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Dense phenotyping from electronic health 
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Abstract 

Background:  Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortal‑
ity, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict 
preterm birth risk. The dense longitudinal information present in electronic health records (EHRs) is enabling scalable 
and cost-efficient risk modeling of many diseases, but EHR resources have been largely untapped in the study of 
pregnancy.

Methods:  Here, we apply machine learning to diverse data from EHRs with 35,282 deliveries to predict singleton 
preterm birth.

Results:  We find that machine learning models based on billing codes alone can predict preterm birth risk at vari‑
ous gestational ages (e.g., ROC-AUC = 0.75, PR-AUC = 0.40 at 28 weeks of gestation) and outperform comparable 
models trained using known risk factors (e.g., ROC-AUC = 0.65, PR-AUC = 0.25 at 28 weeks). Examining the pat‑
terns learned by the model reveals it stratifies deliveries into interpretable groups, including high-risk preterm birth 
subtypes enriched for distinct comorbidities. Our machine learning approach also predicts preterm birth subtypes 
(spontaneous vs. indicated), mode of delivery, and recurrent preterm birth. Finally, we demonstrate the portability of 
our approach by showing that the prediction models maintain their accuracy on a large, independent cohort (5978 
deliveries) from a different healthcare system.

Conclusions:  By leveraging rich phenotypic and genetic features derived from EHRs, we suggest that machine 
learning algorithms have great potential to improve medical care during pregnancy. However, further work is needed 
before these models can be applied in clinical settings.

Keywords:  Preterm birth, Machine learning, Electronic health records, Artificial intelligence

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Preterm birth, occurring before 37 weeks of com-
pleted gestation, affects approximately 10% of pregnan-
cies globally [1–3] and is the leading cause of infant 

mortality worldwide [4, 5]. The causes of preterm birth 
are multifactorial since different biological pathways 
and environmental exposures can trigger premature 
labor [6]. Large epidemiological studies have identi-
fied many risk factors, including multiple gestations 
[1], cervical anatomic abnormalities [7], and maternal 
age [8]. Notably, even though a history of preterm birth 
[9] is one of the strongest risk factors, the recurrence 
rate remains low at < 30% [10, 11]. Additionally, the 
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maternal race is associated with risk for preterm birth; 
Black women have twice the prevalence compared to 
White women [1, 12]. Preterm births have a heterog-
enous clinical presentation and cluster based on mater-
nal, fetal, or placental conditions [3]. These obstetric 
and systemic comorbidities (e.g., pre-existing diabetes, 
cardiovascular disease) can also increase the risk of 
preterm birth [13, 14].

Despite our understanding of numerous risk factors, 
there are no accurate methods to predict preterm birth. 
Some biomarkers associate with preterm birth, but their 
best performance is limited to a subset of all cases [15, 
16]. Recently, analysis of maternal cell-free RNA and 
integrated -omic models have emerged as promising 
approaches [17–19], but initial results were based on a 
small pregnancy cohort and require further validation. 
In silico classifiers based on demographic and clinical 
risk factors have the advantage of not requiring serology 
or invasive testing. However, even in large cohorts (> 1 
million individuals), demographic- and risk factor-based 
models report limited discrimination (AUC = 0.63–0.74) 
[20–24]. To date, we lack effective screening tools and 
preventative strategies for prematurity [25].

EHRs are scalable, readily available, and cost-efficient 
for disease-risk modeling [26]. EHRs capture longitudi-
nal data across a broad set of phenotypes with detailed 
temporal resolution. EHR data can be combined with 
socio-demographic factors and family medical history 
to comprehensively model disease risk [27–29]. EHRs 
are also increasingly being augmented by linking patient 
records to molecular data, such as DNA and labora-
tory test results [30]. Since preterm birth has a substan-
tial heritable risk [31], combining rich phenotypes with 
genetic risk may lead to better prediction.

Machine learning models have shown promise for 
accurate risk stratification across a variety of clinical 
domains [32–34]. However, despite the rapid adoption 
of machine learning in translational research, a review 
of 107 risk prediction studies reported that most mod-
els used only few variables, did not consider longitudinal 
data, and rarely evaluated the model performance across 
multiple sites [35]. Studies using machine learning to pre-
dict preterm birth have relied on small cohorts and sub-
sets of preterm birth and are rarely replicated in external 
datasets [22, 36–38]. Pregnancy research is especially 
well poised to benefit from machine learning approaches 
[27]. Per standard of care during pregnancy, women are 
carefully monitored with frequent prenatal visits, medi-
cal imaging, and clinical laboratory tests. Compared to 
other clinical contexts, pregnancy and the correspond-
ing clinical surveillance occur in a defined time frame 
based on gestational length. Thus, EHRs are well-suited 
for modeling pregnancy complications, especially when 

combined with the well-documented outcomes at the 
end of pregnancy.

In this study, we combine multiple sources of data from 
EHRs to predict preterm birth using machine learning. 
From Vanderbilt’s EHR database (> 3.2 million records) 
and linked genetic biobank (> 100,000 individuals), we 
identified a large cohort of women (n = 35,282) with doc-
umented deliveries. We trained models (gradient-boosted 
decision trees) that combine demographic factors, clini-
cal history, laboratory tests, and genetic risk with billing 
codes to predict preterm birth. We find models trained 
on only billing codes show potential for predicting pre-
term birth and outperform a similar model using only 
known clinical risk factors. By investigating the patterns 
learned by our models, we identify clusters with distinct 
preterm birth risk and comorbidity profiles. Finally, we 
demonstrate the generalizability of billing code-based 
models trained at Vanderbilt on an external, independent 
cohort from the University of California, San Francisco 
(UCSF, n = 5978). Our findings provide a proof of con-
cept that machine learning on rich phenotypes in EHRs 
shows promise for portable, accurate, and non-invasive 
prediction of preterm birth. The strong predictive perfor-
mance across clinical context and preterm birth subtypes 
argues that machine learning models have the potential 
to add value during the management of pregnancy; how-
ever, further work is needed before these models can be 
applied in clinical settings.

Results
Assembling pregnancy cohort and ascertaining delivery 
type from Vanderbilt EHRs
From the Vanderbilt EHR database (> 3.2 million 
patients), we identified a “delivery cohort” of 35,282 
women with at least one delivery in the Vanderbilt hos-
pital system (Fig. 1A). In addition to ICD and CPT bill-
ing codes, we extracted demographic data, past medical 
histories, obstetric notes, clinical labs, and genome-wide 
genetic data for the delivery cohort. Because billing codes 
were the most prevalent data in this cohort (n = 35,282), 
we quantified the pairwise overlap between billing codes 
and each other data type. The largest subset included 
women with billing codes paired with demographic data 
(n = 33,570). The smallest subset was women with bill-
ing codes paired with genetic data (n = 905; Fig.  1C). 
The mean maternal age at the first delivery in the deliv-
ery cohort was 27.3 years (23.0–31.0 years, 25th and 
75th percentiles, Additional file 1: Fig. S1A). The major-
ity of women in the cohort self- or third-party-reported 
as White (n = 21,343), Black (n = 6178), or Hispanic (n 
= 3979; Additional file 1: Fig. S1B). The estimated gesta-
tional age (EGA) distribution had a mean of 38.5 weeks 
(38.0 to 40.3 weeks, 25th to 75th percentile; Fig.  1D). 
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The rate of multiple gestations (e.g., twins, triplets) was 
7.6% (n = 1353). Since multiple gestation pregnancies 
are more likely to deliver preterm, we developed predic-
tion models using singleton pregnancies unless otherwise 
stated.

To determine the delivery date and type (preterm vs. 
not preterm) at scale across our large cohort, we devel-
oped a phenotyping algorithm using delivery-specific 
billing codes and estimated gestational age at delivery. 
For women with multiple pregnancies, we only consid-
ered the earliest delivery. We find that labeling preterm 
births using delivery-specific billing codes has high con-
cordance (PPV ≥ 0.85, recall ≥ 0.95) with EGA-based 
delivery labels (Fig.  1E). Our final algorithm combined 
billing codes and EGA when available (n = 15,041, 

Fig.  1C). To evaluate the accuracy of the ascertained 
delivery labels, a domain expert blinded to the delivery 
type reviewed clinical notes from 104 EHRs selected at 
random from the delivery cohort. The algorithm had high 
accuracy: precision (positive predictive value) of 96% and 
recall (sensitivity) of 96% using the chart-reviewed label 
as the gold standard (Fig. 1F).

