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Abstract 

Reliable assessment of glycemia is central to the management of diabetes. The kidneys play a vital role in maintain-
ing glucose homeostasis through glucose filtration, reabsorption, consumption, and generation. This review article 
highlights the role of the kidneys in glucose metabolism and discusses the benefits, pitfalls, and evidence behind the 
glycemic markers in patients with chronic kidney disease. We specifically highlight the role of continuous glucose 
monitoring as an emerging minimally invasive technique for glycemic assessment.
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Background
Quantifying the severity and patterns of hyperglycemia 
are central to the diagnosis and management of diabe-
tes [1]. Early diagnosis and treatment of prediabetes 
can prevent progression to diabetes, and early diagnosis 
and management of diabetes can prevent its long-term 
microvascular and macrovascular complications [2, 3]. 
Glycemic control is critical to detect immediate compli-
cations of glucose-lowering medications (hypoglycemia), 
short-term diabetes complications (diabetic ketoacidosis 
and hyperglycemic hyperosmolar state), and intermedi-
ate-term diabetes complications (infections) [2, 3]. Gly-
cemic monitoring also provides insights into individual 
glucose patterns allowing individualized patient man-
agement [1, 4]. In this review, focused on patients with 
chronic kidney disease (CKD), we will discuss the unique 
aspects of glycemic disarray in kidney disease and sum-
marize the evidence for different methods of assessing 

glycemia by indirect markers of average glycemia and 
glucose monitoring.

Main text
The role of the kidneys in glucose homeostasis
The kidneys play a vital role in maintaining glucose 
homeostasis through glucose filtration, reabsorption, 
consumption, and generation [5]. Glucose is freely fil-
tered at the glomerulus, and in a healthy individual, all of 
the filtered glucose is reabsorbed [6]. Glucose reabsorp-
tion from the tubular filtrate occurs by secondary active 
transport by sodium-glucose cotransporters (SGLT) with 
90% of the filtered glucose absorbed by SGLT2 in the 
S1 segment of the proximal tubule and 10% reabsorbed 
by SGLT1 in the latter parts of the proximal tubule [7]. 
The maximum rate of tubular absorption of glucose is 
375 mg/min, threefold higher than the glucose filtration 
rate of about 125 mg/min [7]. However, this threshold 
varies between the nephrons, and glucose appears in 
the urine as the plasma level rises above 200 mg/dL [5]. 
In kidney disease, a low glomerular filtration rate (GFR) 
reduces the filtered glucose load. In contrast, the loss of 
functioning nephrons reduces the capacity for reabsorp-
tion. The net effect on the kidneys’ glucose threshold can 
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be quite variable in people with kidney disease. In addi-
tion to the excretion of glucose, the kidneys also consume 
~ 10% of the plasma glucose as an energy source for its 
metabolic functions [8]. The kidneys also contribute to 
about 20–25% of the circulating blood glucose in the fast-
ing state by gluconeogenesis [5, 9–12]. The kidneys are 
also responsible for metabolizing insulin and clearing 
many glucose-lowering medications [8, 13–15]. The net 
effect of this interplay between kidneys, glucose metabo-
lism, and medication clearance can be highly variable in 
individual patients with a propensity for both hypergly-
cemia due to reduced excretion and reduced consump-
tion and fasting hypoglycemia due to reduced capacity 
for gluconeogenesis and prolonged half-life of glucose-
lowering medications [5, 9–12, 16].

Indirect markers of average glycemia
The indirect markers of glycemia provide an assessment 
of the average glucose levels over the preceding three 
months (hemoglobin A1C), 2  weeks (fructosamine and 
glycated albumin), and 1–2 weeks (1,5 anhydroglucitol) 
[17]. In the following sections, we discuss the biological 
rationale for using each marker and special considera-
tions in patients with CKD, which might affect the mark-
ers’ diagnostic validity (association with average glucose 
levels) and predictive validity (association with long-term 
complications of diabetes).

