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Abstract 

Background:  Offspring born to women with pregestational type 1 diabetes (T1DM) are exposed to an intrauterine 
hyperglycemic milieu and has an increased risk of metabolic disease later in life. In this present study, we hypothesize 
that in utero exposure to T1DM alters offspring DNA methylation and gene expression, thereby altering their risk of 
future disease.

Methods:  Follow-up study using data from the Epigenetic, Genetic and Environmental Effects on Growth, Metabo-
lism and Cognitive Functions in Offspring of Women with Type 1 Diabetes (EPICOM) collected between 2012 and 
2013.

Setting:  Exploratory sub-study using data from the nationwide EPICOM study.

Participants:  Adolescent offspring born to women with T1DM (n=20) and controls (n=20) matched on age, sex, and 
postal code.

Main outcome measures:  This study investigates DNA methylation using the 450K-Illumina Infinium assay and RNA 
expression (RNA sequencing) of leucocytes from peripheral blood samples.

Results:  We identified 9 hypomethylated and 5 hypermethylated positions (p < 0.005, |ΔM-value| > 1) and 38 up- 
and 1 downregulated genes (p < 0.005, log2FC ≥ 0.3) in adolescent offspring born to women with T1DM compared 
to controls. None of these findings remained significant after correction for multiple testing. However, we identified 
differences in gene co-expression networks, which could be of biological significance, using weighted gene correla-
tion network analysis. Interestingly, one of these modules was significantly associated with offspring born to women 
with T1DM.

Functional enrichment analysis, using the identified changes in methylation and gene expression as input, revealed 
enrichment in disease ontologies related to diabetes, carbohydrate and glucose metabolism, pathways including 
MAPK1/MAPK3 and MAPK family signaling, and genes related to T1DM, obesity, atherosclerosis, and vascular patholo-
gies. Lastly, by integrating the DNA methylation and RNA expression data, we identified six genes where relevant 
methylation changes corresponded with RNA expression (CIITA, TPM1, PXN, ST8SIA1, LIPA, DAXX).
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Background
The “Developmental Origins of Health And Disease” 
hypothesis describes how an adverse early life environ-
ment may lead to increased risk of adult disease [1]. Off-
spring born to women with pregestational type 1 diabetes 
(T1DM) are exposed to a hyperglycemic intrauterine 
milieu and recent studies have shown an increased risk 
of developing type 2 diabetes (T2DM), cardiovascular 
disease, and obesity [2–4]. The pathophysiological mech-
anisms behind this increased risk in the offspring are 
unclear, and whether a link to intrauterine T1DM expo-
sure exists remains to be elucidated. Epigenetic modifi-
cations have been proposed as a possible mechanism by 
which maternal diabetes induces long-term effects [5]. 
However, our knowledge on epigenetic programming of 
offspring born to women with T1DM is still limited.

Methylation of cytosine is the best-studied epigenetic 
mark, with the addition of a methyl group to the C5 
position of the cytosine-ring, and generally occurs on 
cytosines followed by a guanine (CpG). Genomic regions 
with an overrepresentation of CpG sites are termed CpG 
islands and are found at 60–70% of human gene promot-
ers [6]. Hypermethylation of CpG islands is involved in 
transcriptional repression, thus, changes in DNA meth-
ylation adds level of regulation to the DNA molecule 
without changing the DNA sequence and via this mecha-
nism DNA transcription can be altered [7]. Even though 
CpG sites are more sparse in gene bodies than in pro-
motors, studies have described CpG hypermethylation 
in gene bodies to positively correlate with RNA expres-
sion [8]. Changes in DNA methylation is well known to 
be involved in cell differentiation and embryogenesis 
and is considered to be part of developmental biology 
[9]. Besides CpG methylation, epigenetic alterations also 
include histone modifications and non-coding RNA [5].

Recent studies in cord blood and peripheral blood have 
linked especially maternal overweight but also, to a lesser 
degree, maternal gestational diabetes (GDM) to offspring 
epigenetic alterations [10–13]. Few studies have evalu-
ated the impact of maternal T1DM on offspring epige-
netic changes, and included studies exploring an adult 
cohort including both offspring born to women with 
gestational diabetes and T1DM, using muscle, adipose 
tissue, or preadipocytes, described increased expression 
of microRNA-15a and microRNA-15b in skeletal mus-
cle tissue and decreased leptin promotor methylation in 

subcutaneous adipocytes in offspring of T1DM women 
[12, 14–17]. Only one study by Gaultier et  al. explored 
the more genome-wide DNA methylation profile using 
Illumina Human Methylation 27 Beadchip in describing 
an association between intrauterine exposure to maternal 
T1DM and kidney function in the adult offspring [18].

In this study, we hypothesized that in utero exposure to 
maternal T1DM alters global DNA methylation and RNA 
expression and thereby alters the offspring’s risk of later 
disease development.

Methods
The EPICOM cohort
This study is a part of the EPICOM (Environmental 
Versus Genetic and Epigenetic Influences on Growth, 
Metabolism and Cognitive Functions in Offspring 
of Women with Type 1 Diabetes) study (ClinicalTri-
als.gov registration no. NCT01559181). From 1992 
to 1999, pregnancies in women with pregestational 
T1DM were prospectively reported to a registry man-
aged by the Danish Diabetes Association. Informa-
tion regarding diabetes status and pregnancy outcome 
was reported to the registry by local obstetricians at 
eight hospitals in Denmark, who were responsible for 
antenatal care and delivery for pregnant women with 
T1DM. Coverage of cases from the reporting centers 
spanned from 75 to 93%, as described by Jensen et al. 
[19]. The Danish Diabetes Association Register con-
sists of 1326 records of children born to women with 
T1DM. Only children born after 24 completed gesta-
tional weeks were registered. As part of the EPICOM 
study, we invited one child per mother (the oldest) to 
participate in a clinical study concerning metabolic 
risk. Controls were recruited from the background 
population and were matched by sex, age, and postal 
number. Details from this study have previously been 
described by Vlachova et al. [20].