Boosted decision trees using billing codes to identify 
preterm deliveries
Using this richly phenotyped delivery cohort, we evalu-
ated how well the entire clinical phenome, defined as 
billing codes (ICD-9 and CPT) before and after delivery, 
could identify preterm births. With counts of each billing 
code (excluding those used to ascertain delivery type), 

Fig. 1  Definition and attributes of Vanderbilt delivery cohort. A Schematic overview of the assembly of the delivery cohort from electronic health 
records (EHRs). Using billing codes, women with at least one delivery were extracted from the EHR database (n = 35,282). B Delivery date and type 
were ascertained using ICD-9, CPT, and/or estimated gestational age (EGA) from each woman’s EHR (the “Methods” section). From this cohort, 104 
randomly selected EHRs were chart reviewed to validate the preterm birth label for the first recorded delivery. C Number of women in the billing 
code cohort with estimated gestational age (+EGA), demographics (+Age, self- or third-party-reported race), clinical labs (+Labs), clinical obstetric 
notes (+Obstetric notes), patient clinical history (+Clinical History), and genetic data (+Genetics). D The EGA distribution at delivery (mean 38.5 
weeks (red line); 38.0–40.3 weeks, 25th and 75th percentiles). Less than 0.015% (n = 49) deliveries have EGA below 20 weeks. E The concordance 
between estimated gestational age (EGA) within 3 days of delivery and ICD-9-based delivery type for the 15,041 women with sufficient data 
for both. Precision and recall values were > 93% across labels except for preterm precision (85%). F Accuracy of delivery type phenotyping. The 
phenotyping algorithm was evaluated by chart review of 104 randomly selected women. The approach has high precision and recall for binary 
classification of “preterm” or “not preterm”
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we trained gradient-boosted decision trees [39] to clas-
sify each mother’s first delivery as preterm or not pre-
term. Boosted decision trees are well-suited for EHR data 
because they require a minimal transformation of the 
raw data, are robust to correlated features, and capture 
non-linear relationships [40]. Moreover, boosted decision 
trees have been successfully applied on a variety of clini-
cal tasks [28, 41, 42].

In all evaluations, we held out 20% of the cohort as a 
test set and used the remaining 80% for training and vali-
dation (Fig.  2A). Boosted decision tree models trained 
on ICD-9 and CPT codes accurately identified preterm 
births (singletons and multiple gestations) with PR-AUC 
= 0.86 (chance = 0.22) and ROC-AUC = 0.95 (Addi-
tional file  1: Fig. S2A, B). While the combined ICD-9- 
and CPT-based model achieved the best performance, 
models trained on either ICD-9 or CPT individually also 
performed well (PR-AUC ≥ 0.82; chance = 0.22, ROC-
AUC ≥ 0.93). All three models demonstrated good cali-
bration with low Brier scores (≤ 0.092; Additional file 1: 
Fig. S2C). Thus, billing codes across an EHR show poten-
tial as a discriminatory feature for predicting preterm 
birth.

Accurate prediction of preterm birth at 28 weeks 
of gestation
To evaluate preterm birth prediction in a clinical con-
text, we trained a boosted decision tree model (Fig. 2A) 
on billing codes present before each of the following time 
points: 0, 13, and 28 weeks of gestation (Fig. 2B). These 
time points were selected to approximately reflect preg-
nancy trimesters. We downsampled to achieve a com-
parable number of singleton deliveries across each time 
point (n = 11,227 to 11,474) to mitigate sample size as 
a potential confounder while comparing the perfor-
mance. We only considered active pregnancies at each 
time point; for example, delivery at 27 weeks would not 
be included in the 28-week model, since the outcome 
would already be known. The ROC-AUC increased from 
conception (0 weeks; 0.63) to the highest performance at 
28 weeks (0.72; Fig.  2C). The PR-AUC (Fig.  2D), which 
accounts for preterm birth prevalence, is highest at 28 
weeks (0.33, chance = 0.13). However, as we show in the 
next section, this is an underestimate of the ability to pre-
dict preterm delivery at 28 weeks due to the down-sam-
pling of the number of training examples. As expected, 
when we included multiple gestations, the model per-
formed even better (PR-AUC = 0.42 at 28 weeks, chance 
= 0.14; Additional file 1: Fig. S3). The results were simi-
lar when models were trained using billing codes avail-
able before different time points from the date of delivery 
(Additional file 1: Fig. S4).

To test whether differences in contact with the health 
system between cases and controls were driving perfor-
mance, we trained a classifier based on the total num-
ber of codes in an individual’s EHR before delivery to 
predict preterm birth. This simple classifier failed to 
discriminate between delivery types with PR-AUC and 
ROC-AUC only slightly higher than chance (PR-AUC = 
0.19, chance = 0.19; ROC-AUC = 0.56, chance = 0.5, 
Additional file 1: Fig. S5). Therefore, cumulative disease 
burden or the number of contacts alone is not informa-
tive for predicting preterm birth.

Integrating other EHR features does not improve model 
performance
In addition to billing codes, EHRs capture aspects of an 
individual’s health through different types of structured 
and unstructured data. We tested whether incorporat-
ing additional features from EHRs can improve preterm 
birth prediction. Models were evaluated using data 
available at 28 weeks of gestation; we selected this time 
point as a tradeoff between being sufficiently early for 
some potential interventions and late enough for suffi-
cient data to be present to enable accurate predictions 
using billing codes. From the EHRs, we extracted sets 
of features including demographic variables (age, race), 
clinical keywords from obstetric notes, clinical lab tests 
ran during the pregnancy, and predicted genetic risk 
(polygenic risk score for preterm birth). To measure the 
performance gain for each feature set, we compared the 
models trained using the feature set only, billing codes 
only, and billing codes combined with the feature set 
(Fig. 3A). Within each feature set, the same pregnancies 
comprised the training and held-out sets for the three 
models. However, the number of deliveries (training + 
held-out sets) varied widely across feature sets (n = 462 
to 20,342) due to the differing availability of each fea-
ture type.

Models using only demographic factors, clinical key-
words, and genetic risk had ROC-AUC and PR-AUC 
similar to chance (Fig. 3B). Clinical labs had moderate 
predictive power with ROC-AUC of 0.63 and PR-AUC 
of 0.24 (Fig.  3B). Compared to models using only bill-
ing codes, adding additional feature sets did not sub-
stantially improve performance (Fig. 3B). We note that 
some feature sets, such as clinical labs and genetic risk, 
were evaluated on held-out sets with small numbers 
of deliveries (180 and 92, respectively). However, even 
after increasing the sample size by including women 
who may have features either before or after delivery, 
we did not observe a consistent gain in performance 
compared to models trained using only billing codes 
(Additional file 1: Fig. S6).
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Models using billing codes outperform predictions 
from risk factors
Although there are well-known risk factors for preterm 
birth, few validated risk calculators exist and even fewer 

are routinely implemented in clinical practice [43]. We 
evaluated how a prediction model incorporating only 
common risk factors associated with moderate to high 
risk for preterm birth compared to a model using billing 

Fig. 2  Machine learning accurately predicts preterm birth using billing codes present before 28 weeks of gestation. A Machine learning framework 
for training and evaluating all models. We train models (boosted decision trees) on 80% of each cohort to predict the delivery as preterm or not 
preterm. EHR features used to ascertain delivery type are excluded from the training. Performance is reported on the held-out cohort consisting 
of 20% of deliveries using the area under the ROC and precision-recall curves (ROC-AUC, PR-AUC). B We trained models using billing codes (ICD-9 
and CPT) present before each of the following time points during pregnancy: 0, 13, and 28 weeks of gestation. These time points were selected to 
approximate gestational trimesters. Women who already delivered were excluded at each time point. To facilitate comparison across time points, 
we downsampled the cohorts available so that the models were trained on a cohort with similar numbers of women (n = 11,227 to 11,474). 
C The ROC-AUC increased from conception at 0 weeks (0.63, dark blue line) to 28 weeks of gestation (0.72, green line) compared to a chance 
(black dashed line) AUC of 0.5. D The model at 28 weeks of gestation achieved the highest PR-AUC (0.33). This is an underestimate of the possible 
performance; the performance improves further when all women with data available at 28 weeks are considered (ROC-AUC 0.75 and PR-AUC 0.40). 
Chance (dashed lines) represents the preterm birth prevalence in each cohort
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codes, which captured a broad range of comorbidities, 
at 28 weeks of gestation (Fig. 4A). We included maternal 
and fetal risk factors that occurred before and during the 
pregnancy and across many organ systems [3, 13, 23, 44], 
race [20], age at delivery [45–47], pre-gestational and ges-
tational diabetes [48], sickle cell disease [49], fetal abnor-
malities [13], pre-pregnancy hypertension, gestational 
hypertension (including pre-eclampsia or eclampsia) [1, 
50], and cervical abnormalities [51] (the “Methods” sec-
tion). However, we note that we did not include some 
known lifestyle risk factors, like smoking, alcohol con-
sumption, or physical activity, due to the difficulty of 
accurately extracting them from the EHR.