Hemoglobin A1C

Biology  Hemoglobin A1C (A1C) is formed by the non-
enzymatic attachment of glucose to the N-terminal valine 
of the β-chain of hemoglobin over the red blood cells’ 
lifespan. In healthy individuals, the average lifespan of red 
cells is 90 days, and therefore, A1C levels generally reflect 

the average blood glucose in the preceding 3 months [17]. 
However, A1C values are influenced more by recent glu-
cose levels than more distant ones as the mean level of 
blood glucose in the 30 days preceding the A1C contrib-
utes to ~ 50% of the A1C level [18]. A1C measurements 
and reporting are highly standardized, and the National 
Glycohemoglobin Standardization Program (NGSP) 
ensures standardization and calibration of A1C assays, 
minimizing analytic variability between individual labo-
ratories [19].

Special considerations in CKD  The interpretation of 
A1C levels in patients with CKD comes with numer-
ous caveats (Table  1). Anemia is common in advanced 
CKD for multiple reasons, including reduced erythro-
poietin production by the kidney, inflammation, and the 
effect of circulating uremic toxins [21]. When anemia 
is treated with erythropoiesis-stimulating agents, there 
is an increase in circulating young red cells. Due to the 
shortened red cell lifespan [22] and the higher number of 
immature red cells, there is a shorter time for glycation, 
resulting in A1C being lower than expected [23, 24]. Var-
iable effects on A1C occur due to other factors in patients 
with CKD, including sickle cell trait [25] (more common 
in Blacks [26, 27]), oxidative stress, inflammation, and 
acidosis [28]. A1C levels also vary according to ethnic-
ity and race, with some evidence of higher A1C levels in 
non-Whites than Whites [29]. These factors influence 
both the diagnostic accuracy of A1C and its predictive 
validity in CKD.

Diagnostic accuracy  In patients with diabetes without 
CKD, mean glucose from multiple measurements, such 
as by continuous glucose monitoring (CGM), is highly 
correlated with A1C (rho 0.8 to 0.9) [30, 31]. Limited data 

Table 1  Settings in which the interpretation of AIC is problematic

Adapted from Diabetes in America, 3rd Edition, Table 1.5 [20]

Conditions in bold font represent CKD or conditions that are more common in CKD

Abbreviations: A1C hemoglobin A1C, HIV human immunodeficiency virus, CKD chronic kidney disease

Effect on A1C Conditions

Falsely low Chronic blood loss; autoimmune hemolytic anemia; thrombotic micro-
angiopathy; malignant hypertension; sickle cell anemia; thalassemia; 
certain hemoglobinopathies; glucose-6-phosphate dehydrogenase 
deficiency; intra-red cell alkalosis; hypertriglyceridemia; malaria; HIV; other 
chronic infections; hemodialysis

Falsely high Iron deficiency; vitamin B12 deficiency; persistence of fetal hemoglobin; 
intra-red cell acidosis; splenectomy; hyperbilirubinemia; alcoholism; 
smoking

Variable effects Chronic kidney disease; pregnancy; certain hemoglobin variants; meth-
emoglobin; recent blood transfusion; cancer; chronic liver disease

Interfering medications: iron-replacement therapy; treatment for vitamin B12 deficiency; anti-malarial drugs; sulfonamides; aspirin; vitamins C or 
E; antiretrovirals; ribavirin; dapsone; hydroxyurea; chronic opioid use



Page 3 of 9Hassanein and Shafi ﻿BMC Medicine          (2022) 20:117 	

are available for A1C reliability in patients with CKD. In 
a single-center study of 104 patients with diabetes and 
CKD, Zelnick et al. obtained CGM over two 6-day peri-
ods separated by 2 weeks [32]. The correlation between 
mean glucose and A1C was 0.85 for patients with eGFR 
45–59 ml/min/1.73 m2 (n = 28), 0.91 for patients with 
eGFR 30–44 ml/min/1.73 m2 (n = 30), and 0.61 for 
patients with eGFR < 30 ml/min/1.73 m2 (n = 28). There 
are no CKD studies comparing A1C to glucose measured 
using the recommended 14-day CGM.

Predictive validity  There are two crucial considera-
tions while interpreting the predictive validity of glyce-
mic markers. First, the association of an observed lower 
marker with outcomes in observational studies is not the 
same as lowering the marker with treatment in the set-
ting of a randomized clinical trial due to potential side 
effects of treatment (hypoglycemia, drug-specific toxic-
ity). Second, with regard to observational studies, it is 
also important to distinguish between electronic health 
records (EHR)-based retrospective cohorts with clinically 
measured A1C, which could be confounded by indica-
tion, versus prospective cohort studies with measure-
ment of A1C in all participants as part of the research 
protocol.