Sample inclusion
Among the oldest participants of the EPICOM cohort, 
we selected 20 offspring of women with pregestational 
T1DM (index children) and their 20 matched controls 
(controls) as our exploratory cohort of DNA methyla-
tion and RNA expression (Table 1). Besides fulfilling the 
matching criteria for inclusion in the EPICOM cohort, 
we made sure that our exploratory cohort did not differ 

Conclusions:  These findings suggest the possibility for intrauterine exposure to maternal T1DM to impact later in 
life methylation and gene expression in the offspring, a profile that may be linked to the increased risk of vascular and 
metabolic disease later in life.
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Table 1  Baseline characteristics of diabetes-exposed children and controls

Data are presented as mean and standard deviation, median, and range or as number and percent. HOMA-IR Homeostasis model for insulin resistance (Matthews et. 
al Diabetologia 28 412-419). €Preeclampsia was defined as blood pressure>140/90 and proteinuria 2+ on a urine protein test strip (equal to 1.0 g/l). ψHypertension 
in pregnancy was defined as blood pressure >140/90 or use of antihypertension medication prior to pregnancy. ϖMaternal albuminuria is defined as either 
microalbuminuria (30–300 mg/24 h) or macroalbuminuria (>300 mg/24 h). P-values are generated using Student’s T test, *Wilcoxon rank-sum test, or †Fishers exact 
test. ‡Log-transformed, #even though not being normally distributed, we display data as mean and range

Exposed to T1DM Control children P-value

Number of children 20 20

Male sex 10 (50%) 10 (50%)

Age (years) 17.8 (0.8) 18.1 (0.8) 0.26

Body mass index (kg/m2) 23.2 (2.6) 23.4 (2.2) 0.81

Oral glucose tolerance test (mmol/L)

  Time = 0 min 5.4 (0.4) 5.3 (0.3) 0.60

  Time = 120 min 6.0 (0.9) 6.4 (0.8) 0.20

S-Insulin (fasting) (pmol/L) 55.8 (17.3) 57.9 (19.8) 0.72

HOMA-IR 2.2 (0.7) 2.3 (0.8) 0.77

Waist circumference (cm) 75.8 (5.6) 76.4 (6.5) 0.77

Hip circumference (cm) 98.5 (7.4) 98.7 (5.3) 0.93

Systolic blood pressure (mmHg) 120.8 (9.6) 120.8 (11.6) 0.99

Diastolic blood pressure (mmHg) 63.4 (8.2) 63.7 (6.8) 0.89

Total cholesterol (mmol/L) 3.9 (0.7) 4.1 (1.1) 0.55

LDL cholesterol (mmol/L) 2.2 (0.6) 2.3 (1.0) 0.55

HDL cholesterol (mmol/L) 1.4 (0.4) 1.3 (0.4) 0.53

Triglycerides (mmol/L)‡ 0.8 (0.3–2.5) 0.9 (0.5–1.9) 0.24

HbA1c (%) [mmol/mol] 5.2 (0.2) [33 (2.5)] 5.1 (0.3) [32 (2.8)] 0.15

Gestational age at birth (days) 259 (217–278) (n=18) 278 (258–301) (n=17) < 0.001*

Birth weight (g) 3482 (711) (n=19) 3,571 (542) (n=18) 0.68

Maternal Characteristics

  Maternal age at birth (years) 28.6 (3.8) (n=20) 29.8 (3.7) (n=20) 0.30

  Maternal pre-pregnancy BMI (kg/m2) 22.9 (2.3) (n=16) 24.2 (4.4) (n=17) 0.47*

  Parity# 1.5 (1–3) (n=20) 1.8 (1–4) (n=18) 0.55*

  Preeclampsia€ 5 (26%) (n=19) 2 (12%) (n=17) 0.41†

  Caesarean section (planned or emergency) 13 (68%) (n=19) 5 (28%) (n=18) 0.01*

  Polyhydramnios 2 (11%) (n=19) 0 (n=17) 0.27†

  Maternal HbA1c (%) [mmol/mol]

  Pregestational 7.4 (1.3) [57] (n=18) (–)

  1st trimester 7.2 (1.2) [55] (n=17) (–)

  2nd trimester 6.3 (1.0) [45] (n=19) (–)

  3rd trimester 6.5 (0.9) [48] (n=18) (–)

Maternal use of insulin (IE pr. day)

  Pregestational 39 (11) (n=19) (–)

  1st trimester 40 (11) (n=17) (–)

  2nd trimester 47 (14) (n=18) (–)

  3rd trimester 59 (16) (n=18) (–)

Maternal hypertensionψ

  Pregestational 1 (7%) (n=16) (–)

  1st trimester 1 (5%) (n=19) (–)

  2nd trimester 2 (11%) (n=19) (–)

  3rd trimester 7 (37%) (n=19) (–)

Maternal albuminuriaϖ

  Pregestational 4 (25%) (n=16) (–)

  1st trimester 4 (21%) (n=19) (–)

  2nd trimester 4 (24%) (n=17) (–)

  3rd trimester 8 (42%) (n=19) (–)
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in body mass index (BMI), glucose tolerance, HbA1c, cho-
lesterol, or triglyceride levels and that the index child 
and their control were age matched. The index/control 
pairs were chosen representing the pairs with the small-
est age difference, living in the same postal code, gender 
matched, and not suffering from any chronical illnesses. 
DNA methylation and RNA expression profiling were 
performed on leucocytes isolated from peripheral blood 
samples.

Clinical examination
All measurements except from height were performed 
three times, and the mean value was used for the anal-
yses. We measured height to the nearest 0.1 cm and 
weight (in kilograms) to the nearest 0.1 kg. Waist cir-
cumference was measured using a tape measuring to 
the nearest 0.5 cm midway between arcus costae and 
crista iliaca after exhalation and hip circumference 
corresponds to the widest measure around the hips. 
Preeclampsia was defined as blood pressure > 140/90 
mmHg and proteinuria 2+ on a urine protein test strip 
(equal to 1.0 g/l).

Oral glucose tolerance test (OGTT)
We performed a standard 2-h OGTT by using a glucose 
load of 1.75 g/kg body weight up to a total of 75 g. Plasma 
glucose was measured at 0 and 120 min and serum insu-
lin at 0 min (fasting).

Insulin sensitivity was evaluated by HOMA-IR and cal-
culated using the original equation [21].