The billing code-based model significantly out-
performed a model trained with clinical risk factors 
at predicting preterm birth at 28 weeks of gestation 
(PR-AUC = 0.40 vs. 0.25, ROC-AUC = 0.75 vs. 0.65; 
Fig.  4B, C). The stronger performance of the billing 
code-based classifier was true for women across the 
spectrum of comorbidity burden; it had higher preci-
sion across individuals with different numbers of risk 

factors. Performance peaked for individuals with 0 
(precision = 0.39) and 4+ (precision = 0.46) risk fac-
tors, but we did not observe a trend between model 
performance and increasing number of clinical risk 
factors (Fig.  4D). This suggests that machine learning 
approaches incorporating a comprehensive clinical 
phenome can add value to predicting preterm birth.

Machine learning models can predict spontaneous 
preterm births
The multifactorial etiologies of preterm birth lead to 
clinical presentations with different comorbidities and 
trajectories. Medically indicated and idiopathic spon-
taneous preterm births are distinct in etiologies and 
outcomes. Identifying pregnancies that ultimately result 
in spontaneous preterm deliveries is particularly valu-
able, and we anticipated that spontaneous preterm birth 
would be more challenging to predict than preterm 
birth overall. To test this, we identified spontaneous 
preterm births in the held-out set at 28 weeks of gesta-
tion by excluding women with medically induced labor, 

Fig. 3  Demographic, clinical, and genetic features do not improve preterm birth prediction compared to billing codes. A Framework for evaluating 
change in preterm birth prediction performance after incorporating diverse types of EHR features with billing codes (ICD-9 and CPT codes). We 
used only features and billing codes occurring before 28 weeks of gestation. EHR features are grouped by sets of demographic factors (age and 
race), clinical keywords (UMLS concept unique identifiers from obstetric notes), clinical labs, and genetic risk (polygenic risk score for preterm birth). 
We compared three models for each feature set: (1) using only the feature set being evaluated (pink), (2) using only billing codes (“Billing codes,” 
purple), and (3) using the feature set combined with billing codes (“Both,” gray). For each feature set, we considered the subset of women who had 
at least one recorded value for the EHR feature and billing codes. All three models for a given EHR feature set considered the same pregnancies, 
but there are differences in the cohorts considered across the feature set due to the differences in data availability; ntotal is the number of women 
(training and held-out) for each feature set. B Each of the three models (x-axis) and their ROC-AUC and PR-AUC (y-axis) are shown. Each of the 
additional EHR features performed worse than the billing codes-only model and did not substantially improve performance when combined 
with the billing codes. Dotted lines represent a chance of 0.5 for ROC-AUC and the preterm birth prevalence for PR-AUC. Even when including 
EHR features before and after delivery in this framework revealed the same pattern with no substantial improvement in predictive performance 
compared to the billing codes-only model (Additional file 1: Fig. S6)
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a cesarean section delivery, or PPROM (the “Methods” 
section). We intentionally used a conservative pheno-
typing strategy that aimed to minimize false-positive 
spontaneous preterm births to evaluate the model’s 
ability to predict spontaneous preterm births. The pre-
diction model trained using billing codes up to 28 weeks 
of gestation classified 48% (recall) of all spontaneous 
preterm births (n = 75) as preterm; this is significantly 

higher than the risk factor only model (recall = 35%; 
Fig. 4E).

Preterm birth prediction algorithm stratifies deliveries 
into clusters with different preterm birth risks and distinct 
comorbidity signatures
Understanding the statistical patterns identified by 
machine learning models is crucial for their adoption 
into clinical practice. Unlike deep learning approaches, 

Fig. 4  Billing code-based model outperforms a model based on clinical risk factors. A We compared the performance of boosted decision trees 
trained using either billing codes (ICD-9 and CPT) present before 28 weeks of gestation (purple) or known clinical risk factors (gray) to predict 
preterm delivery. Clinical risk factors (the “Methods” section) included self- or third-party-reported race (Black, Asian, or Hispanic), age at delivery (> 
34 or < 18 years old), non-gestational diabetes, gestational diabetes, sickle cell disease, presence of fetal abnormalities, pre-pregnancy BMI > 35, 
pre-pregnancy hypertension (> 120/80), gestational hypertension, preeclampsia, eclampsia, and cervical abnormalities. Both models were trained 
and evaluated on the same cohort of women (n = 21,099). B Precision-recall and C ROC curves for the model using billing codes (purple line) or 
clinical risk factors (gray line). Preterm births are predicted more accurately by models using billing codes at 28 weeks of gestation (PR-AUC = 0.40, 
ROC-AUC = 0.75) than using clinical risk factors as features (PR-AUC = 0.25, ROC-AUC = 0.65). For the precision-recall curves, chance performance 
is determined by the preterm birth prevalence (dashed black line). D Billing code-based prediction model performance stratified by the number of 
risk factors for an individual. The billing code-based model detects more preterm cases and has higher precision (dark purple) across all numbers 
of risk factors compared to preterm (PTB) prevalence (light purple). E The model using billing codes also performs well at predicting the subset of 
spontaneous preterm births in the held-out set (recall = 0.48) compared to risk factors (recall = 0.35)
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decision tree-based models are easier to interpret. We 
calculated the feature importance as measured by the 
SHapley Additive exPlanation (SHAP) scores [52, 53] for 
each delivery and feature pair in the held-out cohort for 
the model using billing codes at 28 weeks of gestation 

(“Billing code-based model,” Fig. 4A). SHAP scores quan-
tify the marginal additive contribution of each feature 
to the model predictions for each individual. Next, we 
performed a density-based clustering on the patient by 
feature importance matrix and visualized clusters using 

Fig. 5  Machine learning-based clustering of deliveries identifies subgroups with distinct PTB prevalence, clinical features, and prediction accuracy. 
A For the model predicting preterm birth at 28 weeks of gestation using billing codes (ICD-9 and CPT, Fig. 4A), we assigned deliveries from the 
held-out test set (n = 2246) to one of six clusters (colors) using density-based clustering (HDBSCAN) on the SHAP feature importance matrix. For 
visualization of the clusters, we used UMAP to embed the deliveries into a low-dimensional space based on the matrix of feature importance 
values. The inset pie chart displays the count of individuals in each cluster. B The preterm birth prevalence (color bar) in each cluster. The algorithm 
discovered four clusters with high PTB prevalence (enclosed by a dashed line). C Precision and D recall for preterm birth classification within each 
cluster. E The enrichment (odds ratios, color bar in log10 scale) of race as derived from EHRs for each cluster (Additional file 1: Table S1). F The 
enrichment (log10 odds ratio) of relevant clinical risk factors in each cluster (Additional file 1: Table S2). Risk factors include age at delivery (> 34 or < 
18 years old), pre-pregnancy BMI (prepreg BMI), pre-pregnancy hypertension (prepreg hypertension), gestational hypertension (gest hypertension), 
and fetal abnormalities. We report the total number of women in the delivery cohort at high risk for each clinical risk factor (n). Enrichments for 
additional risk factors are given in Additional file 1: Fig. S7
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UMAP (Fig.  5A, the “Methods” section). This approach 
focuses the clustering on the features for each individual 
prioritized by the algorithm. We identified six clusters 
with 927 to 102 women. PTB prevalence (Fig.  5B) was 
the highest in clusters 1 to 4 (blue, pink, green, orange, 
Fig.  5A) indicating a greater risk for preterm birth for 
women in these clusters. Performance varied across the 
clusters; the yellow cluster with low PTB prevalence had 
the highest PPV while clusters with higher PTB preva-
lence had a higher recall (Fig. 5C, D).

