was prescribed in 34 of 41 subjects (84%), dur-
ing the first 8 h after delivery, as per international recom-
mendations [27].

Regarding the variables of the study, the main inde-
pendent variable and hypothesized predictor was the 
BMI, calculated from self-reported pre-pregnancy weight 
and size. Additional variables collected or measured in 
this work included participant’s age, primiparity (yes/
no), infant gender, gestational age at birth, type of deliv-
ery (vaginal/C-section), weight of infant at birth, volume 
of colostrum obtained, and frequency of leukocyte sub-
populations in blood and colostrum samples. Additional 
details are included in the study’s STROBE statement 
(Sup. Table 1) [26, 28–31].

Participants provided blood and colostrum samples on 
a single occasion, within 2 days of giving birth. Briefly, 
3–4 ml of peripheral blood was collected in K2-EDTA 
vacutainers and placed on ice until processing. Follow-
ing washing of the breast and nipple area using soap 
and water, 1–3 ml of colostrum per donor was obtained 
through pump-assisted milk extraction and immediately 
stored on ice. All samples were processed and acquired 
on the flow cytometer within 3 h of collection.

Leukocyte enrichment from colostrum
Around 1 ml of colostrum was processed for cell enrich-
ment prior to staining for flow cytometry. Briefly, samples 
were centrifuged at 400 g for 15 min at 4°C. The supernatant 
was discarded, and the cell pellet was washed twice with 
PBS/2% FBS. Cells were counted using trypan blue for via-
bility assessment and aliquoted for flow cytometry staining.

Colostrum‑enriched cell staining
Depending on availability, between 200,000 and 1 × 106 
cells were used for staining, and the same number of 
cells per sample was kept as unstained control. The same 
antibody lots were used to stain both types of tissues and 
antibody titration optimizations were performed for each 
tissue type to optimize resolution of fluorescence inten-
sity over background. Cells were resuspended in the 
antibody master mix, which consisted of 2.5 μL mouse 
anti-human CD2-APC (BD® cat. 560642), 5 μL mouse 
anti-human CD16-APC-H7 (BD® cat. 560195), 5 μL 
mouse anti-human CD19-V450 (BD® cat. 560353), 2.5 
μL mouse anti-human CD36-PE (BD® cat. 555455), 5 μL 
mouse anti-human CD45-V500 (BD® cat. 560777), and 
1.25 μL rat anti-human CD294-Alexa Fluor 647 (BD® 
cat. 558042), in a final 100-μL staining volume with PBS 
+ 2% FBS per 106 cells. Samples were then incubated for 
30 min on ice in the dark, then washed and resuspended 
in PBS/2% FBS. Ten min before acquisition, propidium 

iodide (BD® cat. 556463) was added to the tube as per the 
manufacturer’s recommendations.

Peripheral blood staining
Fifty microliters of anticoagulated peripheral blood was 
stained using 2.5 μL CD2-APC, 1.25 μL CD16-APC-H7, 
5μL CD19-V450, 2.5 μL CD36-PE, 1.25 μL CD45-V500, 
and 1.25 μL CD294-Alexa Fluor 647, in a final 100-μL 
staining volume with PBS + 2% FBS for 30 minutes on 
ice, in the dark. Samples were then subjected to eryth-
rocyte lysis using BD® Pharm Lyse solution (BD® cat. 
555899) as per the manufacturer’s instructions. Ten min-
utes before acquisition propidium iodide was added to 
tubes as per the manufacturer’s recommendations.

Flow cytometry data acquisition
Samples were analyzed on a BD® FACSCelesta flow 
cytometer fitted with 405-nm, 488-nm, and 633-nm 
lasers and operated through the BD® FACSDiva software 
v.8. Cytometer settings were checked prior to all acqui-
sition using CS&T beads (BD® cat. 642412) according 
to manufacturer’s instructions. Compensation controls 
were prepared using compensation beads (anti-mouse Ig, 
K Neg Control compensation, BD® cat. 552843) follow-
ing the manufacturer’s recommendations. At least 30,000 
uncompensated events were recorded from every sample, 
with the forward scatter (FSC) event threshold adjusted 
to 35,000 for peripheral blood and 28,000 for colostrum 
samples.