Biochemical analyses
Glucose was measured in venous plasma with a hexoki-
nase-glucose-6-phosphate dehydrogenase assay (Abbott 
Diagnostics, Abbott Park, Illinois, USA). Serum insulin 
was measured by ELISA using dual-monoclonal antibod-
ies (ALPCO Diagnostics, Salem, New Hampshire, USA). 
Lipids were measured by enzymatic calorimetric analysis, 
end-up reaction (Abbott). Analyses of maternal HbA1c 
between 1993 and 1999 were measured with local assays. 
Correction was made to a common standard (normal 
range of standard assay, 0.044–0.064) by multiplying 
the HbA1c value with a correction factor as previously 
described (mean of the reference values for a standard 
assay divided by the mean of the reference values for the 
given assay) [19].

Statistics
Continuous variables with symmetric distribution are 
presented as means and standard deviation (SD), con-
tinuous variable with skewed distribution as medians, 
and interquartile range (IQR) or range. Comparison of 

groups was performed using Student’s T test, Wilcoxon 
rank-sum test, chi-square, or Fisher’s exact test. Statisti-
cal analyses were done in STATA 13.1.

DNA isolation and the 450K‑Illumina Infinium assay
EDTA-treated peripheral blood samples were collected 
from the participants when they participated in the 
EPICOM study and were stored as EDTA treated at 
−80 °C until use. Genomic DNA was extracted from 
peripheral blood using QIAmp Mini Kit (Qiagen, Ger-
many). For each sample, 1 μg of genomic DNA was 
bisulfite-converted using Zymo EZ DNA Methylation 
Kit according to the manufacturer’s recommenda-
tions. DNA methylation level was measured using the 
450K-Illumina Infinium assay (Illumina, Inc.) at Aros 
Applied Biotechnology A/S.

(Pre‑)processing of the 450K‑Illumina Infinium assay data
All analyses were performed in R statistics, version 
3.6.1, and R package minfi (version 1.32.0) was used 
for normalization, analysis, and visualization [22]. 
Detection p-values were calculated to identify failed 
positions with a p-value cut-off > 0.01. Probes were 
removed if they failed in more than 20% of the sam-
ples (n = 350). No samples were identified as failed, 
as the proportion of failed probes did not exceed 1% 
for any single sample. Density bean plots were used to 
identify outliers, and minfi’s inbuilt function was used 
to evaluate data with respect to extreme methylation 
outliers (> 3 SD away from the median). We performed 
background normalization and control normalization 
implementing the pre-processing choices of Genome 
Studio. Next, we applied subset-quantile-within-array-
normalization correcting for technical differences 
between Infinium type I and II assay design allowing 
both within-array and between-sample normalization 
[23]. Cross-reactive probes (n = 29.541), probes with 
SNPs documented in C or G of the target (n = 18.284), 
and probes on sex chromosomes (n = 12,312) were 
excluded, leaving 415,009 probes. Methylation values 
were calculated as M-values (logit [beta]) (Equation 
(I)) [24].

Multidimensional scaling plots were evaluated to 
identify clusters of samples behaving differently than 
expected. Finally, the probes were annotated to the 
human genome version 19 using the enhanced Illumina 
annotation method developed by Price et al. [25].

M − value = log2
Beta

1− Beta
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Estimated differential cell counts
We adjusted for differences in cell proportions using 
minfi’s estimateCellCounts that implements Houseman 
et  al.’s regression calibration algorithm [26]. This algo-
rithm returns relative proportions of CD4+ and CD8+ 
T-cells, natural killer cells, monocytes, granulocytes, and 
B-cells in each sample.

Identifying differentially methylated positions (DMPs)
To identify positions where methylation is associated 
with intrauterine exposure to maternal T1DM, we fitted 
a linear model, which utilizes a generalized least squares 
model (lmFit of R package limma) allowing for miss-
ing values [27]. Significance was evaluated using F-test. 
The sample variances were estimated using an empiri-
cal Bayes approach with shrinkage towards the means. 
A Benjamini-Hochberg FDR below 0.05 was considered 
significant. We applied the model both without and with 
adjustment for estimated relative cell proportions (CD4+ 
and CD8+ T-cells, natural killer cells, monocytes, granu-
locytes, and B-cells).

Identifying differentially methylated regions (DMRs)
We used DMRcate to identify any autosomal DMRs [28]. 
DMRcate identifies and ranks the most differentially 
methylated regions across the genome based on kernel 
smoothing of the differential methylation signal. The 
model performs well on small sample sizes and builds 
on the well-established Limma package, allowing us to 
incorporate estimated cell proportions as covariates. A 
FDR below 0.05 with a |ΔM-value| < 1 was considered 
significant.

RNA sequencing (RNA‑Seq) sample preparation
Blood samples were drawn using PAXgene Blood RNA 
Tubes and placed 2 h at room temperature, sequentially 
stored overnight at −20° before being stored at −80° until 
analysis.

RNA‑Seq library construction and sequencing
Whole transcriptome, strand-specific RNA-Seq librar-
ies were prepared from total RNA using the Ribo-Zero 
Globin technology (Illumina, Inc.) for depletion of 
rRNA and globin mRNA followed by library prepara-
tion using the ScriptSeq technology (Illumina, Inc.). 
Depletion and library preparation were automated on 
a Sciclone NGS (Caliper, Perkin Elmer) liquid han-
dling robot. The total RNA (1.7 μg per sample) was 
subjected to Baseline-ZERO DNase prior to depletion. 
Total RNA was purified using Agencourt RNAClean 
XP Beads before and after DNase treatment followed 
by on-chip electrophoresis on a LabChip GX (Caliper, 

Perkin Elmer) and by UV measurements on a Nano-
Quant (Tecan). Cytoplasmic and mitochondrial rRNA 
as well as globin mRNA were removed from 400 ng 
DNAse-treated total RNA using the Ribo-Zero Globin 
Gold Kit (Human/Mouse/Rat, Illumina, Inc.) follow-
ing the manufacturer’s instructions, and quality of the 
depleted RNA was estimated on a LabChip GX (Cali-
per, Perkin Elmer). Synthesis of strand-specific RNA-
Seq libraries were conducted using the ScriptSeq v2 kit 
(Illumina, Inc.) following the recommended procedure, 
and the qualities of the RNA-Seq libraries were esti-
mated by on-chip electrophoresis (HS Chip, LabChip 
GX, Caliper, Perkin Elmer) of a 1 μL sample. The DNA 
concentrations of the libraries were estimated using the 
KAPA Library Quantification Kit (Kapa Biosystems). 
The RNA-Seq libraries were multiplexed paired-end 
sequenced on a NextSeq 500 (75 + 6 + 75 bp) using a 
high-output flowcell.