To evaluate whether clusters had distinct phenotype 
profiles, we calculated the enrichment of demographic 
and clinical risk factor traits within each cluster as the 
odds ratio from Fisher’s exact test (the “Methods” sec-
tion). Enrichment (or depletion) of a particular demo-
graphic or clinical risk factor in a given cluster denotes 
higher (or lower) odds of that factor being present in 
women within the given cluster compared to other fac-
tors. These traits were extracted from structured fields 
in EHRs or ascertained using combinations of billing 
codes. Although these billing codes are used to train the 
model, the combination of codes used to ascertain risk 
factor traits is not encoded in the training data. White 
women are significantly enriched in cluster 5 (odds ratio, 
OR = 1.2, p-value = 0.02, Fisher’s exact test, Fig.  5E), 
which means women in this cluster are more likely to be 
White than not White. Hispanic women also had signifi-
cant positive enrichment in cluster 4 (OR = 2.5, p-value 
= 0.0002) and cluster 6 (OR = 1.6, p-value = 0.008) and 
were depleted (negative enrichment) in cluster 5 (OR = 
0.5, p-value = 4.42E−6, Fig. 5D). African American and 
Asian women also exhibit modest enrichment in differ-
ent clusters (Additional file 1: Table S1).

We also tested for enrichment of clinical risk factors of 
preterm birth in the clusters. We observed distinct pat-
terns of enrichment and depletion for each clinical risk 
factor (Fig.  5F, Additional file  1: Fig. S7). Gestational 
hypertension had strong enrichment in cluster 3 (OR 
= 26.4, p-value = 9.0E−39). Fetal abnormalities dem-
onstrated a similar pattern with strong enrichment in 
cluster 1 (OR = 8.5, p-value = 2.07E−10). Extreme age 
at delivery (> 34 or < 18 years old) was enriched, though 
weakly (OR = 1.2 to 2.2) for all clusters except clusters 
5 and 6. Pre-pregnancy BMI, pre-pregnancy hyperten-
sion, and gestational hypertension had similar patterns 
with the strongest enrichment in cluster 3. The remain-
ing clinical risk factors show similar patterns and are pro-
vided in Additional file  1: Fig. S7 and Additional file  1: 
Table S2.

By analyzing the feature importance values through 
UMAP embeddings, we identify interpretable clus-
ters of individuals discovered by the machine learning 
model that reflect the complex and multi-faceted paths 

to preterm birth. Overall, the learned rules highlight the 
relationships between clinical factors and preterm birth 
prevalence. For example, some risk factors, such as age 
at delivery, are enriched in all clusters with high preterm 
birth prevalence. Other factors, such as pre-pregnancy 
BMI and hypertension, are strongly enriched only in spe-
cific clusters with high preterm birth prevalence. Thus, 
this approach enables us to interpret phenotypic patterns 
of risk and identify subgroups among cases learned from 
complex EHR features by the prediction model.

Performance varies based on clinical context and delivery 
history
To further explore the sensitivity of the performance of 
our approach to clinical context and patient history, we 
evaluated how delivery type (vaginal vs. cesarean sec-
tion) and a previous preterm birth influence preterm 
birth prediction. We trained two classifiers using billing 
codes (ICD-9 and CPT) occurring before 28 weeks of 
gestation: one on a cohort of cesarean section (n = 5475) 
singleton deliveries and one on vaginal deliveries (n = 
15,487). Preterm birth prediction accuracy was higher in 
the cesarean section cohort (PR-AUC = 0.47, chance = 
0.20) compared to the vaginal delivery cohort (PR-AUC 
= 0.23, chance = 0.10; Fig.  6A). Cesarean sections also 
had higher ROC-AUC compared to vaginal deliveries 
(0.75 vs. 0.68, Additional file 1: Fig. S8). As expected, the 
preterm birth prevalence was higher in the cesarean sec-
tion cohort.

Women with a history of preterm birth are at signifi-
cantly higher risk for a subsequent preterm birth than 
women without a previous history. Therefore, it is par-
ticularly important to understand the drivers of risk in 
this cohort. We tested if models trained on EHR data of 
women with a history of preterm birth could accurately 
predict the status of their next birth. We assembled 1416 
women with preterm birth and a subsequent delivery in 
the cohort and split them into a training set (80%) and 
a held-out test set (20%) to evaluate the model perfor-
mance (the “Methods” section). For these women, 53% 
of the second deliveries were preterm. Due to limited 
availability of estimated gestational age data for recurrent 
preterm births, which is necessary to approximate the 
date of conception, we trained models using billing codes 
(ICD-9 and CPT) present before each of the following 
time points: 10, 30, and 60 days before the delivery. These 
models were all able to discriminate term from preterm 
deliveries better than chance (Fig. 6B; PR-AUCs ≥ 0.75). 
The model predicting a second preterm birth as early as 
60 days before delivery achieved a high performance with 
PR-AUC = 0.75 (Fig. 6B, chance = 0.53) and ROC-AUC 
= 0.77 (Additional file 1: Fig. S9).
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Models trained at Vanderbilt accurately predict preterm 
birth in an independent cohort at UCSF
To evaluate whether preterm birth prediction models 
trained on the Vanderbilt cohort performed well on EHR 
data from other databases, we compared their perfor-
mance on the held-out Vanderbilt cohort (n = 4215) and 
an independent cohort from UCSF (n = 5978). The UCSF 
cohort was ascertained using similar rules as the Vander-
bilt cohort (the “Methods” section); age and distribution 
of race are provided in Table 1. However, we note that the 
UCSF cohort has a lower preterm birth prevalence (6%) 
compared to the Vanderbilt cohort (13%).

To facilitate the comparison, we trained models to pre-
dict preterm birth in the Vanderbilt cohort using only 
ICD-9 codes present before 28 weeks of gestation. We 
will refer to this as the “Vanderbilt-28wk model.” We did 
not consider CPT codes in this analysis due to the dif-
ferences in the available billing code data between Van-
derbilt and UCSF. As expected from the previous results, 
the Vanderbilt-28wk model accurately predicted preterm 
birth in the held-out set from Vanderbilt (PR-AUC of 
0.34, chance = 0.12), but the performance was slightly 

lower than using both ICD and CPT codes (Fig.  4B). 
The Vanderbilt-28wk model also achieved strong perfor-
mance in the UCSF cohort. The Vanderbilt-28wk model 
had a higher ROC-AUC (0.80) in the UCSF cohort com-
pared to the Vanderbilt cohort (0.72; Fig.  7A) and PR-
AUC of 0.31 vs. 0.34 at Vanderbilt (Fig. 7B). The higher 
ROC is due to the lower prevalence of preterm birth in 
the UCSF cohort and the sensitivity of ROC-AUC to 
class imbalance [54]. Overall, the Vanderbilt-28wk model 
shows striking reproducibility across two independent 
cohorts.

Similar features are predictive across the independent 
cohorts
The architecture of boosted decision trees enables 
straightforward identification of features (ICD-9 codes) 
with the largest influence on the model predictions. We 
used SHAP [52, 55] scores to quantify the marginal addi-
tive contribution of each feature to the model predictions 
for each individual. For each feature in the Vanderbilt-
28wk model based on ICD-9 codes, we calculated the 
mean absolute SHAP values across all women in the 

Fig. 6  Preterm birth prediction accuracy is influenced by clinical context. A Preterm birth prediction models trained and evaluated only on 
cesarean section (C-section) deliveries perform better (PR-AUC = 0.47) than those trained only on vaginal delivery (PR-AUC = 0.23). ROC-AUC 
patterns were similar (Additional file 1: Fig. S8). Billing codes (ICD-9 and CPT) present before 28 weeks of gestation were used to train a model to 
distinguish preterm from non-preterm birth for either C-sections (n = 5475) or vaginal deliveries (n=15,487). B Recurrent preterm birth can be 
accurately predicted from billing codes. We trained the models to predict preterm birth for the second delivery in a cohort of 1416 high-risk women 
with a prior preterm birth documented in their EHR. Three models were trained using data available 10 days, 30 days, and 60 days before the date 
of the second delivery. Models accurately predict the birth type in this cohort of women with a history of preterm birth (PR-AUC ≥ 0.75). ROC-AUC 
varied from 0.82 at 10 days to 0.77 at 60 days before the second delivery (Additional file 1: Fig. S9). Expected performance by chance is the preterm 
birth prevalence in each cohort (dashed lines)
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held-out set. The mean absolute SHAP value for each fea-
ture was highly correlated (Spearman R = 0.93, p-value 
< 2.2E−308) between the held-out Vanderbilt set and 
the UCSF cohort (Additional file 1: Fig. S10). The top 15 
features ranked based on the mean absolute SHAP value 
captured known risk factors (fetal abnormalities, history 
of preterm birth, etc.), pregnancy screening, and supervi-
sion of high-risk pregnancies (Fig. 7C). Ten of the top 15 
features were shared across both cohorts. The full list of 
SHAP values across all features is provided in Additional 
file 1: Table S3. This suggests that the model’s discovered 
combination of phenotypes, including expected risk fac-
tors, and the corresponding weights assigned by the 
machine learning model are generalizable across cohorts.