Flow cytometry data analysis
Cytometry data were analyzed using FlowJo software v.10 
(Treestar LLC). Automatic compensation was performed 
prior to analysis, with a compensation matrix generated 
at each acquisition. A strict quality control workflow was 
established to ensure the exclusion of suboptimal qual-
ity samples that may artificially skew the final analysis 
(Fig. S1) [32]. Briefly, samples had to exhibit a stable flow 
stream (Side Scatter (SSC) vs. time), debris was excluded 
on SSC/FSC plot, sample viability >85% from the singlet 
gate, and >10,000 leukocytes (CD45+ cells) acquired, to 
be included in the final analysis and comparisons [33]. 
The gating strategy applied to discriminate the leukocyte 
populations has been previously described and is summa-
rized in Table 1 [31, 34]. Fluorescence minus one (FMO) 
controls of colostrum and blood samples were used to 
adjust gates, which were then applied to all samples.

Statistical analysis
Proportions of leukocyte subsets were calculated as 
% of CD45+ live cells per sample. Shapiro-Wilk tests 
were used to investigate data normality with α=0.05. 
Wilcoxon matched-pairs tests were used to compare 
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intra-individual leukocyte proportions in paired blood-
colostrum samples. Mann-Whitney U tests were used to 
compare leukocyte % and median fluorescence intensity 
(MFI) of surface markers in colostrum between study 
groups. Student t-tests were used to compare leukocyte 
proportions in blood samples. All statistical analyses 
were performed using GraphPad Prism v. 9, or SPSS® 
v. 26, IBM Corporation, Armonk, NY, USA. Graphs are 
showing discrete data and mean with SD and p values in 
the APA format.

Results
A total of 41 participants were enrolled in this study, 
with 21 mothers allocated to the lean BMI group 
and 20 mothers allocated to the obese BMI group. 
Post-acquisition quality filters on flow cytometry 

preliminary data restricted the final analysis to 21 
blood samples and 17 colostrum samples in the 
lean BMI group, and 20 blood samples and 11 colos-
trum samples in the obese BMI group (Sup. Fig.  1). 
An overall summary of the clinical variables of each 
study group is presented in Table  2. As per the study 
design, the average BMI was significantly larger in the 
obese mothers’ cohort (34.9 vs. 22.8 in the lean cohort, 
p<0.001). There was no difference in maternal age, ges-
tational age at delivery, mode of delivery (C-section 
or vaginal), gender of infant, weight of infant at birth, 
or primiparity between groups, and post-quality filter 
sample exclusion did not unearth additional difference 
between groups (Sup. Table 2 and 3). The average vol-
ume of collected colostrum was significantly smaller in 
the obese mothers’ cohort (1.42 ml vs 2.11 ml).

Table 1  Flow cytometry qualitative thresholds considered to identify the investigated leukocyte populations

Cell type Phenotype

Granulocytes
Neutrophils SSCbright, CD45+, CD16+

Eosinophils SSCbright, CD45+, CD16-, CD2 / CD294+

Basophils SSCint, CD45+, CD16-, CD2 / CD294+

Lymphoid lineage cells
Noncytotoxic T lymphocytes SSCdim, CD45+, CD16-, CD2 / CD294+

Cytotoxic T/NK lymphocytes SSCdim, CD45+, CD16+, CD2 / CD294+

B lymphocytes SSCdim, CD45+, CD16-, CD2 / CD294-, CD19+

Monocytes
CD16- (classical) monocytes SSCint, CD45+, CD16-, CD2 / CD294-, CD19-, CD36+ CD16-

CD16+ (non-classical) monocytes SSCint, CD45+, CD16+, CD2 / CD294-, CD19-, CD36+, CD16+

Precursors/Immature cells
Myeloid precursors SSCdim, CD45+, CD19-, CD2/ CD294-

Immature granulocytes SSCbright, CD45+, CD16-, CD2 / CD294-

Table 2  Summary of demographic and clinical parameters of study participants included in the blood analysis