RNA‑Seq analysis
Paired de-multiplexed fastq files were generated using 
bclfastq (v.2.20 Illumina) and initial quality control was 
performed using FastQC. Adapter trimming was con-
ducted using the GATK ReadAdaptorTrimmer tool 
followed by mapping to the human genome (hg19) in 
addition to transcripts from databases on non-coding 
RNAs (mirbase, mitranscriptome, rfam, snornabase, 
tjumirna, and trnascanse) using Bowtie and then further 
analyzed using Tophat, and Cufflinks and HTSeq-count 
(union method) [29, 30]. HTSeq-count (union method) 
was applied to produce raw counts which were then 
submitted for differential expression analysis in R using 
edgeR [31]. All non-informative features were filtered 
out by removing features with less than one count per 
million (CPM) in 39 samples removing 98,334 features, 
leaving 13,842 for downstream analysis. A generalized 
linear model was fitted, and p-values and log fold changes 
(Log2FC) were retrieved from the individual compari-
sons of index vs. controls. A Benjamini-Hochberg FDR 
below 0.05 was considered significant.

Weighted gene correlation network analysis (WGCNA)
Weighted gene correlation network analysis (WGCNA, 
v1.70.3) was applied to identify co-expressed genes 
from the RNA-Seq data, and how these co-expressed 
gene modules associated with the cohort group-param-
eter or clinical traits. Outlier samples were detected 
using hierarchical sample clustering, removing one 
female index sample. A signed co-expression network 
was constructed using a one-step approach, calculat-
ing adjacency choosing an appropriate soft threshold-
ing power with approximate scale-free topology. Gene 
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clustering was performed on the signed Topology 
Overlap Matrix by hierarchical clustering, identify-
ing modules via the blockwiseModules function with 
a minModuleSize of 30 and a mergeCutHeight of 0.25. 
The module eigengenes were calculated via the modu-
leEigengenes function, and eigengene significance and 
corresponding p-value were obtained for each module-
trait association. Intramodular connectivity and gene 
significance was extracted for each module of inter-
est and hub genes were identified using the chooseTo-
pHubInEachModule function.

Functional enrichment analysis
To investigate possible biological functions of the RNA 
expression changes in our cohort, we performed gene set 
enrichment analysis (GSEA) using Clusterprofiler [32]. 
The input genes were ranked based on the magnitude of 
changes in the index vs. controls comparison (log2FC). 
Disease associations were identified by disease ontology 
(DO) enrichment analysis, while Gene Ontology Biological 
Processes (GOBP) and REACTOME were used for func-
tional and pathway enrichment. The top-enriched terms 
for each enrichment analysis were sorted according to 
p-value and presented as barplots. Furthermore, gene-con-
cept networks that depict linkages of the genes and bio-
logical terms (DO, GOBP, and REACTOME terms) were 
made by evoking the cnetplot function of Clusterprofiler.

For methylation data, GOBP and REACTOME enrich-
ment analysis were performed on all differentially meth-
ylated positions (p < 0.005) using the methylGSA package 
for R [33]. The probes were annotated to the human 
genome version 19 as previously described.

Correlation between DNA methylation and gene 
expression
DNA methylation has been shown to play an important 
role in modulating gene expression. Therefore, we cor-
related changes in methylation and gene expression of 
the gene closest to the methylation site. Shared differen-
tially expressed genes (DEGs) and DMPs (closest gene to 
methylation site) between index and controls (p < 0.05) 
were plotted in a scatter plot based on log2FC and ΔM-
value. In the second part of the analysis, we used Spear-
man’s rank correlation to analyze the correlation between 
the specific methylation level (M-value) and RNA expres-
sion level (normalized counts) for shared genes. We con-
sidered the correlations to be interesting (either negative 
or positive) if p < 0.1.

Analysis software
Statistics was done using R 3.6.1 (R Foundation for Sta-
tistical Computing, Vienna, Austria) with Bioconductor 
3.9 [34]. DNA methylation data was analyzsed using the 

minfi [22], DMRcate [28], and Limma [35] package 1.32.0, 
and RNA-Seq data using edgeR [31]. Functional gene 
enrichment analysis was carried out using the R packages 
Clusterprofiler and MethylGSA [32, 33]. Graphics were 
made using basic R functions ggbio, Gviz, DEseq, DEX-
Seq, and ggplot2. The package knitr was used for data 
documentation.

Results
Through medical records and the original Diabetes 
Association registry, we retrieved information regarding 
pregnancy and birth for the majority of both index and 
controls (Table  1). The index and controls included in 
the exploratory cohort were similar on most parameters 
including BMI, OGTT fasting plasma glucose, OGTT 
120 min plasma glucose, fasting insulin, HOMA-IR, 
HbA1c, systolic and diastolic blood pressure, and birth 
weight, although significant differences were present in 
some of these parameters in the larger EPICOM group 
[20]. Gestational age at birth was significantly different 
for the intrauterine T1DM exposed children compared 
to the controls (at that time it was common practice to 
induce labor ~2–3 weeks prior to the expected deliv-
ery date in women with diabetes) (gestational age 
259 (range=217–278) days vs. 278 (258–301) days, p 
<0.001), as was delivery by caesarean section (T1DM off-
spring 68% vs. 28% in the control group, p=0.01). Also, 
maternal age at birth, maternal pre-pregnancy BMI, risk 
of polyhydramnios, and parity were similar between the 
women with T1DM and the mothers of the controls. For 
most of the women with T1DM, we also had knowledge 
of their glycemic regulation pregestationally and during 
the pregnancy as well as average daily amount of insulin, 
hypertension status, and level of albuminuria. For the 
RNA-Seq data, one sample from the control cohort was 
missing. This however did not change the overall pheno-
typic results.