Logistic regression using top features does not outperform 
gradient‑boosted trees
We evaluated how a simpler model that may be easier to 
implement in routine clinical practice would compare to 
the full gradient-boosted decision tree model. Using the 
only top 15 features identified in the Vanderbilt-28wk 
model (Fig. 7C), we evaluated the performance of a logis-
tic regression model to predict preterm birth. The logistic 
regression model was trained and evaluated on the Van-
derbilt cohort using the same training and held-out set as 
the Vanderbilt-28wk model. It performed well, but worse 
(ROC-AUC = 0.70, PR-AUC = 0.30, Additional file  1: 
Fig. S11) than the Vanderbilt-28wk model (ROC-AUC = 
0.72, PR-AUC = 0.34, Fig. 7A, B).

Model performance is similar for Black and White women 
but lower for Hispanic and Asian women
Given systemic biases in healthcare, it is critical to eval-
uate the accuracy of prediction algorithms, especially 
those based on EHR or genetic data, on individuals of dif-
ferent races and ancestries. Furthermore, preterm birth 
prevalence varies by race with Black women at twice the 
risk compared to White women [1]. We evaluated the 
performance of the Vanderbilt-28wk model on the held-
out set after stratifying individuals by race. The model 
performance was very similar for Black women compared 
to White women (ROC-AUC 0.72 vs. 0.73; PR-AUC = 
0.37 vs. 0.36). Our cohort included a substantial num-
ber of Black women, and preterm birth prevalence in the 
cohort was only slightly higher in Black (14%) compared 
to White (12%) women. (This is likely driven by Vander-
bilt serving more high-risk pregnancies compared to a 
national baseline.) However, when evaluating the per-
formance of Hispanic and Asian women, accuracy was 
substantially lower for both ROC-AUC (0.68 and 0.64, 
Additional file  1: Fig. S12) and PR-AUC (0.29 and 0.14, 
Additional file  1: Fig. S12). We suspect that the lower 
performance of Hispanic and Asian women may result 
from the smaller size and lower preterm birth prevalence 
in Asians.

Discussion
Preterm birth is a major health challenge that affects 
5–20% of pregnancies [1, 2, 12] and leads to significant 
morbidity and mortality [56, 57]. Predicting preterm birth 
risk could inform clinical management, but no accurate 

Table 1  Demographic distribution of UCSF and Vanderbilt cohorts. We identified women with preterm and not preterm deliveries at 
UCSF and Vanderbilt using similar ascertainment (the “Methods” section). For each woman, we predicted the earliest delivery in their 
EHR. We report age at delivery (patient age) as mean with standard deviation (SD) in parenthesis and self- or third-party-reported race 
for both cohorts as the count and the column-wise proportion in parenthesis. The T-tests and chi-squared tests of independence were 
used to compare distributions stratified by delivery label

UCSF Vanderbilt

Not preterm Preterm p-value Not preterm Preterm p-value

n 5615 363 18,498 2651

Patient age (mean (SD)) 36.65 (5.08) 36.54 (5.96) 0.691 27.71 (5.75) 27.73 (6.38) 0.876

Patient race (%) < 0.001 < 0.001

  American Indian or Alaska Native 26 (0.5) 3 (0.8) 47 (0.2) 4 (0.01)

  Asian 1336 (23.8) 51 (14.0) 1051 (5.8) 100 (3.8)

  Black or African American 336 (6.0) 31 (8.5) 2962 (16.5) 486 (18.8)

  Declined 72 (1.3) 5 (1.4) NA NA

  Hispanic NA NA 2379 322

  Native Hawaiian/Pacific Islander 86 (1.5) 3 (0.8) NA NA

  Others 866 (15.4) 77 (21.2) 162 (0.9) 12 (0.04)

  Unknown 200 (3.6) 32 (8.8) 619 (3.3) 69 (2.6)

  White or Caucasian 2693 (48.0) 161 (44.4) 11,278 (63.0) 1658 (64.2)
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classification strategies are routinely implemented [25]. 
Here, we take a step toward addressing this need by dem-
onstrating the potential for machine learning on dense 
phenotyping from EHRs to predict preterm birth in chal-
lenging clinical contexts (e.g., spontaneous and recur-
rent preterm births). However, we emphasize that more 
work is needed before these approaches are ready for the 
clinic. Compared to other data types in the EHRs, models 

using billing codes alone had the highest prediction accu-
racy and outperformed those using clinical risk factors. 
Demonstrating the potential broad applicability of our 
approach, the model accuracy was similar in an external 
independent cohort. Combinations of many known risk 
factors and patterns of care drove prediction; this sug-
gests that the algorithm builds on existing knowledge. 
Thus, we conclude that machine learning based on EHR 

Fig. 7  Preterm birth prediction models accurately generalize to an independent cohort. Performance of preterm birth prediction models trained 
at Vanderbilt applied to UCSF cohort. Models were trained using ICD-9 codes present before 28 weeks of gestation at Vanderbilt on 16,857 women 
and evaluated on a held-out set at Vanderbilt (n = 4215, gold) and UCSF cohort (n = 5978, blue). A Models accurately predicted preterm birth at 
Vanderbilt (ROC-AUC = 0.72) and at UCSF (ROC-AUC = 0.80). The higher ROC-AUC at UCSF is driven by the lower prevalence of preterm birth in 
this cohort. B Models performed better than baseline prevalence (chance) based on the precision-recall curve at Vanderbilt (PR-AUC = 0.34) and at 
UCSF (PR-AUC = 0.31). Note that in contrast to the models presented previously, this one was trained only on ICD-9 codes, due to the lack of CPT 
codes in the UCSF cohort. C The top 15 features with the highest mean absolute SHAP score in the Vanderbilt cohort (gold square) or UCSF cohort 
(blue circle). The majority of the features were shared across cohorts and captured known risk factors (fetal abnormalities, history of preterm birth, 
etc.), pregnancy screening visits, and supervision of high-risk pregnancies. Feature importance estimates were strongly correlated between the two 
cohorts (Additional file 1: Fig. S10). Cohort demographics are given in Table 1
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data has the potential to predict preterm birth accurately 
across multiple healthcare systems.

Decision tree-based models are robust to correlated 
features can identify complex non-linear combinations 
and remain transparent for interpretation after train-
ing. In addition to these advantages, decision tree-based 
models have demonstrated strong performance in vari-
ous clinical prediction tasks [58–60]. Pregnancy is a 
clinical context with close monitoring and well-defined 
endpoints that may similarly benefit from machine learn-
ing approaches, yet few studies have applied decision 
tree-based machine learning models to large pregnancy 
cohorts with rich clinical data [61].

Our approach has several distinct advantages com-
pared to published preterm birth prediction models. 
First, our models have robust performance. Previous 
models using risk factors (diabetes, hypertension, sickle 
cell disease, history of preterm birth) to predict preterm 
birth, despite having cohorts up to two million women 
[23], have reported ROC-AUCs between 0.69 and 0.74 
[20–22, 24]. Our models obtain a ROC-AUC of 0.75 
and PR-AUC of 0.40 using data available at 28 weeks of 
gestation even after excluding multiple gestations. Fur-
thermore, given the unbalanced classification problem 
(preterm births are less common than non-preterm), we 
report high PR-AUCs in addition to high ROC-AUCs. 
The improvement in our models is likely driven by richer 
longitudinal phenotypes accessible from EHRs and com-
plex models capable of identifying non-linear patterns. 
These factors also likely contributed to the decision 
tree-based models outperforming the logistic regression 
model (Additional file 1: Fig. S11). A recent deep learn-
ing model trained using word embeddings from EHRs 
achieved a high performance (ROC-AUC = 0.83 [61]). 
This model was evaluated over a stratified high-risk 
cohort consisting of birth before 28 weeks of gestation. 
We did not stratify preterm births by severity since more 
than 85% of preterm births occur after 32 weeks of gesta-
tion [62]; however, this is an important topic for future 
work. Our models achieve comparable performance with 
the benefit of easier interpretability, which is an advan-
tage over deep learning approaches, and we discuss this 
further below.

Second, our models use readily available data through-
out pregnancy that do not require invasive sampling. 
While some studies have also obtained high ROC-AUCs 
(e.g., 0.81–0.88), they used serum biomarkers across 
small cohorts [17] or acute obstetric changes within days 
of delivery [16]. The potential to enable cost-effective and 
broad application is illustrated by our evaluation of the 
classifiers on EHR data from UCSF; however, substan-
tial further work is needed to move from this proof-of-
concept analysis to clinic-ready models. Furthermore, the 

rich characterization of the phenome provided by EHRs 
leveraged by our approach could also complement more 
invasive biochemical assays.