A1C targets in patients with CKD are based on general 
population observational studies and clinical trials that 
either did not include patients with CKD or had few 
patients with advanced CKD. In two retrospective EHR-
based cohorts, A1C levels < 6–7% or > 9% were associated 
with an increased risk of death [33, 34]. In the Action to 
Control Cardiovascular Risk in Diabetes (ACCORD) trial, 
patients with CKD stages 1 to 3 (n = 3636) had a 1.6-to-
3-fold higher risk of cardiovascular events than patients 
without CKD (n = 6506). However, in patients with CKD, 
intensive glucose control (achieved A1C, 6.7%) compared 
to standard control (achieved A1C, 7.5%) was associated 
with a higher risk of any cause of death and cardiovas-
cular death but lower risk of non-fatal myocardial infarc-
tion. The risk of hypoglycemia was 2-fold higher in those 
with CKD than in those without CKD [35].

Glycated proteins

Biology  Similar to the non-enzymatic glycation of 
hemoglobin, glucose also attaches to circulating plasma 
proteins forming ketoamines [25]. Fructosamine rep-
resents all glycated plasma proteins. Glycated albumin 
is formed by the non-enzymatic attachment of glu-
cose to the lysine residues on plasma albumin, the most 
abundant plasma protein. As the half-life of albumin 

is ~ 14 days, fructosamine and glycated albumin values 
represent the average glucose levels over the preceding 
2–4 weeks [17, 25]. The suggested reference range for 
fructosamine is 205 to 285 μmol/L and is 11.9% to 15.8% 
for glycated albumin [36]. These values can vary between 
different labs due to the lack of standardized assays [37].

Special considerations in CKD  Both glycated albu-
min and fructosamine offer the advantage of not being 
affected by hematological factors that alter A1C levels 
[16, 38, 39]. However, they can be affected by protein 
turnover, such as in patients with significant proteinu-
ria, hypoalbuminemia, and cirrhosis [40]. Serum albu-
min is also a negative acute phase reactant with acute ill-
ness leading to lower serum albumin levels after a lag of 
about 1–2 weeks [41]. The impact of these changes on the 
interpretation of the glycated protein levels has not been 
studied.

Diagnostic accuracy  In patients with diabetes without 
CKD, mean glucose from CGM is highly correlated with 
fructosamine (rho 0.85) and glycated albumin (rho 0.87), 
supporting their role as alternative glycemic markers 
[31]. The recommended 14-day CGM has not been used 
to evaluate the diagnostic accuracy of these markers in 
patients with CKD and the published CKD studies had a 
small sample size, limiting interpretation. The correlation 
reported with mean glucose was also highly variable for 
fructosamine (rho range 0.54 to 0.80) and glycated albu-
min (rho range 0.41 to 0.88) [42, 43]. In the previously 
noted study by Zelnick et  al. [32], the correlation with 
mean glucose from CGM in patients with eGFR < 30 ml/
min/1.73 m2 was 0.60 for fructosamine and 0.77 for gly-
cated albumin, similar to the correlation with A1C (0.61).

Predictive validity  Non-CKD observational studies sug-
gest that the association of fructosamine and glycated 
albumin with outcomes is similar to observed with A1C 
[43–45]. There are no studies reporting associations of 
glycated proteins with outcomes in patients with non-
dialysis dependent CKD. Further, there are no rand-
omized controlled trials that used glycated protein tar-
gets for glycemic control [44].