N number of events, BMI body mass index, V vaginal births, IQR interquartile range. Statistically significant p values for the calculated differences are depicted in bold 
type. Continuous data were analyzed with Mann-Whitney’s U test, and proportions were compared with Fisher’s exact test

Cohort p

Variable Lean  Obese

N total 21 20

Maternal age (years), median (IQR) 23 (22-26) 26 (21-29) 0.82

Maternal BMI (kg/m2), median (IQR) 22.6 (21.1-23.9) 34.5 (33.7-35.4) <0.001
Primiparous, N (%) 6 (29) 6 (30) 0.09

Infant gender, N females (% total) 9 (43) 8 (40) 1

Gestational age (weeks), median (IQR) 39 (38-40) 39 (38-40) 0.09

Delivery type, N V (%) 15 (71) 13 (65) 0.74

Infant birth weight (g), median (IQR) 3340 (3000-3850) 3412 (3036-3619) 0.46

Volume of colostrum obtained (mL), median 
(IQR)

2.0 (1.5-2.5) 1.5 (1.0-1.7) 0.008
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No variation is observed in blood leukocyte proportions 
between cohorts
Ten leukocyte subpopulations were confidently iden-
tified in peripheral blood using the gating strategy 
presented in Fig. 1. For all leukocyte proportions meas-
ured, there was no difference between the lean and 
obese cohorts (Fig.  2). Median percentages for each 
subpopulation, and results of statistical comparisons 
are presented in Table 3.

Obesity is associated with a decreased B lymphocyte 
fraction in colostrum
The flow cytometry plots from colostrum samples 
highlighted consistent differences compared to blood, 
such as increased debris and doublets proportion, and 
overall decreased viability (Fig.  3). The B lymphocyte 
fraction was significantly reduced in the obese cohort 
compared to the lean cohort (Fig. 2 panel I and Table 3, 
median 0.17% vs. 0.41% in the lean cohort, p = 0.029). 
The remaining 9 leukocyte subpopulations exhibited 
similar proportions in colostrum between cohorts. 
Median % of all leukocyte subtypes for both cohorts are 
found in Table 3.

Leukocyte proportions are regulated between blood 
and colostrum
Neutrophils were the most abundant leukocytes in both 
tissue types, as expected [31, 35]. There was no dif-
ference in neutrophil proportions between groups in 
either tissue (Fig. 2, Table 3). However, there were sig-
nificantly less neutrophils in lean mothers’ colostrum 
compared to lean mothers’ blood, while this difference 
was not recapitulated in the obese cohort (p=0.007 vs. 
p=0.51, respectively, Table 3).

The second highest frequency colostrum leukocytes 
were non-cytotoxic T cells (medians: 6.95% and 3.81% 
in lean and obese groups, respectively, Table  3). The 
frequency of non-cytotoxic T cells in peripheral blood 
was significantly higher compared to the frequency in 
colostrum, irrespective of the cohort (Fig. 2, Table 3).

For B lymphocytes, non-cytotoxic T cells, and eosin-
ophils, relative proportions depended on the tissue of 
origin. Overall, there was a significantly higher fraction 
of B lymphocytes and non-cytotoxic T cells in periph-
eral blood compared to colostrum (Fig. 2 I, J and C, D, 
respectively). On the other hand, there was a signifi-
cantly higher fraction of eosinophils in colostrum com-
pared to peripheral blood (Fig.  2 S, T). These trends 
were pervasive across study groups (Table  3). Group-
specific differences between tissue were also identified. 
There were significantly larger fractions of basophils 
and CD16+ monocytes in blood, only in the lean group, 

and a significantly larger fraction of immature granulo-
cytes in colostrum from the obese group only (Table 3).

The relative sizes of leukocytes are selectively regulated 
between blood and colostrum
The relative size of various leukocyte populations var-
ied significantly between tissues as estimated by FSC, 
and this was pervasive across both cohorts. B lympho-
cytes were significantly larger in colostrum compared 
to peripheral blood (Fig.  4A). On the other hand, both 
populations of T lymphocytes, basophils, and both popu-
lations of monocytes were significantly smaller in colos-
trum compared to blood (Fig.  4A). Of note, in blood, 
CD16+ monocytes were significantly smaller (Fig.  4A, 
p = 0.031) and significantly less internally complex 
(Fig.  4C, p < 0.0001) than classical CD16− monocytes. 
These results together recapitulate well-described con-
trasts between these populations, further supporting 
the identity of these cells. In colostrum, the differences 
in size and internal complexity between both monocyte 
subpopulations were exacerbated (p < 0.0001 for both). 
Eosinophils and neutrophils did not exhibit a change in 
relative size between tissues.