Differentially methylated positions and regions
Performing whole-blood genome-wide DNA methyla-
tion analysis using the 450K-Illumina Infinium assay, we 
identified 13,867 DMPs with a p < 0.05 between index 
and controls. To reduce the number of false positives, a 
criterion of p < 0.005 and |ΔM-value| > 1 was applied, 
resulting in 14 DMPs (9 hypomethylated and 5 hyper-
methylated) (Fig.  1a and Additional file  1: Table. T1) 
However, after correction for multiple testing, no sin-
gle DMP reached the threshold of a Benjamini-Hoch-
berg false detection rate (FDR) (< 0.05). DMRs defined 
as methylation in groups of nearby positions have been 
proposed to be involved in transcriptional regulation. 
Therefore, we extended our analysis to the regional level. 
Applying a p < 0.005, 37 DMRs were found (Additional 
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Fig. 1  Differences in DNA methylation and gene expression between type 1 diabetes-exposed offspring and matched controls. a Volcano plot 
of −log10 p-value against delta-M-values of differentially methylated positions. Red dots denote DMPs between type 1 diabetes-exposed offspring 
and matched controls with a p-value < 0.005 and an absolute |ΔM-value| >1. The horizontal line represents p-value = 0.005. b Volcano plot of −
log10 p-value against log fold change of differentially expressed coding genes. Red dots denote differentially expressed coding genes with a p < 
0.005 and a log2FC ≥ 0.3. The horizontal line represents p = 0.005. c–e Functional enrichment analysis of the gene expression changes observed 
in type 1 diabetes-exposed offspring compared to matched controls. The differentially expressed coding genes were used as input for gene set 
enrichment analysis, to identify enriched disease phenotypes (DO) (c), biological processes (GOBP) (d), and biological pathways (REACTOME) (e). 
The top-enriched terms were sorted according to p-value (vertical black line denotes p = 0.05). A network plot (f, g) depicted the genes that were 
involved in the significant DO terms (f) and REACTOME terms (g)



Page 8 of 16Knorr et al. BMC Medicine          (2022) 20:338 

file  2: Table  T2). However, no DMRs were identified 
applying a FDR < 0.05.

RNA expression
Subsequently, we analyzed gene expression by RNA-Seq 
to test if any DEGs, coding or non-coding RNA, were 
present when comparing our two cohort groups (index 

vs. controls). We identified 39 coding DEGs (38 upregu-
lated and 1 downregulated) (Table  2, Fig.  1b and Addi-
tional file 3: Fig. F1) (p < 0.005 and a log2FC ≥ 0.3). In 
addition, we also found 20 non-coding DEGs (7 upregu-
lated tags and 13 downregulated tags) (p < 0.005 and a 
log2FC ≥ 0.3) (Additional file  4: Table  T3 online). No 
DEGs reached an FDR < 0.05.

Table 2  List of differentially expressed autosomal coding genes between type 1 diabetes-exposed offspring and controls