One, five‑anhydroglucitol (1,5‑AG)

Biology  One, five-anhydroglucitol (1,5-AG) is struc-
turally identical to glucose with the absence of the 
C-1 hydroxyl group [46]. It is widely available in food 
sources, including soybeans, rice, pasta, fish, fruits, veg-
etables, tea, milk, and cheese [47]. One, five-anhydroglu-
citol is freely filtered at the glomerulus, and in healthy 
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individuals, 99.9% is reabsorbed by the sodium-glucose 
cotransporter 4 (SGLT4) in the proximal tubules. Glu-
cose competes with the reabsorption of 1,5-AG by 
SGLT4, and as hyperglycemia exceeds the kidneys’ 
absorption threshold, 1,5-AG reabsorption decreases, 
and urinary excretion increases. As a result, 1,5-AG 
plasma levels fall with hyperglycemic excursions, and 
low levels of 1,5-AG indicate recent (1–2 weeks) glyce-
mic excursions. Thus, 1,5-AG levels are more reflective 
of plasma glucose surges beyond the kidneys’ reabsorp-
tion threshold during the preceding 1–2 weeks, rather 
than average glycemia during this period. One, five-
anhydroglucitol is not useful in patients with normo-
glycemia and those with blood glucose levels below the 
threshold for glucosuria [46, 48–50]. The healthy refer-
ence range of 1,5-AG is 8.4 to 28.7 μg/mL [36].

Special considerations in CKD  One, five-anhydro-
glucitol is highly dependent on the kidneys’ threshold 
for glucose reabsorption. In CKD, the kidneys’ glucose 
threshold can be quite variable depending on the bal-
ance between filtered glucose load, determined by GFR, 
and the reabsorptive capacity of the remaining function-
ing nephrons, determined by the proximal tubular func-
tion [7]. The lack of reliability of estimated GFR versus 
measured GFR and the lack of methods to quantify tubu-
lar dysfunction are limitations to the using a marker of 
glycemia in CKD that depends on these factors. One, 
five-anhydroglucitol levels can also be affected by diet, 
which should be taken into account while interpreting 
the results [51].

Diagnostic accuracy  As 1,5-AG is a marker of postpran-
dial hyperglycemia and glycemic surges, its diagnostic 
accuracy should be based on CGM used to define glucose 
patterns. In patients without CKD, 1,5-AG correlates 
with the area under the curve for glucose above 180 mg/
dL (AUC-180) [49, 52, 53]. There are no studies of the 
diagnostic accuracy of 1,5-AG in patients with CKD.

Predictive validity  In the general population, low 1,5-
AG (indicating glycemic surges) is associated with dia-
betic microvascular and macrovascular complications 
[54–56]. The predictive validity of 1,5-AG in patients 
with CKD is unknown.

Direct measurement of glucose
Glucose variability may contribute to the pathogenesis of 
the vascular complication of diabetes [57]. Glucose mon-
itoring is required for routine clinical care of patients 
with diabetes prone to hypoglycemia. Glucose can be 
measured in whole blood, serum, plasma, capillary blood, 

or interstitial fluid. Plasma glucose is recommended for 
the diagnosis of diabetes as there are differences in glu-
cose levels depending on the sample types [18]. The 
plasma glucose is 11% higher than whole blood glucose in 
patients with normal hematocrit due to the higher water 
content of plasma. However, in heparinized plasma, glu-
cose is 5% lower than serum due to the shift of water 
from red cells to plasma. Capillary blood glucose levels 
are similar to venous blood glucose during the fasting 
state but can be 20–25% higher than venous blood glu-
cose during the postprandial state. Interstitial fluid glu-
cose levels lag ~ 10 min behind the blood glucose levels 
which can be important when the blood glucose levels 
are falling rapidly [58]. In clinical practice, direct glu-
cose measurement by either self-measured blood glucose 
(SMBG) or CGM provides information on acute glucose 
excursions and glycemic variability.

Self‑measured blood glucose (SMBG)

Technique and diagnostic accuracy  Glucose meters for 
SMBG are widely available, but not all Food and Drug 
Administration (FDA)-cleared glucose monitors have 
similar reliability. Home-use devices can differ from pro-
fessional use devices, and while most quantify plasma 
glucose, some may quantify whole blood glucose [1]. 
Several factors affect the diagnostic accuracy of SMBG, 
including glucose strips, physical, patient, and pharmaco-
logical factors [59]. SMBG uses electrochemical glucose 
oxidase strips, which are sensitive to oxygen concentra-
tion. When glucose interacts with glucose oxidase, a 
series of electrochemical reactions lead to glucose sign-
aling and a glucose reading. Strip to strip variation and 
changes in glucose oxidase enzyme coverage can lead to 
inaccuracies in glucose measurement. Altitude and tem-
perature alter oxygen concentration and capillary circula-
tion, respectively, leading to inaccuracies in glucose read-
ings. Patient-related factors such as the ability of patients 
to use the correct technique and differences in hemato-
crit values can also lead to errors in glucose readings. Red 
blood cells harbor significant amounts of glucose, leading 
to spurious readings if glucose meters do not correct for 
it. High triglycerides take up volume, reducing glucose in 
the capillary volume, while uric acid can be oxidized by 
glucose oxidase, leading to falsely elevated blood glucose 
values. Medications such as acetaminophen, ascorbic 
acid, L-dopa, and Tolazamide can interact with the elec-
trodes on glucose strips altering glucose readings [59].