Leukocytes from the myeloid lineage undergo regulation 
of internal complexity between blood and colostrum
There was a leukocyte-specific regulation of internal com-
plexity between tissue, as determined by SSC of light, and 
this finding was pervasive across both cohorts. Lymphoid 
cells showed stable SSC in blood and colostrum (Fig. 4B), 
while the SSC of myeloid cells were significantly regulated 
between tissues (Fig.  4C). Basophils and classical CD16− 
monocytes exhibited significantly higher SSC in colos-
trum, while neutrophils and CD16+ monocytes exhibited 
significantly higher SSC in peripheral blood. As seen for 
FSC properties, eosinophils did not exhibit a change in SSC 
properties between tissue types.

Leukocytes regulate CD45 expression between blood 
and colostrum in a lineage‑dependent fashion
Overall, the relative expression of CD45 was higher on 
lymphocytes, with a mean MFI around 1000 (Fig.  5A) 
and lower on myeloid progenitors with a mean MFI <400 
(Fig.  5C). There was no difference between tissues in the 
relative expression of CD45 on the surface of cells from 
the lymphoid lineage (Fig.  5A). All 3 granulocyte sub-
types exhibited a significant increase in CD45 expression 
in colostrum compared to blood (Fig.  5B). Upregulation 
of CD45 was systematically more significant on granulo-
cytes from the lean cohort. While early myeloid precur-
sors did not exhibit changes in CD45 expression, with MFI 
consistently averaging around 150 in all groups, colostrum 
immature granulocytes exhibited twice the levels of CD45 
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Fig. 1  Typical gating strategy applied to peripheral blood to identify 10 leukocyte subpopulations. The data presented were obtained from one 
representative donor from the lean cohort
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Fig. 2  Relative frequencies of leukocyte subpopulations identified in colostrum and peripheral blood of mothers with lean and obese BMI. 
Individual data points are shown, together with group median and interquartile range, p<0.05 (*)
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expression observed in peripheral blood, with MFI averaging 
from 134 and 128 in blood to >300 in colostrum, irrespective 
of the study groups (Fig.  5C). Both monocyte populations 
downregulated CD45 expression in colostrum, irrespective of 
the study group, and the downregulation was systematically 
more significant in the obese cohort (Fig. 5D).

Leukocyte‑specific regulation of CD16 between peripheral 
blood and colostrum
We observed stable, relatively low levels of CD16 on 
cytotoxic T/NK cells across tissues in both study groups 
(Fig.  6A). Blood neutrophils exhibited the highest 
expression of CD16 (mean MFI 5049 and 5584 for lean 
and obese study groups respectively, Fig. 6B) while the 
expression on blood-circulating monocytes and cyto-
toxic T/NK cells was overall 10-fold lower. There was a 
significant downregulation of CD16 on colostrum neu-
trophils compared to blood, irrespective of the study 
group, and the difference between tissues was more 
significant in the lean cohort (Fig.  6B). On the other 
hand, there was a significant upregulation of CD16 on 
the surface of colostrum CD16+ monocytes, in the lean 
group only (Fig.  6C). Interestingly, blood-circulating 
CD16+ monocytes expressed significantly more CD16 
in the obese cohort than in the lean cohort (p = 0.0011, 
Fig. 6C).