Displayed are genes with a crude p-value<0.005 and a log fold change≥0.3

Gene ID External gene name Log2 fold change Log CPM P-value Chromosome 
name

Start position End position

ENSG00000103148.11 NPRL3 1.402 4.682 0.0003637 16 134273 188859

ENSG00000036448.5 MYOM2 1.238 3.216 0.001291 8 1993155 2113475

ENSG00000163735.6 CXCL5 0.778 3.821 0.0003347 4 74861359 74864496

ENSG00000120885.15 CLU 0.754 3.931 7.9319E−05 8 27454434 27472548

ENSG00000259207.3 ITGB3 0.729 5.136 0.001563 17 45331212 45421658

ENSG00000005961.13 ITGA2B 0.696 3.951 0.003207 17 42449548 42466873

ENSG00000184922.9 FMNL1 0.687 5.329 0.004019 17 43298811 43324687

ENSG00000161911.7 TREML1 0.682 1.937 0.001432 6 41117080 41122075

ENSG00000113140.6 SPARC​ 0.670 4.702 0.0003625 5 151040657 151066726

ENSG00000175746.4 C15orf54 0.670 2.299 0.003372 15 39542885 39547046

ENSG00000138798.7 EGF 0.650 3.438 0.0008035 4 110834040 110933422

ENSG00000122786.15 CALD1 0.642 2.518 0.004715 7 134429003 134655479

ENSG00000100385.9 IL2RB 0.610 3.173 0.001113 22 37521878 37571094

ENSG00000082781.7 ITGB5 0.566 3.489 0.002852 3 124480795 124620265

ENSG00000198478.6 SH3BGRL2 0.565 6.232 0.0013672 6 80341000 80413372

ENSG00000168497.4 SDPR 0.564 6.971 0.001083 2 192699028 192711981

ENSG00000151693.5 ASAP2 0.564 2.812 0.0004620 2 9346894 9545812

ENSG00000185909.10 KLHDC8B 0.549 2.620 0.001593 3 49209044 49213917

ENSG00000140022.5 STON2 0.547 4.040 4.5483E−05 14 81727000 81902809

ENSG00000019582.10 CD74 0.545 6.485 0.003180 5 149781200 149792492

ENSG00000101162.3 TUBB1 0.516 7.425 0.001578 20 57594309 57601709

ENSG00000090975.8 PITPNM2 0.506 2.549 0.002654 12 123468027 123634562

ENSG00000095303.10 PTGS1 0.505 5.532 0.0005005 9 125132824 125157982

ENSG00000111644.3 ACRBP 0.497 2.010 0.001323 12 6747241 6756626

ENSG00000169313.9 P2RY12 0.483 3.076 0.003989 3 151055168 151102600

ENSG00000163737.3 PF4 0.471 4.875 0.004818 4 74846794 74847841

ENSG00000141522.7 ARHGDIA 0.459 3.114 0.003189 17 79825597 79829282

ENSG00000054793.9 ATP9A 0.441 3.264 0.002419 20 50213053 50385173

ENSG00000107438.4 PDLIM1 0.440 3.137 0.004217 10 96997329 97050781

ENSG00000143368.9 SF3B4 0.429 2.080 0.004332 1 149895209 149900236

ENSG00000153071.10 DAB2 0.419 4.220 0.0003941 5 39371780 39462402

ENSG00000067225.13 PKM 0.401 6.571 0.0002313 15 72491370 72524164

ENSG00000143537.9 ADAM15 0.399 2.580 0.001539 1 155023042 155035252

ENSG00000146192.10 FGD2 0.387 5.061 0.003886 6 36973422 36996846

ENSG00000177830.13 CHID1 0.361 2.254 0.002612 11 867357 915058

ENSG00000157823.12 AP3S2 0.339 3.560 0.004107 15 90373831 90437574

ENSG00000075624.9 ACTB 0.335 9.389 0.003498 7 5566782 5603415

ENSG00000172757.8 CFL1 0.309 6.236 0.000952 11 65590493 65629497

ENSG00000185261.9 KIAA0825 −0.383 5.944 0.002067 5 93488671 93954309
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Functional enrichment analysis
To gain mechanistic insight into functional importance 
of the coding DEGs found above, we used enrichment 
analysis to associate these changes to disease ontology 
(DO), biological processes (GOBP), and biological path-
ways (REACTOME). We observed enrichment in disease 
ontologies relating to acquired metabolic disease, glu-
cose metabolism disease, diabetes mellitus, carbohydrate 
metabolism disease, disease of metabolism, and cluster-
ing around genes including CXCL5, EGF, and SPARC​ 
(Fig.  1c–g). For biological processes and pathways, the 
analysis revealed enrichment relating to striated muscle 
tissue development, muscle tissue development, growth, 
and developmental growth and biological pathways 
including ECM proteoglycans, RAF/MAP kinase cas-
cade, MAPK1/MAPK3 signaling, and MAPK family sign-
aling (Fig. 1c–g and Additional file 5: Fig. F2 online).

Functional enrichment analysis was also carried out 
with identified DMPs (p < 0.005) as input. Again, enrich-
ment in disease ontologies and biological pathways relat-
ing to carbohydrate metabolism, glucose transportation, 
and pathways including glucagon-like peptide-1 (GLP1) 
regulated insulin secretion were in the top-enriched 
terms (Additional file  6: Table  T4 and Additional file  7: 
Table T5 online).

Weighted gene correlation network analysis
As we were unable to robustly identify changes at the 
single-gene level, we used WGCNA to detect modules 
of correlated genes, and to test if any of these modules 
could be related to our two cohort groups and the asso-
ciated clinical traits. Based on co-expression similari-
ties, the genes were split into 25 modules (Additional 
file  8: Fig. F3). The eigengenes of these modules, repre-
senting a summary of the expression of all genes within 
the module, were correlated with group status, index or 
control, and the clinical and paraclinical measurements. 
The modules that were significantly associated to our 
two cohort groups, sex or clinical traits, were selected 
(Fig. 2a). The strongest association observed was a neg-
ative correlation of the salmon module with the gen-
der female (sex, cor = −0.97, p = 4e−23). This module 
consisted of 153 genes, and as expected, almost exclu-
sively came from the sex chromosomes (21 from the X 

chromosome and 13 from the Y chromosome). Other 
female-specific traits like increased hip circumference 
and fat percentage were also negatively correlated with 
eigengene expression in this module, while male traits 
like increased height, waist-hip ratio, and lean body mass 
were positively correlated. Interestingly, we also observed 
that the greenyellow module, consisting of 201 genes, 
was positively correlated with the T1DM offspring group 
(cor = 0.48, p = 0.002) and unaffected by sex. We used 
a signed network structure to create our modules, and 
thus, a general upregulation of all genes within this mod-
ule was expected for the index group. This assumption 
was supported by the presence of 22 out of the 38 upreg-
ulated DEGs in the greenyellow module. The association 
of the individual genes to the index group revealed that 
a subset of the module genes was more strongly corre-
lated with the index group (e.g., CLU, SDPR, BEND2, 
EGF, STON2, TFPI, SPARC, TUBB1) (Fig. 2b). Further-
more, the greenyellow module was negatively correlated 
with offspring systolic blood pressure at follow-up (cor = 
−0.35, p = 0.03) (Fig. 2c), gestational age at birth (cor = 
−0.52, p = 7e−04) and the 5-min Apgar score (−0.53, p 
= 7e−04). Maternal BMI was not correlated to any mod-
ules; however, maternal age was positively correlated to 
the lightgreen module, which was also positively corre-
lated to increased offspring weight and length. The pres-
ence of preeclampsia was not significantly associated to 
the greenyellow group module (T1DM offspring). How-
ever, we observed that preeclampsia was positively cor-
related to the magenta, darkred, and turquoise modules 
and negatively correlated to the tan, blue, brown, and 
darkgreen module. Interestingly, almost the exact same 
correlations were observed for fat percentage. Thus, pres-
ence of preeclampsia may predispose to an increased fat 
percentage later in life.

All genes from the greenyellow module were used as 
input for functional enrichment analysis to associate 
these changes to disease ontology (DO), biological pro-
cesses (GOBP), and biological pathways (REACTOME) 
(Fig. 2d–f). Enrichment in ontologies and pathways relate 
to platelet degranulation/activation, blood coagulation, 
smooth muscle cell contraction, and fibrin clot forma-
tion. Within disease ontologies, we observed enrichment 
in terms relating to coagulation disease, atherosclerosis, 

Fig. 2  Weighted gene correlation network analysis (WGCNA) of all expressed genes. The genes were sorted into modules, with each module 
appointed a color, based on co-expression patters. a The eigengene of each module was correlated to the measured clinical traits. The correlation 
values and p-values were depicted for each correlation, which were colored based on positive (red) or negative (blue) correlation. b The 
module-membership vs gene significance for group (index vs control) for all genes within the greenyellow module. c The module-membership vs 
gene significance systolic blood pressure for all genes within the greenyellow module. d–f Functional enrichment analysis of the genes within the 
greenyellow module, to identify enriched biological processes (GOBP) (d) and biological pathways (REACTOME) (e) and disease phenotypes (DO) (f)

(See figure on next page.)
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thrombosis, myocardial infarction, and hemorrhagic 
disease.