Special considerations in CKD  Hyperuricemia and gout 
are common in CKD, and elevated uric acid is oxidized 
by the glucose oxidase monitor electrode and counted 
as glucose leading to falsely high blood glucose readings 
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[59–61]. Severe hypoglycemic encephalopathy in a 
patient with CKD, masked by hyperuricemia, has been 
described [62]. Pain is common in patients with neu-
ropathy and osteoarthritis and is preferentially treated 
with acetaminophen in patients with CKD [63]. Glucose 
dehydrogenase monitors are not affected by uric acid and 
acetaminophen but provide falsely high glucose readings 
in patients treated with icodextrin containing peritoneal 
dialysis solutions [64].

Continuous glucose monitoring

Technique  CGM is a minimally invasive modality for 
glycemic monitoring. There are two types of CGMs, real-
time CGM (RT-CGM) and intermittently scanning CGM 
(IS-CGM). Real-time CGM automatically transmits con-
tinuous CGM readings to the user providing real-time 
values that are sent to a receiver or smart device. Inter-
mittently scanning CGM scans for glucose readings only 
when the user prompts the device to scan [65]. Many 
CGM wearable sensors are now factory-calibrated, elimi-
nating the need for fingersticks [66, 67]. These sensors are 
approximately the size of a quarter, weigh < 5 grams, and 
have a < 0.4 mm thin filament inserted into the skin sur-
face to measure interstitial fluid glucose. The sensors are 
water-resistant; the person wearing them can shower and 
swim. CGM sensors measure interstitial glucose levels 
several times per hour and are being widely used in clini-
cal practice and research [68–70]. CGM devices include 
personal and professional CGM devices. Personal CGM 
devices typically record and transmit glucose values to a 
personal receiver which alerts the patient. Personal CGM 
devices can also be programmed to share information 
with caregivers, clinicians, and family members. Profes-
sional CGM devices are wearable CGM devices that are 
provided to patients to analyze and record glucose values, 
typically over a 2-week period. These devices can provide 
valuable information for titrating glucose-lowering medi-
cations, particularly those that predispose to hypoglyce-
mia [71].

CGM interpretation  The metrics for reporting and 
interpretation of CGM were recently standardized [72]. 
The key elements in the interpretation of CGM include 
time in range, time above target, and time below tar-
get. Time in range is the percentage and time of glucose 
readings within the target range (70–180 mg/dL). Time 
above range is the percentage and time of readings above 
target glucose range (level 1: 181–250 mg/dL, level 2: 
> 250 mg/dL). Time below target is the percentage and 
time of readings below the target glucose range (level 
1: 54–69 mg/dL, level 2: < 54 mg/dL). The main goal of 

using CGM for glycemic monitoring is to maximize the 
TIR while minimizing time above or time below target 
[72]. The glucose values from CGM are also converted 
to an estimated A1C, referred to as the glucose manage-
ment indicator (GMI), to distinguish it from laboratory-
measured A1C. The results are provided as a single-page 
ambulatory glucose profile [1].