Discussion
Here, we applied a 7-color panel for flow cytometry to 
investigate 10 major leukocyte subpopulations in periph-
eral blood and colostrum from mothers presenting lean 

or obese BMI [31, 34]. In answering the primary objective 
of the study, we evidenced a reshaping of the colostrum 
B lymphocyte compartment in obesity, with less B cells 
present in the colostrum from mothers suffering from 
obesity, while all other leukocyte populations remained 
unaltered in the colostrum between groups. In answering 
the secondary objective of this study, we identified con-
siderable cell-specific phenotypic alterations of all leuko-
cyte subtypes investigated between blood and colostrum. 
The alterations evidenced included regulation of cell size, 
internal complexity, and surface expression CD45 and 
CD16. Altogether, this report informs for the first time 
on regulated processes in colostrum leukocytes possibly 
involved in activation and trafficking from human blood 
to colostrum and evidences regulations correlated to 
maternal obesity.

Neutrophil average proportions in colostrum were 1.5 
to 5 times higher than previously reported using flow 
cytometry (medians >65% in both groups, versus less 
than 15% in [31]), but similar to previously measured in 
colostrum using a blood hematology analyzer [31, 36]. 
Blood-circulating neutrophils have a lifespan of a few 
hours only, which is significantly shorter compared to 
other leukocytes [37]. Reducing the time between col-
lection and analysis to < 3 h may have allowed increased 
detection of live neutrophils, compared to longer wait 
periods in earlier studies. Proportions measured in blood 
were higher than expected in this tissue, which is con-
sistent with the literature reporting leukocytosis and 
impaired neutrophil apoptosis during pregnancy and 
labor [38].

Table 3  Summary of median leukocyte subset percentages identified in colostrum and peripheral blood of lean and obese cohorts

Frequency of leukocyte subpopulations expressed as median % (interquartile range). Total leukocytes from live singlets are reported and then used as the parent for 
leukocyte subpopulation frequencies. Non-parametric Mann-Whitney U tests were used to compare leukocyte proportions measured per tissue between cohorts (first 
p value = colostrum, second p value = blood). Intra-individual comparisons were performed using Wilcoxon matched-pairs signed rank tests, comparing leukocyte 
proportions between blood and colostrum within each cohort (first p value = lean, second p value = obese. p values < 0.05 were considered significant

Colostrum vs. Blood (p value) within each cohort, analysis btw tissues (Lean, obese)

Obese vs. Lean (p value) (colostrum, blood)

Lean Obese Comparisons 

Colostrum Blood Colostrum Blood  Lean Obese Colostrum Blood

Total leukocytes 60.30 (43.00-80.00) 96.50 (91.80-98.50) 62 (41.00-87.90) 97.15 (93.70-98.28) p=0.54, p=0.80 p <0.0001, p <0.0001

Neutrophils 66.40 (56.95-74.10) 78.2 (70.25-80.05) 70 (61.4-79.5) 73.15 (68.25-78.15) p=0.35, p=0.48 p=0.007, p=0.51

Eosinophils 0.35 (0.23-0.60) 0.007 (0.004-0.04) 0.34 (0.14-0.67) 0.02 (0.003-0.06) p=0.84, p=0.23 p<0.0001, p<0.0001

Basophils 0.65 (0.22-0.77) 0.3 (0.21-0.36) 0.5 (0.23-0.97) 0.29 (0.20-0.47) p=0.93, p=0.46 p=0.049, p=0.2

Immature granulocytes 0.81 (0.65-1.26) 0.58 (0.15-1.06) 0.73 (0.42-2.53) 0.30 (0.12-1.04) p=0.90, p=0.97 p=0.09, p=0.036

Myeloid progenitors 0.28 (0.11-0.55) 0.22 (0.08-0.91) 0.23 (0.11-0.62) 0.14 (0.08-0.32) p=0.84, p=0.17 p=0.83, p=0.28

CD16+ monocytes 0.07 (0.03-0.16) 0.19 (0.1-0.28) 0.04 (0.02-0.1) 0.15 (0.05-0.31) p=0.49, p=0.95 p=0.0063, p=0.13

CD16- monocytes 1.24 (0.62-4.80) 3.23(1.4-4.4) 2.03 (0.57-3.42) 2.2 (0.8-3.4) p=0.78, p=0.45 p=0.43, p=0.83

B lymphocytes 0.41 (0.17-0.70) 2.13 (1.67-2.75) 0.17 (0.06-0.21) 2.63 (2.09-3.43) p=0.029, p=0.09 p<0.0001, p<0.0001