Correlation between DNA methylation and gene 
expression
DNA methylation has been shown to play a regulatory 
role in mediating gene expression, and if located within 
a gene promotor, higher levels of methylation usually 
repress transcriptional expression [8]. To further explore 
the consequences of altered DNA methylation patterns, 
we therefore compared the DNA methylation data with 
our gene expression data (Fig.  3 and Additional file  9: 
Table  T6). First, we visualized correlations between 

changes at the group level. That is, the mean change in 
methylation level plotted against the mean change in 
gene expression of the gene annotated to the methylation 
site. DEGs overlapping with DMPs (annotated to closest 
gene to the methylation site), between T1DM exposed 
offspring and controls (p-value < 0.05), were plotted in a 
scatter plot based on log2FC and ΔM-value.

This analysis revealed that 93 DMPs annotated to 
76 DEGs showed a pattern where DNA hypomethyla-
tion was associated with an increased RNA expression 
(Fig.  3, lower-right (blue)). Fourteen DMPs annotated 
to 12 DEGs were found to show a pattern were DNA 
hypermethylation was associated with decreased RNA 

Fig. 3  Correlated changes in DNA methylation and gene expression in type 1 diabetes-exposed offspring compared to matched controls. 
Scatter plot depicting mean methylation difference (delta-M) versus mean gene expression change (log2FC), of shared DEGs (p < 0.05) and DMPs 
(closest gene to methylation site, p < 0.05). Upper-left (red): Increased methylation corresponding to a decreased gene expression. Lower-right 
(blue): Decreased methylation corresponding to increased gene expression. Upper-right: Increased methylation corresponding to increased gene 
expression
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expression (Fig.  3, upper-left (red)). Two hundred one 
DMPs annotated to 129 genes showed a pattern where 
DNA hypermethylation was associated with increased 
RNA expression. As the second step of our correlation 
analysis, we performed a Spearman rank correlation for 
each DMP-DEG pair, using each subject’s methylation 
level at the involved DMPs and expression level (normal-
ized counts) for the corresponding RNA expression data 
as input. Here, our analysis showed that 2 DMPs and 
their corresponding genes had significant inverse cor-
relation between DNA hypomethylation and increased 
RNA expression (p < 0.1) (CIITA and TPM1, Table  3). 
DNA hypermethylation of CpG sites localized within the 
gene body has been described as being associated with 
increased RNA expression, and in our analysis, we found 
4 annotated DMPs localized within the gene body and 
their corresponding genes displaying positive correlation 
between DNA methylation and RNA expression (p < 0.1) 
(PXN, ST8SIA1, LIPA, and DAXX, Table 3).

Discussion
This exploratory study suggests the existence of epige-
netic marks (e.g., DNA methylation) that possibly influ-
ence the long-term health of offspring born to women 
with pregestational T1DM and elucidate intuitive path-
ways to be involved. Combining DNA methylation with 
gene expression data in offspring exposed to T1DM in 
utero is novel and provides new insight into the conse-
quences of subtle epigenetic changes on gene expres-
sion and disease. Although none of the DMPs and DEGs 
remained significant after correction for multiple testing, 
our WGCNA indicated that subtle alterations in gene 
expression networks were present and may have a bio-
logical significance.

We identified 14 DMPs (p < 0.005 and |ΔM-value| > 1), 
9 being hypomethylated and 5 hypermethylated, between 
T1DM exposed offspring and their matched unex-
posed controls. We also sought to identify any overall 

differences in RNA expression between index and con-
trols and were able to identify a set of 39 predominantly 
upregulated genes (p < 0.005 and a log2FC ≥ 0.3). This set 
of upregulated genes was further validated by WGCNA. 
Here, 25 modules of co-expressed genes were identified, 
and one of these modules was positively correlated with 
the index group. A significant part of the genes in this 
module overlapped with the identified DEGs. Interest-
ingly, this module was also negatively correlated to off-
spring systolic blood pressure at follow-up, gestational 
age at birth, and Apgar score at 5 min. As gestational 
age and Apgar score were generally lower for the index 
group, this seemed reasonable. Surprisingly, increased 
eigengene expression in this module, as observed in the 
index group, correlated with lower systolic blood pres-
sure. From the enrichment analysis of the genes in this 
module, pathways and disease ontologies related to 
platelet activation and coagulation were among the top-
enriched. Thus, vasodilation may be a consequence of 
the gene expression changes observed, and over time, 
this may lead to a malfunctioning vasculature resulting in 
some of the long-term pathologies observed in offspring 
born to women with T1DM [36].

The functional enrichment analysis of the DEGs 
showed clustering around the genes CXCL5, EGF, and 
SPARC​, which are associated with diabetes, obesity, and 
insulin secretion and enriched in disease ontology terms 
of metabolic disease, diabetes, and glucose metabolism 
disease. These findings seem to fit the hypothesis of 
altered intrauterine programming of offspring born to 
women with T1DM [37–39]. The functional enrichment 
analysis points towards muscle tissue development and 
developmental growth to be associated with intrauterine 
exposure to T1DM and that the MAPK signaling pathway 
could play a role in the pathogenesis. The link between 
intrauterine exposure to T1DM and later in life altera-
tions in skeletal muscle has previously been described 
by Houshmand-Oeregaard et  al., and even though no 

Table 3  Top candidate genes from the two-step correlation analysis

Correlation of DNA methylation and RNA expression between type 1 diabetes-exposed and controls. Rho is generated from Spearman’s rank correlation analyzing 
the correlation between the specific methylation level (M-value) and log fold change for shared genes. FDR-adjusted P-value generated using Benjamini-Hochberg 
correction

Probe name Gene region Relation to 
CPG island

Gene symbol rho P-value FDR P-value

DNA hypomethylation and positive 
RNA expression

cg06871213 Body Nshore CIITA −0.3490 0.03002 0.06005

cg04194852 TSS1500 Island TPM1 −0.3237 0.04493 0.42438

DNA hypermethylation and positive 
RNA expression (located in gene 
bodies)

cg04256697 Body;TSS1500;Body OpenSea PXN 0.3933 0.01379 0.05514

cg24112692 Body OpenSea ST8SIA1 0.3686 0.02152 0.26539

cg13931663 Body;Body OpenSea LIPA 0.3020 0.06206 0.56834

cg20618109 Body;Body;TSS1500;Body;Body N_Shore DAXX 0.2909 0.07271 0.581641
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studies have described a link between intrauterine expo-
sure to diabetes and later in life alterations in the MAPK 
pathway, the central placement of MAPK in insulin sign-
aling makes it a plausible object for pathogenetic changes 
[14, 40].