Third, the gradient-boosted decision trees we imple-
ment are easier to interpret than “black box” deep learn-
ing models that cannot easily identify features driving 
predictions. Transparency is an important, if not neces-
sary, characteristic of machine/artificial learning models 
deployed in clinical practice [63, 64], and it can facilitate 
the discovery of insights and hypotheses to motivate 
future work. We reveal the patterns learned by our model 
by clustering deliveries using feature importance profiles. 
The enrichment for known risk factors (e.g., gestational 
hypertension, fetal abnormalities, and pre-pregnancy 
BMI) in clusters with high preterm birth prevalence 
establishes confidence in our machine learning-based 
prediction models. In addition, we can quantify the 
strength of enrichment and combination of risk factors 
across clusters with distinct comorbid patterns. Since 
preterm birth is a heterogenous phenotype [6], and strat-
ifying pregnancies based on clinical features may be criti-
cal to uncovering the biological basis of labor [3, 65, 66], 
the learned rules from our model offer a possible method 
for subphenotyping.

Finally, our approach generalizes across hospital sys-
tems. We demonstrate that billing code-based mod-
els trained at Vanderbilt achieve similar accuracy in an 
independent cohort from UCSF. The generalizability 
of machine learning models can be constrained by the 
sampling of the training data. Thus, the accurate predic-
tion in an independent dataset from an external institu-
tion points to several inherent strengths of the approach. 
First, successful replication indicates the models’ ability 
to learn predictive signals despite regional variation in 
assigning billing codes to an EHR. Even with different 
demographic distribution between the two cohorts (e.g., 
a greater proportion of African American and Asian 
women in the Vanderbilt and UCSF cohorts, respectively, 
Table  1), the overall model performance is very similar. 
Second, the large cohorts used to train and evaluate mod-
els at Vanderbilt and USCF guard against the potential 
weakness of EHRs, such as miscoding or omission of key 
data points. These errors are unavoidable in EHRs [67], 
but the large cohort used to train our models mitigates 
these errors and enables the high accuracy in the UCSF 
dataset, even with its different demographics. Addition-
ally, idiosyncratic patterns of patient care at the insti-
tution used to develop the algorithm, which would be 
present in the Vanderbilt training and held-out sets, are 
unlikely to be present in the external UCSF cohort and 
inflate the out-of-sample accuracy. Third, the top features 
driving model performance are shared across institu-
tions and reflect combinations of known risk factors and 
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patterns of care. This aids interpretability of the underly-
ing algorithm and likely reflects underlying pathophysiol-
ogy that is innate to preterm birth.

We see several avenues for further improving our algo-
rithm. First, some of the top features reflected routine 
obstetric care for high-risk pregnancies. Thus, factors 
that are already known to the physician or that arise from 
a different clinical pathway initiated by a clinician based 
on their assessment that a pregnancy is a high risk con-
tribute to our prediction. This is not unique to preterm 
birth prediction and is a concern in any study based on 
longitudinal EHRs. To mitigate this effect, the learn-
ing problem could be engineered to force the algorithm 
to discover new unappreciated risk factors. However, 
we also note that prediction based on a combination of 
known and novel risk factors is still valuable. Second, we 
were surprised that the addition of features beyond bill-
ing codes, such as lab values, concepts extracted from 
clinical notes, and genetic information did not signifi-
cantly improve performance. In some cases, any redun-
dant information already captured by the billing codes 
would not improve the model’s accuracy; this is likely 
true for clinical notes. However, other sources, like cur-
rently available genetic data and polygenic risk scores, 
may not effectively capture underlying etiologies of pre-
term birth. Thus, these sources may not add more dis-
criminatory power due to limitations in the current data. 
Indeed, the largest published genome-wide study for 
preterm birth only explains a very small fraction of the 
heritability [31], and a polygenic risk score derived from 
it was not predictive in our cohort. The relatively small 
sample size of individuals with genetic data may also 
limit its predictive utility in a broadly defined delivery 
cohort. For example, genetic risk prediction may have 
greater utility in certain subtypes of preterm birth (e.g., 
individuals with a strong family history of preterm birth). 
We also note that many lifestyle factors, such as smok-
ing, alcohol consumption, diet, and physical activity, have 
been implicated for increasing preterm birth risk [1, 68]. 
Many of these data are recorded in unstructured fields 
in EHRs, and there are active efforts to develop accurate 
algorithms to extract these data from EHR [69, 70]. As 
these approaches become robust, including lifestyle fac-
tors may further improve preterm birth prediction. Fur-
ther subphenotyping of preterm birth will not only aid in 
the prediction, but also understanding its multifactorial 
etiology and developing personalized treatment strate-
gies. Subphenotyping by gestational age to predict pre-
term birth earlier during gestation, especially before 22 
weeks, would provide physicians more time for therapeu-
tic interventions. Finally, while we evaluated the ability 
of our classifiers to discriminate preterm births, further 

studies evaluating the calibration of these models are 
necessary to better risk stratify pregnancies.

The strong predictive performance of our models sug-
gests that they have the potential to be clinically useful. 
Compared to a machine learning model trained using 
only known risk factors, the billing code-based classi-
fier incorporated a broad set of clinical features and pre-
dicted preterm birth with higher accuracy. Furthermore, 
the superior performance was not driven by the number 
of risk factors or the total burden of billing codes. These 
results indicate the algorithm is not simply identifying 
less healthy individuals or those with greater healthcare 
usage. The models also accurately predicted many pre-
term births in challenging and important clinical con-
texts such as spontaneous and recurrent preterm birth. 
Spontaneous preterm births are common [1, 12, 71], and 
unlike iatrogenic deliveries, they are more difficult to pre-
dict because they are driven by unknown multifactorial 
etiologies [12, 25]. Similarly, since a prior history of pre-
term birth is one of the strongest risk factors [72], distin-
guishing pregnancies most at risk for recurrent preterm 
birth has the potential to provide clinical value.

However, we emphasize that additional work is needed 
before this approach is ready for clinical application. 
Though it has strong performance, a more comprehen-
sive evaluation of the algorithm against the current clini-
cal practice is needed to determine how early and how 
much improvement in the standard of care this approach 
could provide [73]. Furthermore, while our model per-
formed similarly on White and Black women, the two 
most represented groups in the training set, the lower 
performance on Hispanic and Asian women highlights 
that future approaches must be evaluated to ensure that 
they do not introduce or amplify biases against specific 
groups or types of preterm birth [74]. In addition, as 
noted above, we anticipate further gains in the clinical 
value of this approach as more modalities of data become 
incorporated in the EHR [75], and more data from 
diverse populations become available. Addressing these 
questions and taking other necessary steps toward clini-
cal utility will require the close collaboration of diverse 
experts from basic, clinical, social, and implementation 
sciences.

Conclusions
Our results provide a proof of concept that machine 
learning algorithms can use the dense phenotype infor-
mation collected during pregnancy in EHRs to predict 
preterm birth. The prediction accuracy across clinical 
contexts and compared to existing risk factors suggests 
such modeling strategies can be clinically useful. We 
are optimistic that with the increasingly widespread 
adoption of EHRs, improvement in tools for extracting 
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meaningful data from them, and integration of comple-
mentary molecular data, machine learning approaches 
can improve the clinical management of preterm birth.

Methods
Ascertaining delivery type and date for the Vanderbilt 
cohort
We identified women with at least one delivery (n = 
35,282, “delivery-cohort”) at Vanderbilt Hospital based 
on the presence of delivery-specific billing codes, which 
included the International Classification of Diseases 
ninth and tenth editions (ICD-9, ICD-10) and Current 
Procedural Terminology (CPT) or estimated gestational 
age (EGA) documented in the EHR. Combining deliv-
ery-specific ICD-9/10 (“delivery-ICDs”), CPT (“delivery-
CPTs”), and EGA data, we developed an algorithm to 
label each delivery as preterm or not preterm. Women 
with multiple gestations (e.g., twins, triplets) were identi-
fied using ICD and CPT codes and excluded for single-
ton-based analyses. See Additional file 1: Supplementary 
Materials and Methods for the exact codes considered.

We demarcate multiple deliveries by grouping deliv-
ery-ICDs in intervals of 37 weeks starting with the most 
recent delivery-ICD. This step is repeated until all deliv-
ery-ICDs in a patient’s EHR are assigned to a pregnancy. 
We chose 37-week intervals to maximally discriminate 
between pregnancies.