Non-cytotoxic T cells 6.95 (2.09-9.43) 10.9 (8.94-17.50) 3.81 (1.4-7.56) 13.10 (9.40-19.75) p=0.45, p=0.61 p<0.0001, p<0.0001

NK/Cytotoxic T cells 0.20 (0.11-0.62) 0.73 (0.37-1.17) 0.17 (0.05-0.6) 0.91 (0.41-1.77) p=0.63, p=0.17 p=0.006, p<0.0001
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Fig. 3  Typical gating strategy applied to colostrum-enriched cells to identify 10 leukocyte subpopulations. Data presented were obtained from one 
representative donor from the lean cohort



Page 10 of 15Piñeiro‑Salvador et al. BMC Medicine          (2022) 20:388 

We show that the abundance of CD16 on the surface 
of neutrophils and of CD16+ monocytes is significantly 
regulated by tissue type, and depending on the cohort. In 
lean cohort blood, neutrophils express significantly more 
CD16 while CD16+ monocytes express significantly less 
CD16, than in colostrum. CD16 is a Fc gamma III recep-
tor (FcgIIIR) for the constant fraction of IgG antibod-
ies. CD16 is abundant on the surface of phagocytic cells 
and its presence correlates with the phagocytic capacity 
of opsonized pathogens [39]. It is interesting to meas-
ure such a regulation for FcR of IgG in colostrum, as the 
main immunoglobulin isotypes present in colostrum are 
IgA and IgM, which are not recognized by CD16 [40].

Downregulation of CD16 on colostrum neutrophils 
could be the result of ectodomain shedding caused by 
activation or apoptosis. While apoptosis is also generally 

marked by a decrease in cell size, here no variation was 
observed in neutrophil relative size between tissue, 
casting doubt on apoptosis being the cause of CD16 
downregulation on neutrophil surfaces in colostrum. 
Neutrophil activation is a rational alternative in the light 
of the well-described colostrum microbiota [14, 41, 42]. 
Finally, CD16 downregulation from colostrum neu-
trophils may be caused by internalization after cross-
linking IgG Fc, in contrast to shedding proposed earlier. 
Overall, additional experiments are necessary to con-
clude on the cause of neutrophil CD16 downregulation 
in colostrum.

Contrasting from findings in neutrophils, in mothers 
from the lean cohort, the relative abundance of CD16 on 
CD16-expressing monocytes was higher in colostrum 
compared to blood. Of note, the present flow cytometry 

A

B

C

Fig. 4  Relative size (FSC) and internal complexity (SSC) of mature leukocytes present in blood and colostrum. Wilcoxon matched-pairs signed rank 
tests were used to compare leukocyte scattering characteristics in each tissue. The data for each subpopulation pools samples of both lean and 
obese cohorts, p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****)
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panel was not designed to further subclassify CD16+ 
monocytes between non-classical and intermediate pop-
ulations, the latter known to express relatively less CD16 
than the former.

Therefore, the observed difference could have vari-
ous origins. There could be an expansion of the higher 
CD16-expressing non-classical monocytes population, as 
observed in peripheral blood during infections [43, 44]. 
A possible alternative could be the upregulation of CD16 

from the intermediate population, as previously described 
[45]. Interestingly, this difference between tissues was not 
recapitulated in the obese cohort, because CD16 was sig-
nificantly increased on blood monocytes compared to the 
lean cohort, to levels that were similar to that of CD16 
in colostrum monocytes. This is consistent with obesity 
involving systemic low-grade inflammation and highlights 
the relevance of investigating CD16 expression levels on 
monocytes in addition to other monocyte characteristics 

Fig. 5  Relative abundance of CD45, expressed as median fluorescence intensity (MFI), on the surface of leukocytes from peripheral blood or 
colostrum from obese and lean cohorts. Individual values are plotted with mean and SD and Wilcoxon matched-pairs signed rank tests were used 
to compare intra-individual variations within groups, p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****)

Fig. 6  Relative abundance of CD16 expressed as MFI on the surface of relevant leukocyte subpopulations contained in peripheral blood or 
colostrum samples from obese and lean cohorts. Individual values are plotted with mean and SD, and Wilcoxon matched-pairs signed rank tests 
were used for intra-individual comparisons, p<0.05 (*), p<0.01 (**), p<0.0001 (****)
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known to be modulated by obesity [46]. In the present 
study, the blood proportion of CD16+ monocytes was not 
perturbated by obesity. It is a possibility that the distinc-
tive post-partum immune profile is causing this discrep-
ancy compared to the obesity-mediated modulations of 
blood monocytes described in the literature [47]. Overall, 
it will be necessary to investigate further monocyte sub-
populations in colostrum.