Our access to both DNA methylation data and gene 
expression data made it possible to explore the impact 
of epigenetic changes (e.g., DNA methylation) induced 
by intrauterine T1DM exposure on gene expression. 
We chose to perform a two-step analysis where we first 
explored the overall correlation between DMPs and 
DEGs at the group level. During step 2, we studied the 
individual correlation between ΔM-value at the involved 
DMP and log2FC for the corresponding DEG. No studies 
within the area of fetal programming as a consequence 
of maternal T1DM have to our knowledge performed 
a similar linkage study between DNA methylation and 
RNA expression data. However, in cancer studies, a 
similar methodology has been used [41]. Applying this 
method provided us with six genes where changes in 
DNA methylation between offspring exposed to mater-
nal T1DM and controls correlated with relevant changes 
in gene expression (Table  3). PXN, which is localized 
at chromosome 12, has been linked to progression of 
T1DM and LIPA at chromosome 10 to the composition 
of lipoproteins [42, 43]. Mutations in TPM1 at chromo-
some 15 is associated with both the development of the 
metabolic syndrome and cardiac hypertrophy [44, 45]. 
CIITA is associated with MHC class II (MHCII) expres-
sion and MHCII antigen presentation in adipocytes and 
is reported to trigger early adipose inflammation and 
insulin resistance as well as inducing changes to energy 
expenditure in skeletal muscle [46, 47].

In our study, we chose to match our participants so that 
they did not overtly differ in phenotypic appearance. This 
approach resulted in a very homogenous group where 
the major difference was in T1DM exposure status. The 
matching was an attempt to exclude any phenotypic dif-
ferences to be the cause of differences in methylation sta-
tus. However, a consequence of the matching could, in 
theory, result in the observed changes in methylation and 
gene expression as being protective towards the develop-
ment of later in life metabolic disease, as none of the par-
ticipants in the exploratory cohort had overt metabolic 
disease in contrast to the participants in the full EPICOM 
study [20]. Also, it is well known that gestational age is 
associated with DNA methylation, and as gestational age 
differed between our two cohorts, this could have influ-
enced our findings [48].

Epigenetic changes in relation to intrauterine expo-
sure to either nutrition or maternal diabetes has previ-
ously been described in animal studies but the results 
have been difficult to apply to human studies [49, 50]. 

In recent years, methylation analyses of cord blood 
have shown promising results, but the use of cord blood 
methylation status as a biomarker of long-term off-
spring risk of disease development has yet to be fully 
described [11, 51].

Here we used leucocytes from peripheral blood from 
both T1DM exposed and non-exposed offspring. The 
most likely target tissue for the pathogenesis of long-term 
consequences of being born to a mother with T1DM 
may, however, be pancreatic β-cells, and muscle and fat 
tissue. These three tissues are not as readily available, 
and it is debated whether peripheral blood leucocytes 
reflect global epigenetic changes induced by maternal 
pregestational T1DM. Studies of tissue-specific differ-
entially methylated regions have shown conservation of 
DNA methylation patterns across different tissues [52, 
53]. However, replication of our findings in target tis-
sues would further strengthen our hypothesis. In our 
study, we did not have access to specific white cell counts 
for each participant. Instead, we used the EstimateCell-
Counts algorithm from the minfi package, which enables 
us to minimize confounding related to cell composition, a 
strength compared to prior studies within the same area.

The samples used in our study were collected at a mean 
age of ~18 years. This provides time to develop pheno-
typic characteristics. However, it also provides the pos-
sibility that any epigenetic changes have occurred during 
the time period from birth to follow-up. In the EPICOM 
study, we did not have access to cord blood samples and 
it is therefore not possible for us to state that the epige-
netic findings in our study have been present since birth. 
Lifestyle and diet in families where the mother has T1DM 
could be different compared to families without diabetes 
and this could affect the epigenetic findings [54, 55].

When interpreting our finding, one must consider the 
fact that no single DMP reached the FDR-adjusted value 
of 0.05. This is probably a consequence of our modest 
sample size in the exploratory cohort and an obvious lim-
itation of our study. Instead, we used the same pragmatic 
threshold for DMPs as West et  al. providing an oppor-
tunity to compare findings in related studies [56]. Our 
limited sample size also hindered a robust exploration of 
maternal preeclampsia or being born either small or large 
for gestational age and later in life epigenetic and tran-
scriptomic alterations. Interestingly, the WGCNA analy-
sis did indicate a correlation between the presence of 
preeclampsia and an increased fat percentage later in life. 
This, however, was not associated to the T1DM group.

The strength of this study is that it was performed on a 
group of prospectively studied offspring born to women 
with T1DM. For both diabetes-exposed offspring and 
their matched controls, we have extensive knowledge of 
intrauterine exposure, birth, neonatal period, and current 
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health status. Our women with T1DM are well charac-
terized, and no women with type 2 diabetes (T2DM) or 
gestational diabetes (GDM) were included in our cohort. 
This enables us to explore associations between both fetal 
and long-term consequences of being born to mother 
with T1DM and epigenetic and transcriptomic altera-
tions. However, access to a control group of offspring of 
mothers with GDM or T2DM would have benefitted our 
study and rendered possible a study of which epigenetic 
and transcriptomic alterations is induced by maternal 
hyperglycemia and which is induced by e.g., maternal 
pre-pregnancy overweight.

Conclusions
Our data indicate intrauterine exposure to mater-
nal T1DM to impact later in life methylation and gene 
expression in the offspring, a profile that may be linked 
to the increased risk of metabolic and vascular disease. 
However, comprehensive follow-up studies using a 
genome-wide approach and including relevant target tis-
sue are needed.
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