For each delivery, we assign labels (preterm, term, or 
postterm) ascertained using the delivery-ICDs. EGA 
values, extracted from structured fields across clinical 
notes, were mapped to multiple pregnancies using the 
same procedure. For women with multiple EGA recorded 
in their EHR, the most recent EGA value determined 
the time interval to group preceding EGA values. Based 
on the most recent EGA value for each pregnancy, we 
assigned labels to each delivery (EGA < 37 weeks: pre-
term; ≥ 37 and < 42 weeks: term, ≥ 42 weeks: postterm). 
After pooling the delivery labels based on delivery-ICDs 
and EGA, we assigned a consensus delivery label by 
selecting the oldest gestational age-based classification 
(i.e., postterm > term > preterm). By incorporating both 
billing code- and EGA-based delivery labels and select-
ing the oldest gestational classification, we expect this to 
increase the accuracy of this algorithm, which we evalu-
ate by chart review (described in detail below).

Since CPT codes do not encode delivery type, we com-
bined the delivery-CPTs with timestamps of delivery-
ICDs and EGAs to approximate the date of delivery. 
Delivery-CPTs were grouped into multiple pregnancies 
as described above. The most recent timestamp from 
delivery-CPTs, delivery-ICDs, and EGA values was used 
as the approximate delivery date for a given pregnancy.

Validating delivery type based on chart review
To validate the delivery type ascertained from billing 
codes and EGA, we used chart-reviewed labels as the 
gold standard. For 104 randomly selected EHRs from the 
delivery cohort, we extracted the date and gestational 
age at delivery from clinical notes. For the earliest deliv-
ery recorded in the EHR, we assigned a chart review-
based label according to the gestational age at delivery (< 
37 weeks: preterm; 37 and 42 weeks: term, ≥ 42 weeks: 
postterm). The precision/positive predictive value (PPV) 
for the ascertained delivery type as a binary variable 
(“preterm” or “not preterm”) was calculated using the 
chart reviewed label as the gold standard. To compare the 
ascertainment strategy to a simpler phenotyping algo-
rithm, we compared the concordance of the label derived 
from delivery-ICDs to one based on the gestational 
age within 3 days of delivery. This simpler phenotyping 
approach resulted in a lower positive predictive value 
(85%) and recall (93%; Additional file  1: Fig. S1B) com-
pared to the billing code-based ascertainment strategy.

Training and evaluating gradient‑boosted decision trees 
to predict preterm birth
All models for predicting preterm birth used boosted 
decision trees as implemented in XGBoost v0.82 [39]. 
Unless stated otherwise, we trained models to predict 
the earliest delivery in a woman’s EHR as preterm or not 
preterm. The delivery cohort was randomly split into 
training (80%) and held-out (20%) sets with an equal 
proportion of preterm cases. For prediction tasks, we 
used only ICD-9 and excluded ICD-10 codes to avoid 
potential confounding effects. The total count of billing 
codes within a specified time frame was used as features 
to train our models; if a woman never had a billing code 
in her EHR, we encoded these as “0.” For all models, we 
excluded ICD-9, CPT codes, and EGA used to ascertain 
delivery type and date. On the training set, we use the 
tree of Parzen estimators as implemented in hyperopt 
v0.1.1 [76] to optimize hyperparameters by maximizing 
the mean average precision. The best set of hyperparam-
eters was selected after 1000 trials using 3-fold cross-
validation over the training set (80:20 split with an equal 
proportion of preterm cases). We evaluated the per-
formance of all models on the held-out set using Scikit-
learn v0.20.2 [77]. All performance metrics reported 
are on the held-out set. For precision-recall curves, we 
define the baseline chance performance for each model 
as the prevalence of preterm cases. To ensure no data 
leaks were present in our training protocol, we trained 
and evaluated a model using a randomly generated data-
set (n = 1000 samples) with a 22% preterm prevalence. 
As expected, this model did not do better than chance 
(ROC-AUC = 0.50, PR-AUC = 0.22, data not shown). 
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All trained models with their optimized hyperparameters 
are provided at https://​github.​com/​abrah​am-​abin13/​ptb_​
predi​ct_​ml.

Predicting preterm birth at different weeks of gestation
As the first step, we evaluated whether billing codes 
could discriminate between delivery types. Models were 
trained to predict preterm birth using the total counts of 
each ICD-9, CPT, or ICD-9 and CPT code across a wom-
an’s EHR. We excluded any codes used to ascertain the 
delivery type or date. All three models were trained and 
evaluated on the same cohort of women who had at least 
one ICD-9 and CPT code (Additional file 1: Fig. S2).

Next, we evaluated the machine learning models at 0, 
13, 28, and 35 weeks of gestation by training using only 
features present before each time point. For the subset of 
women in our delivery cohort with EGA, we calculated 
the date of conception by subtracting EGA (recorded 
within 3 days of delivery) from the date of delivery. Next, 
we trained the models using ICD-9 and CPT codes time-
stamped before different gestational time points with 
only singleton (Fig.  2B) or including multiple gestations 
(Additional file  1: Fig. S3). The same cohort of women 
was used to train and evaluate across models. The sample 
size varied slightly (n = 11,843 to 10,799) since women 
who already delivered were excluded at each time point.

In addition to evaluating the models based on the date 
of conception, we trained the models at different time 
points before the date of delivery (Additional file 1: Fig. 
S4) using the same cohort of women by requiring every 
individual in this cohort to have at least one ICD-9 or 
CPT code before each time point. Evaluating the models 
before the date of delivery increased the sample size (n 
= 15,481) compared to a prospective conception-based 
design (n = 12,410) and yielded similar results.

Evaluating the predictive potential of demographic, 
clinical, and genetic features from EHRs
In addition to billing codes, we extracted the structured 
and unstructured features from the EHRs (Fig. 3A). We 
evaluated the models using features present before 28 
weeks of gestation (Fig.  3) and features present before 
or after delivery (Additional file  1: Fig. S6). Structured 
data included self or third-party reported race (Fig. 1E), 
age at delivery, past medical and family history (92 fea-
tures, see Additional file  1: Supplementary Materials 
and Methods), and clinical labs. For training models, 
we only included clinical labs obtained during the first 
pregnancy and excluded values greater than four stand-
ard deviations from the mean. To capture the trajectory 
of each clinical lab’s values across pregnancy (307 clini-
cal labs, see Additional file  1: Supplementary Materials 
and Methods), we trained the models using the mean, 

median, minimum, and maximum lab measurements. 
For unstructured clinical text in obstetric and nursing 
clinical notes, we applied CLAMP [78] to extract Unified 
Medical Language System (UMLS) concept unique iden-
tifiers (CUIs) and included those with positive assertions 
with > 0.5% frequency across all EHRs. When training 
preterm birth prediction models, we one-hot encoded 
the categorical features. No transformations were applied 
to the continuous features.

A subset of women (n = 905) was genotyped on 
the Illumina MEGAEX platform. We applied standard 
genome-wide association study (GWAS) quality control 
steps [79] using PLINK v1.90b4s [80]. We calculated a 
polygenic risk score for each White woman with geno-
type data based on the largest available preterm birth 
GWAS [31] using PRSice-2 [81, 82]. We assumed an 
additive model and summed the number of risk alleles 
at single nucleotide polymorphisms (SNPs) weighted by 
their strength of association with preterm birth (effect 
size). PRSice determined the optimum number of SNPs 
by testing the polygenic risk score for association with 
preterm birth in our delivery-cohort at different GWAS 
p-value thresholds. We included the date of birth and 
five genetic principal components to control for ancestry. 
Our final polygenic risk score used 356 preterm birth-
associated SNPs (GWAS p-value < 0.00025).

Using the structured and unstructured data derived 
from the EHR, we evaluated whether adding EHR fea-
tures to billing codes could improve preterm birth pre-
diction. Since the number of women varied across EHR 
feature, we created subsets of the delivery cohort for each 
EHR feature. Each subset included women with at least 
one recorded value for the EHR feature and billing codes. 
Then, we trained three models as described above for 
each subset: (1) using only the EHR feature being evalu-
ated, (2) using ICD-9 and CPT codes, and (3) using the 
EHR feature with ICD-9 and CPT codes. Thus, all three 
models for a given EHR feature were trained and evalu-
ated on the same cohort of deliveries (Fig. 3A).

