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Abstract

The individual infectiousness of coronavirus disease 2019 (COVID-19), quantified by the number of secondary cases
of a typical index case, is conventionally modelled by a negative-binomial (NB) distribution. Based on patient data
of 9120 confirmed cases in China, we calculated the variation of the individual infectiousness, i.e., the dispersion
parameter k of the NB distribution, at 0.70 (95% confidence interval: 0.59, 0.98). This suggests that the dispersion in
the individual infectiousness is probably low, thus COVID-19 infection is relatively easy to sustain in the population
and more challenging to control. Instead of focusing on the much fewer super spreading events, we also need to
focus on almost every case to effectively reduce transmission.
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Introduction
Since the early outbreak of coronavirus disease 2019
(COVID-19) pandemic, huge efforts have been devoted on
estimating key epidemiological parameters due to their
important implication in mitigation planning. For in-
stance, according to a survey posted in a public domain
(https://github.com/midas-network/COVID-19/tree/mas-
ter/parameter_estimates/2019_novel_coronavirus), there
were at least 47 studies (either peer-reviewed or not) on
the cumulative case count in a location have been posted,
39 works on the reproductive number R0 (number of sec-
ondary cases may be cause by a typical primary cases), 13
on the incubation period (time delay between infection
and symptom onset), 6 on the serial interval or generation
interval (time delay between symptom onset or infection
of an index case and its secondary case in a transmission

chain), 6 on the symptomatic case fatality ratio. However,
the individual variation in infectiousness, the dispersion
rate (k), has been largely overlooked, except for one early
work in Eurosurveillance [1]. He et al. (2020) summarized
the recent estimates on k from empirical offspring distri-
butions, including 0.58 (95% confidence interval [CI]: 0.35,
1.18) of Bi et al. (2020) from a sample of 391 COVID-19
cases in Shenzhen China [2]. It is of note that there is
mathematical modelling work based on imported
and reported case numbers in a variety of countries
showing that k could be 0.1 (95% CI: 0.05, 0.2) [3].
The recent study of Lau et al. [4] used a spatiotem-
poral transmission process model and estimated
that overall dispersion parameter k is 0.45 for Cobb
County, 0.43 for Dekalb, 0.39 for Fulton, 0.49 for
Gwinnett, and 0.32 for Dougherty in Georgia, USA.
In this work, with a larger dataset, we calculate k
using the empirical offspring distribution approach.
Our data are from mainland China where strict sur-
veillance guaranteed the quality of the data. Since
we adopted the basic definition approach, our
methods do not rely on additional assumptions typ-
ically needed for mathematical modelling.
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Method
Negative binomial distribution (NB) is used to
model the distribution of secondary case numbers,
i.e., the offspring numbers, of an index case. The
dispersion parameter, k, (i.e., size, which is nonneg-
ative) controls the variation of the NB distribution.
A sufficiently small k implies that the majority of
disease transmission was driven by a few super-
spreaders, and thus the spread is likely to be

controlled by preventing super-spreading events. A
large k implies that the NB distribution approaches
a Poisson distribution, and the virus easily persist
and is difficult to eradicate. Following the pioneer
work of Lloyd-Smith et al. [5], we assume that the
number of secondary cases, denoted by Z, for a
typical primary case, follows NB (mean = R0, disper-
sion = k), and thus the variance is R0 + R0

2/k. When
k is sufficiently small, the distribution will have a
peak at 0, and in the limit when k = 0, the NB
distribution is concentrated at zero. When k = 1, the
distribution is a geometric distribution; and when k
approaches infinity, the NB distribution approaches
a Poisson distribution with both mean and variance
equal to R0 [5].

Results and discussion
The k plays an important role in explaining the
wide spreading of COVID worldwide, given a simi-
lar R0 as the other coronavirus, i.e., the severe acute
respiratory syndrome (SARS). Lloyd-Smith et al. [5]
estimated a smaller k = 0.16 for the SARS outbreak
in Singapore in 2003.
We first tried Riou et al.’s [1] method to calculate

the R0 and k in six countries (see Table 1), and
found that R0 is in line with World Health
Organization (WHO) early estimates, while k
cannot be reliably estimated. Then we obtained the
numbers of secondary cases from a study by Xu
et al. [9] (see Table 2), and estimated k = 0.7
(95%CI 0.59, 0.98) and R0 = 0.69 (95%CI: 0.62,
0.77) using profile likelihood approach and the
profile Log likelihood of the NB model given the
data in R0 versus k plane is shown in Fig 1. This
estimate is larger than that of SARS around 0.16,
but close to that of the 1918 pandemic influenza
0.94 (95%CI 0.59, 1.72) [2]. Our estimate is in line
with Bi et al. 0.58 with 95% CI: 0.35, 1.18) [10].
However, we have 9120 confirmed cases, compared
to Bi et al. 391 confirmed cases, and thus our
estimate has a smaller confidence interval.
Our results suggest that the majority of the

COVID-19 transmission is not due to super-
spreading events. The number of secondary cases of
a primary case roughly follows a geometric distribu-
tion, large proportion of primary cases have poten-
tials to generate more than one secondary cases.
This indicates that COVID-19 is easy to persist in
the general population if strong measure is not
taken, given the similar R0 as SARS. Therefore,
outbreak mitigation is relatively difficulty without
taking extreme efforts such as city lockdown.

Table 1 Summary of estimated R0 of COVID-19 outbreaks in six
countries

Country Time interval R0

France 20/2/2020–12/3/2020 3.5 (3.2, 3.8)

7/2/2020–12/3/2020 2.0 (1.7, 2.3)

UK 21/2/2020–12/3/2020 2.9 (2.6, 3.2)

11/2/2020–12/3/2020 2.0 (1.7, 2.3)

Singapore 23/1/2020–23/2/2020 1.7 (1.4, 2.0)

Germany 21/2/2020–12/3/2020 3.5 (3.2, 3.8)

11/2/2020–12/3/2020 2.3 (2.0, 2.6)

Spain 21/2/2020–12/3/2020 3.5 (3.2, 3.8)

11/2/2020–12/3/2020 2.3 (2.0, 2.6)

Japan 23/1/2020–12/3/2020 1.7 (1.4, 2.0)

11/2/2020–12/3/2020 2.3 (2.0, 2.6)

We adopted a similar method as in [1], and simulate a Negative-binomial
process to match the observed daily cases in these country over the chosen
time period when the number grew exponentially. Using a maximum
likelihood approach to infer R0. The method is also explained in [6–8]

Table 2 Frequency of primary cases as a function of the
numbers of secondary cases per primary case. Data are from [9]

Numbers of secondary cases Frequency of primary cases

0 1241

1 511

2 160

3 71

4 33

5 15

6 7

7 3

8 2

9 3

10 1

11 1

12 1

17 1
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Abbreviations
CI: Confidence interval; COVID-19: Coronavirus disease 2019; NB: Negative
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