CD45 upregulation has been described on granulo-
cytes upon exposure to pathogenic microbes and physi-
ological activators such as fMLP [48–50]. However, the 
implications of this regulation on the development of 
the immune response remain unclear, and conflicting 
results have been described. For example in neutrophils, 
upregulation of CD45 is consistent with their activation 
[50]. CD45 is also partially involved in regulating various 
neutrophil immune functions like cell adhesion, phago-
cytosis, and ROS production [51]. However, CD45 was 
also shown to downregulate neutrophil chemotaxis, 
and in turn, neutrophil ROS production was shown to 
inhibit CD45 [52, 53]. Therefore, the present results 
warrant future in-depth analyses of the activation 
status of granulocytes present in colostrum using 
functional assays.

Breastmilk is the recommended source of nutrition 
for infants globally. At present, only exceptional condi-
tions warrant a healthcare professional to consider dis-
couraging this practice, including specific substance 
abuse but also treatments affecting the immune system 
of the mother [54–56]. The presented results indicate 
that suffering from obesity significantly reduces the B 
lymphocyte compartment in the colostrum, without 
affecting peripheral blood. Much remains to be inves-
tigated about colostrum B lymphocytes in obesity. In 
peripheral blood, B lymphocytes from obese individu-
als are more inflammatory and less efficient at switching 
to memory B cells upon antigen exposure [8]. Here, the 
features of colostrum B lymphocytes hint toward a phe-
notype of antibody-secreting cells, with increased cell 
size, although this remains to be confirmed. Infants born 
with an immature immune system benefit from the pas-
sive transfer of antibodies from their mothers through 
breastfeeding. This includes immunologically relevant 
concentrations of immunoglobulins in breastmilk over a 
long period of time and vaccine-induced antigen-specific 
IgA and IgG into breastmilk 2-6 weeks post-vaccination 
[57, 58]. Unvaccinated infants therefore benefit from 
antibody-mediated protection against infectious dis-
eases, in addition to training of their immature immune 
system by exposure to these components [59]. Interest-
ingly, a previous study described increased sIgA in obese 
colostrum [12]. Although more studies are necessary to 

confirm these findings globally, it is possible that breast-
tissue resident plasma cells secrete more sIgA in obesity 
to compensate for less B cells present in colostrum. The 
present results therefore suggest obesity may impact the 
quantity and quality of passive immunity provided to 
nursing infants.

Additionally, this work provides insights into the 
regulation of leukocyte trafficking between blood and 
colostrum since various significant trends were equally 
recapitulated in both cohorts. Overall, the data indi-
cate minimal regulation of the lymphoid compartment 
between tissues while myeloid cells were significantly 
altered morphologically and on the cell surface in colos-
trum. Mechanisms of leukocyte recruitment to the alve-
olar lumen during lactation remain largely unknown. 
Leukocytes are thought to reach breastmilk through 
the paracellular pathway from a mammary gland origin, 
crossing tight junctions (TJ), and not by direct extrava-
sation from blood vessels. As TJ are tightly sealed dur-
ing lactation, it has been suggested that leukocytes are 
recruited before initiation of lactation [60, 61]. How-
ever, a recent study showed increasing numbers of post-
mitotic plasma cells in the mouse mammary gland during 
lactation, suggesting some recruitment may actually take 
place during lactation [62]. Mouse breastmilk T lympho-
cytes express TJ proteins, possibly to maintain TJ integ-
rity during leukocyte transmigration during lactation 
[63]. On the other hand, extravasation is the reported 
process by which the mammary gland undergoes the ini-
tial leukocyte recruitment during pregnancy [64]. In the 
context of infections, transmigration cause leukocytes to 
modulate membrane expression of various markers and 
overall exhibit a proinflammatory profile. This includes 
enhanced survival for granulocytes and lymphocytes, and 
increased phagocytosis for neutrophils and monocytes, 
among other features described in [65]. Transcriptional 
analysis of the mammary gland throughout gestation, lac-
tation, and weaning showed an upregulation of immune-
related function during the involution of the tissue 
post-weaning, compared to earlier timepoints including 
lactation [66]. Overall, this suggests a largely unknown 
complex process physiologically distinct from infection-
induced leukocyte transmigration and calls for further 
investigations into breastmilk leukocyte recruitment.