Special considerations in patients with CKD  Glucose 
variability may be higher in patients with CKD. Postpran-
dial hyperglycemia can occur due to lack of kidneys’ fil-
tration and clearance of glucose. Fasting hypoglycemia 
can occur due to the lack of kidney gluconeogenesis and 
prolonged half-life of endogenous insulin and glucose-
lowering medications. Biomarkers of average glycemia, 
including A1C and glycated proteins, might also not be 
reliable in advanced CKD due to limitations discussed 
previously. CGM can provide valuable insights into glu-
cose patterns and glycemic control that might not oth-
erwise be available. The discrepancy between GMI and 
laboratory-measured A1C can also be valuable in mak-
ing treatment decisions, including intensifying and de-
escalation of glucose-lowering medications. Figure  1 
shows the CGM profile of a person without diabetes 
(Fig. 1A) and five patients with end-stage kidney disease 
(Fig.  1B–F). The glucose time-in-range provides invalu-
able information, not fully captured by either A1C or 
GMI. Detailed daily glucose data, a food diary, and glu-
cose-lowering medication dosage provide further infor-
mation to guide management (Fig.  2). Rigorous studies 
of patients with advanced CKD are needed to determine 
if CGM should replace the measurement of plasma bio-
markers to assess glycemic control.

Glycemic assessment: KDIGO guidelines  The Kidney 
Diseases Improving Global Outcomes (KDIGO) group 
recently updated the guidelines for the management of 
diabetes in CKD. The guidelines recommend the use of 
A1C to assess glycemic control in patients with CKD. The 
recommendation is graded Level 1 (We Recommend) 
C (Low Quality of Evidence). The recommendation is 
based on the totality of evidence supporting the use of 
A1C in the general population, including A1C’s diagnos-
tic and predictive validity and A1C’s use as a treatment 
target in clinical trials. The guidelines note the unreli-
ability of A1C in patients with advanced CKD (eGFR 
< 30 ml/min/1.73 m2 and kidney failure treated with dial-
ysis). Alternative biomarkers of glycemia are not recom-
mended due to the lack of prospective observational or 
clinical trial data in patients with CKD [28].

The KDIGO guidelines also support the use of CGM in 
patients with CKD. They suggest using CGM to calculate 
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GMI in patients with advanced CKD. CGM can also be 
considered in earlier stages of CKD if there is a clinical 
concern that the A1C is not reflective of the patient’s 
glycemic control, such as discordance between A1C and 
SMBG or random glucose, or symptoms of hypoglycemia 
or hyperglycemia. CGM-derived GMI can be compared 

to A1C, with the caveat that the relationship between the 
two may differ over time [28]. Table 2 depicts the advan-
tages and disadvantages of different modalities for glyce-
mic assessment.

Fig. 1  Time in range results from continuous glucose monitoring in patients with chronic kidney disease. Continuous glucose monitoring 
(CGM) data from 6 individuals, including one person without diabetes (A) and five persons with diabetes and end-stage kidney disease (B–F), 
are presented. The CGM data are categorized as time-in-range, based on consensus recommendations. Glucose management indicator (GMI) is 
calculated from the average glucose results for each person, and lab-measured A1C is also presented. Note that significant variability in the glucose 
time-in-range is present within the same range of A1Cs (A–D and E, F). For example, for person E with an A1C of 8.4%, the GMI is 6.9%, and the CGM 
time-in-range is within acceptable limits. However, for person F, the A1C is 8.1%, GMI is 9.2%, and the CGM time-in-range is unacceptably high

Fig. 2  Daily glucose profile from continuous glucose monitoring. Continuous glucose monitoring profile for a person with diabetes and end-stage 
kidney disease. The time-in-range results are shown in Fig. 1D. The profile shows that the hyperglycemic excursions during week 1 (top panel, 
yellow color indicating glucose above 180 mg/dL) decreased, but there is a trend towards more nocturnal hypoglycemia during week 2 (bottom 
panel, red color indicating glucose below 70 mg/dL), particularly during the last 4 days of the monitoring period. Patient care can be individualized 
using this information, combined with dietary history and glucose-lowering medications use
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Conclusions
Glycemic monitoring is essential to prevent complica-
tions and improve outcomes in patients with diabetes. 
A1C has been the gold standard in monitoring blood glu-
cose levels in patients with CKD, but it may be inaccurate 
in multiple comorbidities present in patients with CKD. 
Fructosamine, glycated albumin, and 1,5-AG have been 
proposed as alternative markers in patients with diabetes. 
However, these markers have not been rigorously stud-
ied in patients with CKD. CGM is available as a promis-
ing minimally invasive technique that avoids the pitfalls 
of routing fingerstick glucose monitoring and assesses 
blood glucose levels continuously. Prospective studies 
are warranted to validate CGM’s efficacy in patients with 
CKD.
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