Predicting preterm birth using billing codes and clinical 
risk factors at 28 weeks of gestation
We compared the performance of a model trained using 
billing codes (ICD-9 and CPT) present before 28 weeks 
of gestation with a model trained using clinical risk fac-
tors to predict preterm delivery (Fig.  4). Both models 
were trained and evaluated on the same cohort of women 
(n = 21,099). We selected well-established obstetric risk 
factors that included maternal and fetal factors across 
organ systems, occurred before and during pregnancy, 
and had moderate to high risk for preterm birth [3, 13, 
23, 44]. For each individual, risk factors were encoded as 
high-risk or low-risk binary values. Risk factors such as 
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non-gestational diabetes status [48], gestational diabetes 
[48], gestational hypertension, pre-eclampsia or eclamp-
sia [1, 50], fetal abnormalities [13], cervical abnormalities 
[51], and sickle cell disease [49] status were defined based 
on at least one corresponding ICD-9 code occurring 
before the date of delivery (Additional file 1: Supplemen-
tary Materials and Methods). The remaining factors, such 
as race (Black, Asian, or Hispanic was encoded as higher 
risk) [20], age at delivery (> 34 or < 18 years old) [45–47], 
pre-pregnancy BMI ≥ 35, and pre-pregnancy hyperten-
sion (> 120/80) [1, 50], were extracted from structured 
fields in EHR. Pre-pregnancy value was defined as the 
most recent measurement occurring before 9 months of 
the delivery date.

Density‑based clustering on feature importance values
To better understand the decision-making process of 
our machine learning models, we calculated the fea-
ture importance value for the model predicting preterm 
birth at 28 weeks of gestation. We used SHapley Additive 
exPlanation values (SHAP) [52, 53, 55] to determine the 
marginal additive contribution of each feature for each 
individual. First, we calculated a matrix of SHAP val-
ues of features by individuals from the held-out cohort. 
Since the shape of this matrix was too large to perform 
the density-based clustering, we created an embed-
ding using 30 Uniform Manifold Approximation and 
Projection (UMAP) components with default param-
eters as implemented in UMAPv0.3.8 [83]. Next, we 
performed a density-based hierarchical clustering using 
HDBSCANv0.8.26 [84]. We used default parameters 
(metric=Euclidean) and tried a range of values for two 
hyperparameters: minimum number of individuals in 
each cluster (“min_clust_size”) and threshold for deter-
mining outlier individuals who do not belong to a cluster 
(“min_samples”). After tuning these two hyperparam-
eters, we selected the clustering model with the highest 
density-based cluster validity score [84], which measures 
the within- and between-cluster density connectedness. 
We find a min_clust_size = 110 and min_samples = 10 
had the highest density-based cluster validity (DBCV) 
score with 6 distinct clusters with one cluster for outliers 
(Additional file  1: Fig. S13). A minority of women (n = 
16) were not assigned to a cluster (“outliers”). To visual-
ize the cluster assignments, we performed UMAP on the 
feature importance matrix with default settings and two 
UMAP components and colored each individual by their 
cluster membership. Finally, we calculated the preterm 
birth prevalence and accuracy within each cluster.

Comorbidity enrichment within clusters
We tested for enrichment of clinical risk factors within 
each cluster by using Fisher’s exact test as implemented 

in Scipy [85]. For each risk factor, we constructed a con-
tingency table based on a given cluster membership and 
being high risk for the risk factor. We report enrichment 
as the odds ratio with the color bar showing the log10 
scale of the odds ratio. For sickle cell disease, one cluster 
did not have any cases of sickle cell disease.

Evaluating model performance on spontaneous preterm 
births, by delivery type and recurrent preterm birth
We compared how models trained used billing codes 
(ICD-9 and CPT) performed in different clinical con-
texts. First, we evaluated the accuracy of predicting spon-
taneous preterm birth using models trained to predict 
all types of preterm births. From all preterm cases in the 
held-out set, we excluded women who met any of the fol-
lowing criteria to create a cohort of spontaneous preterm 
births: medically induced labor, delivery by cesarean sec-
tion, or preterm premature rupture of membranes. The 
ICD-9 and CPT codes used to identify the exclusion cri-
teria are provided in Additional file  1: Supplementary 
Materials and Methods. We calculated recall/sensitivity 
as the number of predicted spontaneous preterm births 
out of all spontaneous preterm births in the held-out set. 
We used the same approach to quantify the performance 
of models trained using clinical risk factors (Fig. 4E).

We trained the models to predict preterm birth among 
cesarean sections and vaginal deliveries separately using 
billing codes (ICD-9 and CPT) as features. Deliveries 
were labeled as cesarean sections or vaginal deliveries 
if they had at least one relevant billing code (ICD-9 or 
CPT) occurring within 10 days of the date of first deliv-
ery in the EHR. Billing codes used to determine the deliv-
ery type are provided in Additional file 1: Supplementary 
Materials and Methods. Deliveries with billing codes for 
both cesarean and vaginal deliveries were excluded. We 
trained separate models to predict cesarean and vaginal 
deliveries (Fig. 6A and Additional file 1: Fig. S8).

We evaluated how well models using billing codes 
could predict recurrent preterm birth. From our deliv-
ery cohort, we retained women whose first delivery in 
the EHR was preterm and a second delivery for which 
we ascertained the type (preterm vs. not preterm) as 
described above for the first delivery. We trained mod-
els using billing codes (ICD-9 and CPT) at time points 
before the date of delivery because the majority of this 
cohort did not have reliable EGA at the second delivery. 
As described earlier, separate models were trained using 
billing codes timestamped before the time point being 
evaluated (Fig. 6B, Additional file 1: Fig. S9).
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Preterm birth prediction in independent UCSF cohort
We evaluated how well models trained at Vanderbilt 
using billing codes perform in an external cohort assem-
bled at UCSF. Only the first delivery in the EHR was used 
for prediction. Women with twins or multiple gestations, 
identified using billing codes (Additional file  1: Supple-
mentary Materials and Methods), were excluded. Deliv-
ery type (preterm vs. not preterm) was assigned based 
on the presence of ICD-10 codes. Term (or not preterm) 
deliveries were determined by the presence of an ICD-10 
code beginning with the character “O80,” specifying an 
encounter for full-term delivery. Preterm deliveries were 
determined by both the absence of ICD-10 codes begin-
ning with “O80” and the presence of codes beginning 
with “O60.1,” the family of codes for preterm labor with 
preterm delivery. We trained models using ICD-9 codes 
present before 28 weeks of gestation on the Vanderbilt 
cohort to predict preterm birth. We refer to this model 
as the “Vanderbilt-28wk model” throughout the manu-
script. CPT codes were not used since they were not 
available from the UCSF EHR system. The Vanderbilt-
28wk model was evaluated on the Vanderbilt held-out set 
and the independent UCSF cohort.

Feature interpretation from boosted decision tree models
To determine the feature importance, we used SHAP val-
ues [52, 53, 55] to determine the marginal additive contri-
bution of each feature for the Vanderbilt-28wk model. For 
the held-out Vanderbilt cohort and the UCSF cohort, a 
SHAP value was calculated for each feature per individual. 
Feature importance was summarized by taking the mean 
of the absolute value of SHAP scores across individuals, 
and the top fifteen features based on the mean absolute 
SHAP value in either the Vanderbilt or UCSF cohorts are 
reported. To compare how feature importance differed 
between Vanderbilt and UCSF, we computed the Pearson 
correlation of the mean absolute SHAP values.

Training and evaluating a logistic regression model using 
only top features
Using only the top 15 features obtained from our Vanderbilt-
28wk model as predictors, we trained a logistic regression 
using Scikit-learn v0.20.2 [67] with the following param-
eters: random_state=0, max_iter=10000,solver=‘liblinear’, 
class_weight=‘balanced’. The model was trained using the 
same training set from the Vanderbilt cohort (i.e., ICD-9 
codes present before 28 weeks) used for comparing to the 
UCSF dataset. Performance was evaluated also on the same 
held-out set from the Vanderbilt cohort using ROC-AUC 
and PR-AUC.

Comparing model performance after stratifying by race
For the Vanderbilt-28wk model, we evaluated model 
performance on the Vanderbilt held-out set stratified by 
race. We excluded individuals (n = 284) from this anal-
ysis if their race was annotated as “other” or had multi-
ple categories because their subset counts were low (n < 
143), therefore more likely to have sampling variability. 
Stratifying the held-out set by race resulted in four cat-
egories (White, Black, Hispanic, Asian). Next, we evalu-
ated the model performance on each subset and report 
the ROC-AUC and PR-AUC with the preterm birth prev-
alence within each subset.
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