Early literature has speculated active immunity trans-
fer from breastmilk to neonates [67]. More recently, 
breastmilk was shown to be significantly enriched in 
regulatory T cells compared to peripheral blood [68]. 
This scattered literature implicates a regulation of leuko-
cytes in breastmilk with potential outcomes in the suck-
ling neonate. Here, providing a differential description of 
leukocyte phenotypes in both tissue types helps to start 
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dissecting this complex and selective recruitment process. 
We describe that the mothers’ BMI impacts B lympho-
cyte proportions in colostrum, suggesting a mother’s 
health status may in turn affect neonatal health.

A possible limitation of this work was relying on BMI 
to organize cohorts. Various reports demonstrate that 
BMI alone may not be a sufficient indicator for obe-
sity and % body fat should be used instead [69, 70]. In 
addition, recruitment and allocation to cohorts were 
performed during the first trimester of pregnancy, 
without later revisions of weight gain. We argue that 
overall first-trimester weight gain has been previously 
reported as minimal and that mothers suffering from 
obesity have a lower weight increase compared to lean 
mothers during this stage of pregnancy [71, 72]. There-
fore, the present results may be minimally confounded 
by differential weight gain during the development of 
the pregnancy.

Technically, while reporting leukocyte proportions in 
colostrum provide novel insights, it would be ideal to also 
measure absolute numbers of cells in colostrum. While 
earlier work has described absolute counts using BD 
TruCount tubes, the necessary pre-processing of colos-
trum samples may challenge the validity of the obtained 
results. Unfortunately, there is presently no alternative to 
estimate leukocyte absolute counts in breastmilk, while 
the physical properties of this tissue hamper their unpro-
cessed use with TruCount tubes. Furthermore, we could 
not identify all of the leukocytes present in samples, as 
shown by events outside of population-calling gates, 
which is nonetheless consistent with the literature [31]. 
While CD45+ leukocytes make up the large majority of 
nucleated blood-circulating cells, rare CD45− cells such 
as erythroid precursors or CD45− megakaryocytes were 
recently reported in healthy individuals which could par-
ticipate in explaining the < 3.5% CD45− fraction identi-
fied in these samples [73, 74].

This report highlights multiple key questions regard-
ing active immunity in human colostrum, that require 
further study. First, what are the causes of the reduced 
B cell compartment in obese mothers’ colostrum, and 
what are the short- and long-term consequences in suck-
ling infants? Why and how are leukocytes trafficked to 
colostrum, and is the altered phenotype in colostrum a 
requisite for, or a consequence of trafficking? Finally, 
the presented data hint toward activation of the innate 
immune system in colostrum, accentuating the need to 
investigate colostrum as a complex system, together with 
its microbiota. Host-microbe crosstalk should be consid-
ered in future studies to shed light on the mechanistic 
regulation of colostrum composition in obesity, and its 
impact on suckling infants.

Conclusions
To the best of our knowledge, this is the first study 
of the main leukocyte subtypes in colostrum from a 
Latin-American population, the first report of pheno-
typic alterations of leukocyte subpopulations between 
peripheral blood and colostrum globally, and the first 
evidence of obesity altering colostrum leukocytes [25]. 
Therefore, this pioneering study is a stepping stone to 
further investigate active immunity in human breast-
milk. Additional research is necessary to understand 
the etiology and consequences of the reported altera-
tions in mothers suffering from obesity.
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